Essential Oils Combined with Vitamin D3 or with Probiotic as an Alternative to the Ionophore Monensin Supplemented in High-Energy Diets for Lambs Long-Term Finished under Subtropical Climate
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location Where the Study Was Performed
2.2. Climatic Variables and Temperature Humidity Index (THI) Estimation
2.3. Animals, Treatments, and Experiment Design
2.4. Sample Analysis
2.5. Calculations
Treatments § | ||||
---|---|---|---|---|
Item | CON | MON | EO + D3 | EO + BS |
Ingredient composition, % DM basis | ||||
Dry-rolled corn | 55.00 | 55.00 | 55.00 | 55.00 |
Sudangrass hay | 11.50 | 11.50 | 11.50 | 11.50 |
Soybean meal | 15.00 | 15.00 | 15.00 | 15.00 |
Monensin | 0 | +++ | 0 | 0 |
Essential oils plus 25-Hydroxi-D3 | 0 | 0 | +++ | 0 |
Essential oils plus probiotics | 0 | 0 | 0 | +++ |
Molasses cane | 10.00 | 10.00 | 10.00 | 10.00 |
Zeolite | 2.00 | 2.00 | 2.00 | 2.00 |
Tallow | 4.00 | 4.00 | 4.00 | 4.00 |
Mineral-protein supplement * | 2.50 | 2.50 | 2.50 | 2.50 |
Chemical composition (%DM basis) ‡ | ||||
Dry matter | 88.22 | 88.22 | 88.22 | 88.22 |
Neutral detergent fiber | 15.11 | 15.11 | 15.11 | 15.11 |
Crude protein | 15.43 | 15.43 | 15.46 | 15.43 |
Ether extract | 6.10 | 6.10 | 6.10 | 6.10 |
Calculated net energy (Mcal/kg) ⁋ | ||||
Maintenance | 2.04 | 2.04 | 2.04 | 2.04 |
Gain | 1.40 | 1.40 | 1.40 | 1.40 |
2.6. Carcass Characteristics, Whole Cuts, and Tissue Shoulder Composition
2.7. Visceral Mass Data
2.8. Statistical Analysis
3. Results
3.1. Ambient Temperature
3.2. Additives Intake
3.3. Growth Performance and Dietary Energy
3.4. Carcass and Visceral Mass
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morgado, J.N.; Lamonaca, E.; Santeramo, F.G.; Caroprese, M.; Albenzio, M.; Ciliberti, M.A. Effects of management strategies on animal welfare and productivity under heat stress: A synthesis. Front. Vet. Sci. 2023, 10, 1145611. [Google Scholar]
- Duffield, T.F.; Rabiee, A.R.; Lean, I.J. A Meta-Analysis of the Impact of Monensin in Lactating Dairy Cattle. Part 1. Metabolic Effects. J. Dairy Sci. 2008, 91, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Baumgard, L.H.; Wheelock, J.B.; Sanders, S.R.; Moore, C.E.; Green, H.B.; Waldron, M.R.; Rhoads, R.P. Postabsorptive carbohydrate adaptations to heat stress and monensin supplementation in lactating Holstein cows. J. Dairy Sci. 2011, 94, 5620–5633. [Google Scholar] [CrossRef] [PubMed]
- Barreras, A.; Castro-Pérez, B.I.; López-Soto, M.A.; Torrentera, N.G.; Montaño, M.F.; Estrada-Angulo, A.; Ríos, F.G.; Dávila-Ramos, H.; Plascencia, A.; Zinn, R.A. Influence of ionophore supplementation on growth performance, dietary energetics and carcass characteristics in finishing cattle during period of heat stress. Asian-Australas. J. Anim. Sci. 2013, 26, 1553–1561. [Google Scholar] [CrossRef] [Green Version]
- Lillehoj, H.; Liu, Y.; Calsamiglia, S.; Fernandez-Miyakawa, M.E.; Chi, F.; Cravens, R.L.; Oh, S.; Gay, C.G. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet. Res. 2018, 49, 76. [Google Scholar] [CrossRef] [Green Version]
- Dorantes-Iturbide, G.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Lee-Rangel, H.A. Essential oils as a dietary additive for small ruminants: A meta-analysis on performance, rumen parameters, serum metabolites, and product quality. Vet. Sci. 2022, 9, 475. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Miranda-Romero, L.A.; Mendoza-Martínez, G.D.; Santiago-Figueroa, I. A meta-analysis of essential oils use for beef cattle feed: Rumen fermentation, blood metabolites, meat quality, performance and, environmental and economic impact. Fermentation 2022, 8, 254. [Google Scholar]
- Broadway, P.R.; Carroll, J.A.; Burdick-Sanchez, N.C.; Cravey, M.D.; Corley, J.R. Some negative effects of heat stress in feedlot heifers may be mitigated via yeast probiotic supplementation. Front. Vet. Sci. 2020, 6, 515. [Google Scholar] [CrossRef]
- Zapata, O.; Cervantes, A.; Barreras, A.; Monge-Navarro, F.; González-Vizcarra, V.M.; Estrada-Angulo, A.; Urías-Estrada, J.D.; Corono, L.; Zinn, R.A.; Martínez-Alvarez, I.G.; et al. Effects of single or combined supplementation of probiotics and prebiotics on ruminal fermentation, ruminal bacteria and total tract digestion in lambs. Small Rum. Res. 2021, 204, 106538. [Google Scholar] [CrossRef]
- Markowiak, P.; S´lizewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Radzikowski, D. Effect of probiotics, prebiotics and synbiotics on the productivity and health of dairy cows and calves. World Sci. News 2017, 78, 193–198. [Google Scholar]
- Meschiatti, M.A.P.; Gouvea, V.N.; Pellerini, L.A.; Batalha, C.D.A.; Bielhl, M.V.; Acedo, T.S.; Dórea, J.R.R.; Tamasia, L.F.M.; Owens, F.N.; Santos, F.A.P. Feeding the combination of essential oils and exogenous amylase increases performance and carcass production of finishing cattle. J. Anim. Sci. 2019, 97, 456–471. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Angulo, A.; Arteaga-Wences, Y.J.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Gaxiola-Camacho, S.; Angulo-Montoya, C.; Ponce-Barraza, E.; Barreras, A.; Corona, L.; Zinn, R.A.; et al. Blend of essential oils supplemented alone or combined with exogenous amylase compared with virginiamycin supplementation on finishing lambs. Animals 2021, 11, 2390. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Cortéz, D.A.; Ramos-Méndez, J.L.; Arteaga-Wences, Y.; Félix-Bernal, A.; Estrada-Angulo, A.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Barreras, A.; Zinn, R.A.; Plascencia, A. Influence of a supplemental blend of essential oils plus 25-hydroxy-vitamin-d3 on feedlot cattle performance during the early-growing phase under conditions of high-ambient temperature. Indian J. Anim. Res. 2022, 57, 1–6. [Google Scholar] [CrossRef]
- Tan, B.F.; Lim, T.; Boontiam, W. Effect of dietary supplementation with essential oils and a Bacillus probiotic on growth performance, diarrhoea and blood metabolites in weaned pigs. Anim. Prod. Sci. 2021, 61, 64–71. [Google Scholar] [CrossRef]
- Chang, W.-Y.; Yu, Y.-H. Effect of Bacillus species−fermented products and essential oils on growth performance, gut morphology, cecal short-chain fatty acid levels, and microbiota community in broilers. Poultry Sci. 2022, 101, 101970. [Google Scholar] [CrossRef]
- Normas Oficiales Mexicanas (NOM). Diario Oficial de la Federación. (NOM-051-ZOO-1995, NOM-033-ZOO-1995) Trato Humanitario de Animales de Producción, de Compañía y Animales Silvestres Durante el Proceso de Crianza, Desarrollo de Experimentos, Movilización y Sacrificio. 1995. Available online: http://dof.gob.mx/ (accessed on 28 November 2022).
- Dikmen, S.; Hansen, P.J. Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? J. Dairy Sci. 2009, 92, 109–116. [Google Scholar] [CrossRef] [Green Version]
- ELANCO AF1404 Rumensin 100 Monensin Sodium. Trade Avice Notice. Australian Pesticides and Veterinary Medicines Authority. 2010. Available online: https://apvma.gov.au/sites/default/files/publication/13186-tan-elanco-rumensin.pdf (accessed on 10 May 2022).
- Cannas, A.; Tedeschi, L.O.; Fox, D.G.; Pell, A.N.; Van Soest, P.J. A mechanistic model for predicting the nutrient requirements and feed biological values for sheep. J. Anim. Sci. 2004, 82, 149–169. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemists. Official Method of Analysis, 17th ed.; Association of Official Analytical Chemists (AOAC): Washington, DC, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirement of Small Ruminant: Sheep, Goats, Cervids, and New World Camelids; National Academy Science (NRC): Washington, DC, USA, 2007.
- National Research Council. Nutrient Requirement of Sheep, 6th ed.; National Academy Science (NRC): Washington, DC, USA, 1985.
- Canton, G.J.; Bores, Q.R.; Baeza, R.J.; Quintal, F.J.; Santos, R.R.; Sandoval, C.C. Growth and feed efficiency of pure and f1 Pelibuey lambs crossbred with specialized breeds for production of meat. J. Anim. Vet. Adv. 2009, 8, 26–32. Available online: https://www.medwelljournals.com/abstract/?doi=javaa.2009.26.32 (accessed on 28 November 2022).
- Zinn, R.A.; Barreras, A.; Owens, F.N.; Plascencia, A. Performance by feedlot steers and heifers: ADG, mature weight, DMI and dietary energetics. J. Anim. Sci. 2008, 86, 2680–2689. [Google Scholar]
- Official United States Standards for Grades of Carcass Lambs, Yearling Mutton and Mutton Carcasses. USDA Handbook, Agricultural Marketing. 1982. Available online: https://www.ams.usda.gov/sites/default/files/media/Lamb%2C_Yearling_Mutton_and_Mutton_Standard%5B1%5D.pdf (accessed on 10 May 2022).
- North American Meat Processor Association. Meat Buyer’s Guide; John Willey and Sons, Inc. (NAMP): Hoboken, NJ, USA, 2007. [Google Scholar]
- Luaces, M.L.; Calvo, C.; Fernández, B.; Fernández, A.; Viana, J.L.; Sánchez, L. Ecuaciones predictoras de la composición tisular de las canales de corderos de raza gallega. Arch. Zootec. 2008, 57, 3–14. [Google Scholar]
- Institute Inc. Statistical Analytical System; SAS Proprietary Software Release 9.3; SAS Institute Inc. (SAS): Cary, NC, USA, 2004. [Google Scholar]
- Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renaudeau, D.; Collin, A.; Yahav, S.; de Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animals 2012, 6, 707–728. [Google Scholar]
- Lees, A.M.; Sejian, V.; Wallage, A.L.; Steel, C.C.; Mader, T.L.; Lees, J.C.; Gaughan, J.B. The impact of heat load on cattle. Animals 2019, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- Mahjoubi, E.; Yazdi, M.H.; Aghaziarati, N.; Noori, G.R.; Afsarian, O.; Baumgard, L.H. The effect of cyclical and severe heat stress on growth performance and metabolism in Afshari lambs. J. Anim. Sci. 2015, 93, 1632–1640. [Google Scholar] [CrossRef]
- Vicente-Pérez, V.R.; Macías-Cruz, U.; Avendaño-Reyes, L.; Correa-Calderón, A.; López-Vaca, M.A.; Lara-Rivera, A.L. Heat stress impacts in hair sheep production. Rev. Mex. Cienc. Pecu. 2020, 11, 205–222. [Google Scholar]
- National Research Council. Predicting Feed Intake of Producing Animals; National Academy Science (NRC): Washington, DC, USA, 1987.
- Ríos-Rincón, F.G.; Dávila-Ramos, H.; Estrada-Angulo, A.; Plascencia, A.; López-Soto, M.A.; Castro-Perez, B.I.; Calderón-Cortes, J.F.; Portillo-Loera, J.J.; Robles-Estrada, J.C. Influence of protein and energy level on growth performance, dietary energetics and carcass characteristics of feedlot hair lambs. Asian-Australas. J. Anim. Sci. 2014, 27, 55–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada-Angulo, A.; López-Soto, M.A.; Rivera-Méndez, C.R.; Castro, B.I.; Ríos, F.G.; Dávila-Ramos, H.; Barreras, A.; Urías-Estrada, J.D.; Zinn, R.A.; Plascencia, A. Effects of combining feed grade urea and a slow-release urea product on performance, dietary energetics and carcass characteristics of feedlot lambs fed finishing diets with different starch to acid detergent fibre ratios. Asian-Australas. J. Anim. Sci. 2016, 29, 1725–1733. [Google Scholar] [CrossRef]
- Macías-Cruz, U.; Avendaño-Reyes, L.; Álvarez-Valenzuela, F.D.; Torrentera-Olivera, N.G.; Meza-Herrera, C.A.; Mellado-Bosque, M.; Correa-Calderón, A. Crecimiento y características de canal en corderas tratadas con clorhidrato de zilpaterol durante primavera y verano. Rev. Mex. Cienc. Pecu. 2013, 4, 1–12. [Google Scholar]
- Dhifi, W.; Bellini, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [PubMed] [Green Version]
- Meyer, N.F.; Erickson, G.E.; Klopfenstein, T.J.; Greenquist, M.A.; Luebbe, M.K.; Williams, P.; Engstrom, M.A. Effect of essential oils, tylosin, and monensin on finishing steer performance, carcass characteristics, liver abscesses, ruminal fermentation, and digestibility. J. Anim. Sci. 2009, 87, 2346–2354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada-Angulo, A.; Mendoza-Cortéz, D.A.; Ramos-Méndez, J.L.; Arteaga-Wences, Y.; Urías-Estrada, J.D.; Castro-Pérez, B.I.; Ríos-Rincón, F.G.; Rodríguez-Gaxiola, M.A.; Barreras, A.; Zinn, R.A.; et al. Comparing blend of essential oils plus 25-hydroxy-vit-d3 versus monensin plus virginiamycin combination in finishing feedlot cattle: Growth performance, dietary energetics, and carcass traits. Animals 2022, 12, 1715. [Google Scholar] [CrossRef] [PubMed]
- Latack, B.C.; Carvalho, P.H.V.; Zinn, R.A. The interaction of feeding an eubiotic blend of essential oils plus 25-hydroxy-vit-D3 on performance, carcass characteristics, and dietary energetics of calf-fed Holstein steers. Front. Vet. Sci. 2022, 9, 1032532. [Google Scholar] [CrossRef]
- Arteaga-Wences, Y.; Estrada-Angulo, A.; Gerardo Ríos-Rincón, F.G.; Castro-Pérez, B.I.; Mendoza-Cortéz, D.A.; Manriquez-Núñez, O.M.; Barreras, A.; Corona-Gochi, L.; Zinn, R.A.; Perea-Domínguez, X.P.; et al. The effects of feeding a standardized mixture of essential oils vs monensin on growth performance, dietary energy and carcass characteristics of lambs fed a high-energy finishing diet. Small Rum. Res. 2021, 205, 106557. [Google Scholar] [CrossRef]
- Chaves, A.V.; Stanford, K.; Gibson, L.; McAllister, T.A.; Benchaar, C. Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. J. Drug Deliv. Sci. Technol. 2008, 117, 215–224. [Google Scholar] [CrossRef]
- Chaves, A.V.; Dugan, M.E.R.; Stanford, K.; Gibson, L.L.; Bystrom, J.M.; McAllister, T.A.; Van Herk, F.; Benchaar, C. A dose-response of cinnamaldehyde supplementation on intake, ruminal fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livest. Sci. 2011, 141, 213–220. [Google Scholar] [CrossRef]
- Benchaar, C. Feeding oregano oil and its main component carvacrol does not affect ruminal fermentation, nutrient utilization, methane emissions, milk production, or milk fatty acid composition of dairy cows. J. Dairy Sci. 2020, 103, 1516–1527. [Google Scholar] [CrossRef]
- Duffield, T.F.; Merrill, J.K.; Bagg, R.N. Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. J. Anim. Sci. 2012, 90, 4583–4592. [Google Scholar] [CrossRef]
- Salinas-Chavira, J.; Ramírez, R.G.; de Lara-Pedroza, E.L.; González-Suárez, M.; Domínguez-Muñoz, M. Influence of monensin and salinomycin on growth and carcass characteristics in pelibuey lambs. J. Appl. Anim. Res. 2005, 28, 93–96. [Google Scholar] [CrossRef]
- Ítavo, C.C.B.F.; Morais, M.G.; Costa, C.; Ítavo, L.C.V.; Franco, G.L.; da Silva, J.A.; Reis, F.A. Addition of propolis or monensin in the diet: Behavior and productivity of lambs in feedlot. Anim. Feed Sci. Technol. 2011, 165, 161–166. [Google Scholar] [CrossRef]
- Khorshidi, K.J.; Karimnia, A.; Gharaveisi, S.; Kioumarsi, H. The effect of monensin and supplemental fat on growth performance, blood metabolites and commercial productivity of Zel lambs. Pak. J. Biol. Sci. 2008, 11, 2395–2400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vedovatto, M.; Pereira, C.d.S.; Beltrame, J.A.M.; Neto, I.M.C.; Bento, A.L.L.; Martha, G.O.D.; Franco, G.L. Inclusion of concentrate and growth promoters’ additives in sheep diets on intake, digestibility, degradability, ruminal variables and nitrogen balance. Rev. Mex. Cienc. Pecu. 2020, 11, 132–152. [Google Scholar] [CrossRef]
- Polizel, D.M.; Martins, A.S.; Miszura, A.A.; Ferraz, M.V.C., Jr.; Bertoloni, A.V.; Oliveira, G.B.; Barroso, J.P.R.; Ferreira, E.M.; Pires, A.V. Low doses of monensin for lambs fed diets containing high level of ground flint corn. Sci. Agric. 2020, 78, e20190263. [Google Scholar] [CrossRef]
- Rojas-Downing, M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Castro-Pérez, B.I.; Núñez-Benítez, V.H.; Estrada-Angulo, A.; Urías-Estrada, J.D.; Gaxiola-Camacho, S.M.; Rodríguez-Gaxiola, M.A.; Angulo-Montoya, C.; Barreras, A.; Zinn, R.A.; Perea-Domínguez, X.P.; et al. Evaluation of standardized mixture of synbiotic-glyconutrients supplemented in lambs finished during summer season in tropical environment: Growth performance, dietary energetics, and carcass characteristics. Can. J. Anim. Sci. 2022, 102, 155–164. [Google Scholar] [CrossRef]
- National Research Council. Effect of Environment on Nutrient Requirements of Domestic Animals (NRC); National Academy Press: Washington, DC, USA, 1981.
- Ding, J.; Zhou, M.; Ren, L.P.; Meng, Q.X. Effect of monensin and live yeast supplementation on growth performance, nutrient digestibility, carcass characteristics and ruminal fermentation parameters in lambs fed steam-flaked corn-based diets. Asian-Australas. J. Anim. Sci. 2008, 21, 547–554. [Google Scholar] [CrossRef]
- Soares, S.B.; Furusho-Garcia, I.F.; Pereira, I.G.; Alves, D.O.; da Silva, G.R.; de Almeida, A.K.; Lopes, C.M.; Sena, J.A.B. Performance, carcass characteristics and non-carcass components of Texel × Santa Inês lambs fed fat sources and monensin. R. Bras. Zootec. 2012, 41, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Rabelo, C.S.H.; Lara, E.C.; Basso, F.C.; Härter, C.J.; Reis, R.A. Growth performance of finishing feedlot lambs fed maize silage inoculated with Bacillus subtilis and lactic acid bacteria. J. Agric. Sci. 2018, 156, 839–847. [Google Scholar] [CrossRef]
- Deviatkin, V.; Mishurov, A.; Kolodina, E. Probiotic effect of Bacillus subtilis B-2998D, B-3057D, and Bacillus licheniformis B-2999D complex on sheep and lambs. J. Adv. Vet. Anim. Res. 2021, 8, 146–157. [Google Scholar] [CrossRef]
- Wang, H.; Liang, S.; Li, X.; Xiaojun Yang, X.; Long, F.; Xin Yang, X. Effects of encapsulated essential oils and organic acids on laying performance, egg quality, intestinal morphology, barrier function, and microflora count of hens during the early laying period. Poult. Sci. 2019, 98, 6751–6760. [Google Scholar] [CrossRef] [PubMed]
- Ghazanfari, S.; Mohammadi, Z.; Adib-Moradi, M. Effects of coriander essential oil on the performance, blood characteristics, intestinal microbiota and histological of broilers. Braz. J. Poult. Sci. 2015, 17, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Teng, P.-Y.; Kim, W.K. Review: Roles of prebiotics in intestinal ecosystem of broilers. Front. Vet. Sci. 2018, 5, 245. [Google Scholar] [PubMed] [Green Version]
- García-Díaz, T.; Branco, A.F.; Jacovaci, F.A.; Jobim, C.C.; Daniel, J.L.P.; Bueno, A.V.; Ribeiro, M.G. Use of live yeast and mannanoligosacharides in grain-based diets for cattle: Ruminal parameters, nutrient digestibility, and inflammatory response. PLoS ONE 2018, 13, e0207127. [Google Scholar]
- Anadón, A.; Ares, I.; Martínez-Larrañaga, M.R.; Martínez, M.A. Prebiotics and probiotics in feed and animal health. In Nutraceuticals in Veterinary Medicine; Gupta, R.C., Srivastava, A., Lall, R., Eds.; Springer: Cham, Switzerland, 2019; pp. 261–285. [Google Scholar]
- Alayande, K.A.; Aiyegoro, O.A.; Ateba, C.N. Probiotics in animal husbandry: Applicability and associated risk factors. Sustainability 2020, 12, 1087. [Google Scholar] [CrossRef] [Green Version]
Week | Mean Ta (°C) | Min Ta (°C) | Max Ta (°C) | Mean RH (%) | Min RH (%) | Max RH (%) | Mean THI | Min THI | Max THI |
---|---|---|---|---|---|---|---|---|---|
1 | 28.7 ± 3.5 | 24.5 ± 5.5 | 33.1 ± 1.6 | 52.2 ± 12.8 | 38.8 ± 6.2 | 65.5 ± 19.4 | 77.7 ± 4.9 | 70.1 ± 6.4 | 85.3 ± 3.4 |
2 | 31.1 ± 3.4 | 27.6 ± 4.4 | 34.5 ± 2.1 | 52.3 ± 13.0 | 40.1 ± 8.4 | 64.6 ± 17.6 | 80.6 ± 4.0 | 74.0 ± 4.7 | 87.2 ± 3.4 |
3 | 30.3 ± 3.0 | 27.1 ± 3.7 | 33.4 ± 2.28 | 55.1 ± 11.2 | 44.3 ± 8.2 | 66.0 ± 14.2 | 79.9 ± 3.8 | 73.9 ± 4.3 | 86.0 ± 3.2 |
4 | 33.1 ± 3.3 | 29.8 ± 4.8 | 36.5 ± 1.8 | 45.4 ± 10.8 | 35.8 ± 6.7 | 54.9 ± 14.9 | 81.9 ± 4.0 | 76.0 ± 5.2 | 87.9 ± 2.7 |
5 | 32.6 ± 3.1 | 28.9± 4.1 | 36.4 ± 2.1 | 54.4 ± 11.1 | 41.3 ± 6.0 | 67.4 ± 16.3 | 83.2 ± 4.2 | 75.8 ± 4.7 | 90.6 ± 3.6 |
6 | 31.1 ± 3.2 | 28.1 ± 3.6 | 34.0 ± 2.8 | 58.4 ± 14.6 | 45.6 ± 12.6 | 71.3 ± 16.7 | 81.5 ± 3.5 | 75.2 ± 3.7 | 87.7 ± 3.4 |
7 | 32.1 ± 3.0 | 28.9 ± 3.3 | 35.2 ± 2.7 | 56.1 ± 12.7 | 43.8 ± 10.1 | 68.4 ± 15.4 | 82.5 ± 3.7 | 76.1 ± 3.4 | 89.0 ± 4.1 |
8 | 33.1 ± 3.0 | 29.8 ± 3.9 | 36.5 ± 2.0 | 49.6 ± 10.4 | 38.5 ± 6.0 | 60.7 ± 14.7 | 82.8 ± 3.5 | 76.3 ± 4.1 | 89.3 ± 2.8 |
9 | 33.1 ± 2.5 | 29.6 ± 3.0 | 36.5 ± 2.1 | 52.4 ± 9.7 | 40.4 ± 6.1 | 64.5 ± 13.3 | 83.3 ± 2.9 | 76.4 ± 3.1 | 90.2 ± 2.6 |
10 | 30.7 ± 3.0 | 26.9 ± 3.2 | 34.51 ± 2.8 | 58.3 ± 11.8 | 44.4 ± 10.1 | 72.2 ± 13.6 | 81.2 ± 3.7 | 73.7 ± 3.7 | 88.7 ± 3.6 |
11 | 30.8 ± 2.7 | 27.1 ± 3.3 | 34.5 ± 2.1 | 59.8 ± 9.8 | 45.9 ± 7.7 | 73.7 ± 11.9 | 81.6 ± 3.2 | 74.1 ± 3.7 | 89.1 ± 2.7 |
12 | 31.5 ± 3.2 | 28.6 ± 3.1 | 34.4 ± 3.3 | 57.5 ± 10.3 | 46.8 ± 7.6 | 68.2 ± 13.0 | 81.9 ± 5.2 | 76.2 ± 3.9 | 87.7 ± 6.5 |
13 | 29.8 ± 2.5 | 27.1 ± 2.8 | 32.5 ± 2.3 | 65.3 ± 10.8 | 53.2 ± 8.4 | 77.4 ± 13.2 | 80.8 ± 2.6 | 75.0 ± 2.8 | 86.6 ± 2.4 |
14 | 30.7 ± 2.6 | 27.9 ± 2.9 | 33.4 ± 2.3 | 64.4 ± 10.6 | 52.4 ± 8.8 | 76.4 ± 12.4 | 81.9 ± 2.9 | 76.1 ± 3.1 | 87.9 ± 2.7 |
15 | 28.9 ± 3.0 | 26.6 ± 2.1 | 31.3 ± 3.9 | 71.4 ± 13.4 | 62.0 ± 15.1 | 80.8 ± 11.7 | 80.2 ± 3.4 | 75.3 ± 1.7 | 85.1 ± 5.1 |
16 | 30.6 ± 3.1 | 27.8 ± 3.2 | 33.5 ± 2.95 | 60.5 ± 11.6 | 48.4 ± 8.5 | 72.5 ± 14.6 | 81.3 ± 4.2 | 75.3 ± 3.7 | 87.4 ± 4.6 |
17 | 31.9 ± 2.5 | 28.8 ± 3.4 | 34.9 ± 1.5 | 53.9 ± 11.7 | 40.3 ± 7.1 | 67.7 ± 16.2 | 82.1 ± 3.7 | 75.5 ± 4.0 | 88.6 ± 3.5 |
Avg | 31.2 ± 3.0 | 27.9 ± 3.5 | 34.4 ± 3.4 | 56.9 ± 11.5 | 44.8 ± 8.4 | 68.9 ± 14.7 | 81.4 ± 3.7 | 74.9 ± 3.9 | 87.9 ± 3.5 |
Treatments † | |||||
---|---|---|---|---|---|
Item | Control | MON | EO + D3 | EO + BS | SEM |
Days on test | 121 | 121 | 121 | 121 | |
Pen replicates | 6 | 6 | 6 | 6 | |
Live weight, kg/d § | |||||
Initial | 17.9 | 18.1 | 17.8 | 18.1 | 0.113 |
Final | 45.8 a | 44.9 a | 47.1 ab | 48.3 b | 0.825 |
Average daily gain, kg/d | 0.231 ab | 0.221 a | 0.242 b | 0.250 b | 0.007 |
Dry matter intake, kg/d | 1.030 a | 0.985 a | 1.033 a | 1.123 b | 0.029 |
Gain to feed ratio, kg/kg | 0.236 a | 0.237 a | 0.246 b | 0.234 a | 0.003 |
Diet net energy, Mcal/kg | |||||
Maintenance | 1.970 a | 1.987 a | 2.035 b | 1.961 a | 0.016 |
Gain | 1.316 a | 1.332 a | 1.375 b | 1.310 | 0.014 |
Observed-to-expected diet NE | |||||
Maintenance | 0.966 a | 0.976 a | 0.999 b | 0.963 a | 0.008 |
Gain | 0.942 a | 0.954 a | 0.985 b | 0.938 a | 0.010 |
Observed-to-expected DMI | 1.046 a | 1.035 a | 1.001 b | 1.051 a | 0.009 |
Treatments † | |||||
---|---|---|---|---|---|
Item | Control | MON | EO + D3 | EO + BS | SEM |
Hot carcass weight, kg | 26.9 ab | 26.6 a | 27.7 ab | 28.1 b | 0.443 |
Dressing percentage | 56.9 | 57.5 | 57.0 | 56.4 | 0.004 |
Cold carcass weight, kg | 26.8 a | 26.5 a | 27.2 ab | 27.9 b | 0.440 |
LM area, cm2 | 16.7 ab | 15.6 a | 17.2 b | 16.5 a | 0.395 |
Fat thickness, cm § | 0.217 | 0.206 | 0.240 | 0.233 | 0.015 |
Kidney pelvic and heart fat, % | 3.61 a | 3.43 a | 2.76 b | 3.55 a | 0.190 |
Carcass yield * | 1.25 | 1.22 | 1.35 | 1.32 | 0.062 |
Shoulder composition, % | |||||
Muscle | 69.58 | 69.62 | 69.51 | 68.78 | 0.645 |
Fat | 12.57 | 12.38 | 12.48 | 13.59 | 0.521 |
Muscle to fat ratio | 5.54 | 5.62 | 5.57 | 5.06 | 0.228 |
Whole cuts (as percentage of CCW) | |||||
Forequarter | 40.59 | 39.83 | 41.10 | 40.67 | 0.692 |
Hindquarter | 37.86 | 37.20 | 37.24 | 37.98 | 0.673 |
Neck | 9.33 | 9.16 | 9.05 | 8.90 | 0.276 |
Shoulder IMPS206 | 7.85 | 7.83 | 8.08 | 7.89 | 0.277 |
Shoulder IMPS207 | 14.54 | 13.98 | 14.22 | 14.24 | 0.239 |
Rack IMPS204 | 6.85 | 6.63 | 6.97 | 6.99 | 0.126 |
Breast IMPS209 | 4.38 | 4.40 | 4.63 | 4.24 | 0.153 |
Ribs IMPS209A | 6.90 | 6.94 | 6.89 | 7.26 | 0.167 |
Loin IMPS231 | 7.20 | 7.28 | 7.36 | 7.39 | 0.170 |
Flank IMPS232 | 6.08 ab | 5.74 a | 6.20 b | 6.38 b | 0.143 |
Leg IMPS233 | 24.54 | 24.16 | 24.62 | 23.55 | 0.497 |
Treatments † | |||||
---|---|---|---|---|---|
Item | Control | MON | EO + D3 | EO + BS | SEM |
GIT fill, kg | 3.44 ab | 2.97 a | 3.54 ab | 3.96 b | 0.317 |
Empty body weight, % of full weight | 92.80 | 93.55 | 92.65 | 92.00 | 0.542 |
Full viscera, kg | 8.00 | 7.51 | 8.08 | 8.54 | 0.276 |
Organs, g/kg of empty body weight | |||||
Stomach complex | 21.83 | 22.77 | 21.60 | 23.91 | 0.751 |
Intestines | 46.02 a | 45.66 ab | 44.07 b | 44.76 b | 0.535 |
Liver/spleen | 14.54 | 14.25 | 15.15 | 15.52 | 0.631 |
Heart/lungs | 19.83 | 19.32 | 18.87 | 19.13 | 0.797 |
Kidney | 2.69 | 2.77 | 2.79 | 2.87 | 0.119 |
Omental fat | 35.17 a | 32.05 b | 26.58 c | 29.37 d | 0.869 |
Mesenteric fat | 10.69 a | 9.46 ab | 8.29 b | 9.51 ab | 0.758 |
Visceral fat | 45.86 a | 41.51 b | 34.87 c | 38.87 b | 1.346 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escobedo-Gallegos, L.d.G.; Estrada-Angulo, A.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Calderón-Garay, E.; Ramírez-Santiago, L.; Valdés-García, Y.S.; Barreras, A.; Zinn, R.A.; Plascencia, A. Essential Oils Combined with Vitamin D3 or with Probiotic as an Alternative to the Ionophore Monensin Supplemented in High-Energy Diets for Lambs Long-Term Finished under Subtropical Climate. Animals 2023, 13, 2430. https://doi.org/10.3390/ani13152430
Escobedo-Gallegos LdG, Estrada-Angulo A, Castro-Pérez BI, Urías-Estrada JD, Calderón-Garay E, Ramírez-Santiago L, Valdés-García YS, Barreras A, Zinn RA, Plascencia A. Essential Oils Combined with Vitamin D3 or with Probiotic as an Alternative to the Ionophore Monensin Supplemented in High-Energy Diets for Lambs Long-Term Finished under Subtropical Climate. Animals. 2023; 13(15):2430. https://doi.org/10.3390/ani13152430
Chicago/Turabian StyleEscobedo-Gallegos, Lucía de G., Alfredo Estrada-Angulo, Beatriz I. Castro-Pérez, Jesús D. Urías-Estrada, Elizabeth Calderón-Garay, Laura Ramírez-Santiago, Yissel S. Valdés-García, Alberto Barreras, Richard A. Zinn, and Alejandro Plascencia. 2023. "Essential Oils Combined with Vitamin D3 or with Probiotic as an Alternative to the Ionophore Monensin Supplemented in High-Energy Diets for Lambs Long-Term Finished under Subtropical Climate" Animals 13, no. 15: 2430. https://doi.org/10.3390/ani13152430
APA StyleEscobedo-Gallegos, L. d. G., Estrada-Angulo, A., Castro-Pérez, B. I., Urías-Estrada, J. D., Calderón-Garay, E., Ramírez-Santiago, L., Valdés-García, Y. S., Barreras, A., Zinn, R. A., & Plascencia, A. (2023). Essential Oils Combined with Vitamin D3 or with Probiotic as an Alternative to the Ionophore Monensin Supplemented in High-Energy Diets for Lambs Long-Term Finished under Subtropical Climate. Animals, 13(15), 2430. https://doi.org/10.3390/ani13152430