The Shepherd and the Hunter: A Genomic Comparison of Italian Dog Breeds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Genotyping
2.2. Genomic Analyses
2.3. Further Breed Comparison
3. Results
3.1. Population Structure
3.2. Selection Signatures
3.3. Breed Comparison
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huson, H.J. Genetic Aspects of Performance in Working Dogs. In The Genetics of the Dog; Ostrander, E., Ruvinsky, A., Eds.; CAB International: Croydon, Australia, 2012; pp. 477–495. ISBN 9781845939403. [Google Scholar]
- Rimbault, M.; Ostrander, E.A. So many doggone traits: Mapping genetics of multiple phenotypes in the domestic dog. Hum. Mol. Genet. 2012, 21, R52–R57. [Google Scholar] [CrossRef] [Green Version]
- Serpell, J. The Domestic Dog, 2nd ed.; Cambridge University Press: New York, NY, USA, 2016; ISBN 9781107024144. [Google Scholar]
- Ridgway, M. Herding Dogs. Vet. Clin. Small Anim. 2021, 51, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Brewer, D.J.; Clark, T.; Phillips, A. Dogs in Antiquity. Anubis to Cerberus: The Origins of the Domestic Dog; Liverpool University Press: Liverpool, UK, 2002; ISBN 9780856687044. [Google Scholar]
- Mehrkam, L.R.; Wynne, C.D.L. Behavioral differences among breeds of domestic dogs (Canis lupus familiaris): Current status of the science. Appl. Anim. Behav. Sci. 2014, 155, 12–27. [Google Scholar] [CrossRef]
- Dansey, W. Some Account of the Canes Venatici of Classical Antiquity. In Arrian on Coursing: He Cynegeticus of the Younger Xenophon; J. Bohn: London, UK, 1831. [Google Scholar]
- Rofifah, D. The Complete Dog Breed Book; Dorling Kindersley Limited: London, UK, 2020; ISBN 9780241412732. [Google Scholar]
- Dreger, D.L.; Davis, B.W.; Cocco, R.; Sechi, S.; Di Cerbo, A.; Parker, H.G.; Polli, M.; Marelli, S.P.; Crepaldi, P.; Ostrander, E.A. Commonalities in development of pure breeds and population isolates revealed in the genome of the Sardinian Fonni’s dog. Genetics 2016, 204, 737–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talenti, A.; Dreger, D.L.; Frattini, S.; Polli, M.; Marelli, S.P.; Harris, A.C.; Liotta, L.; Cocco, R.; Hogan, A.N.; Bigi, D.; et al. Studies of modern Italian dog populations reveal multiple patterns for domestic breed evolution. Ecol. Evol. 2018, 8, 2911–2925. [Google Scholar] [CrossRef]
- Liotta, L.; Bionda, A.; Cortellari, M.; Negro, A.; Crepaldi, P. From phenotypical to genomic characterisation of the mannara dog: An italian shepherd canine resource. Ital. J. Anim. Sci. 2021, 20, 1431–1443. [Google Scholar] [CrossRef]
- Cortellari, M.; Bionda, A.; Talenti, A.; Ceccobelli, S.; Attard, G.; Lasagna, E.; Crepaldi, P.; Liotta, L. Genomic variability of Cirneco dell’Etna and the genetic distance with other dog breeds. Ital. J. Anim. Sci. 2021, 20, 304–314. [Google Scholar] [CrossRef]
- Janeš, M.; Zorc, M.; Ferenčaković, M.; Curik, I.; Dovč, P.; Cubric-Curik, V. Genomic characterization of the three balkan livestock guardian dogs. Sustainability 2021, 13, 2289. [Google Scholar] [CrossRef]
- Parker, H.G.; Kim, L.V.; Sutter, N.B.; Carlson, S.; Lorentzen, T.D.; Malek, T.B.; Johnson, G.S.; DeFrance, H.B.; Ostrander, E.A.; Kruglyak, L. Genetic structure of the purebred domestic dog. Science 2004, 304, 1160–1164. [Google Scholar] [CrossRef] [Green Version]
- Parker, H.G.; Dreger, D.L.; Rimbault, M.; Davis, B.W.; Mullen, A.B.; Carpintero-Ramirez, G.; Ostrander, E.A. Genomic Analyses Reveal the Influence of Geographic Origin, Migration, and Hybridization on Modern Dog Breed Development. Cell Rep. 2017, 19, 697–708. [Google Scholar] [CrossRef]
- Mosher, D.S.; Quignon, P.; Bustamante, C.D.; Sutter, N.B.; Mellersh, C.S.; Parker, H.G.; Ostrander, E.A. A Mutation in the Myostatin Gene Increases Muscle Mass and Enhances Racing Performance in Heterozygote Dogs. PLoS Genet. 2007, 3, e79. [Google Scholar] [CrossRef] [PubMed]
- Parker, H.G.; Shearin, A.L.; Ostrander, E.A. Man’s best friend becomes biology’s best in show: Genome analyses in the domestic dog. Annu. Rev. Genet. 2010, 44, 309–336. [Google Scholar] [CrossRef] [Green Version]
- Spady, T.C.; Ostrander, E.A. Canine Behavioral Genetics: Pointing Out the Phenotypes and Herding up the Genes. Am. J. Hum. Genet. 2008, 82, 10–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutrow, E.V.; Serpell, J.A.; Ostrander, E.A. Domestic dog lineages reveal genetic drivers of behavioral diversification. Cell 2022, 185, 4737–4755.e18. [Google Scholar] [CrossRef]
- Akkad, D.A.; Gerding, W.M.; Gasser, R.B.; Epplen, J.T. Homozygosity mapping and sequencing identify two genes that might contribute to pointing behavior in hunting dogs. Canine Genet. Epidemiol. 2015, 2, 5. [Google Scholar] [CrossRef]
- Chase, K.; Jones, P.; Martin, A.; Ostrander, E.A.; Lark, K.G. Genetic mapping of fixed phenotypes: Disease frequency as a breed characteristic. J. Hered. 2009, 100, S37–S41. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.; Chase, K.; Martin, A.; Davern, P.; Ostrander, E.A.; Lark, K.G. Single-nucleotide-polymorphism-based association mapping of dog stereotypes. Genetics 2008, 179, 1033–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, S.; Xu, F.; Brenig, B. Genome-Wide Association Studies Reveal Neurological Genes for Dog Herding, Predation, Temperament, and Trainability Traits. Front. Vet. Sci. 2021, 8, 693290. [Google Scholar] [CrossRef]
- Ostrander, E.A.; Wayne, R.K.; Freedman, A.H.; Davis, B.W. Demographic history, selection and functional diversity of the canine genome. Nat. Rev. Genet. 2017, 18, 705–720. [Google Scholar] [CrossRef]
- Friedrich, J.; Strandberg, E.; Arvelius, P.; Sánchez-Molano, E.; Pong-Wong, R.; Hickey, J.M.; Haskell, M.J.; Wiener, P. Genetic dissection of complex behaviour traits in German Shepherd dogs. Heredity 2019, 123, 746–758. [Google Scholar] [CrossRef]
- Ilska, J.; Haskell, M.J.; Blott, S.C.; Sánchez-Molano, E.; Polgar, Z.; Lofgren, S.E.; Clements, D.N.; Wiener, P. Genetic Characterization of Dog Personality Traits. Genetics 2017, 206, 1101–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gnanadesikan, G.E.; Hare, B.; Snyder-Mackler, N.; Call, J.; Kaminski, J.; Miklósi, Á.; MacLean, E.L. Breed Differences in Dog Cognition Associated with Brain-Expressed Genes and Neurological Functions. Integr. Comp. Biol. 2020, 60, 976–990. [Google Scholar] [CrossRef]
- Våge, J.; Wade, C.; Biagi, T.; Fatjó, J.; Amat, M.; Lindblad-Toh, K.; Lingaas, F. Association of dopamine- and serotonin-related genes with canine aggression. Genes. Brain. Behav. 2010, 9, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Zapata, I.; Serpell, J.A.; Alvarez, C.E. Genetic mapping of canine fear and aggression. BMC Genom. 2016, 17, 572. [Google Scholar] [CrossRef] [Green Version]
- Schoenebeck, J.J.; Ostrander, E.A. Insights into morphology and disease from the dog genome project. Annu. Rev. Cell Dev. Biol. 2014, 30, 535–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chase, K.; Carrier, D.R.; Adler, F.R.; Jarvik, T.; Ostrander, E.A.; Lorentzen, T.D.; Lark, K.G. Genetic basis for systems of skeletal quantitative traits: Principal component analysis of the canid skeleton. Proc. Natl. Acad. Sci. USA 2002, 99, 9930–9935. [Google Scholar] [CrossRef] [PubMed]
- Schoenebeck, J.J.; Ostrander, E.A. The genetics of canine skull shape variation. Genetics 2013, 193, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Kaelin, C.B.; Barsh, G.S. Genetics of pigmentation in dogs and cats. Annu. Rev. Anim. Biosci. 2013, 125–156. [Google Scholar] [CrossRef]
- Boyko, A.R.; Quignon, P.; Li, L.; Schoenebeck, J.J.; Degenhardt, J.D.; Lohmueller, K.E.; Zhao, K.; Brisbin, A.; Parker, H.G.; VonHoldt, B.M.; et al. A simple genetic architecture underlies morphological variation in dogs. PLoS Biol. 2010, 8, e1000451. [Google Scholar] [CrossRef] [Green Version]
- Shearin, A.L.; Ostrander, E.A. Canine morphology: Hunting for genes and tracking mutations. PLoS Biol. 2010, 8, e1000310. [Google Scholar] [CrossRef] [Green Version]
- Rimbault, M.; Beale, H.C.; Schoenebeck, J.J.; Hoopes, B.C.; Allen, J.J.; Kilroy-Glynn, P.; Wayne, R.K.; Sutter, N.B.; Ostrander, E.A. Derived variants at six genes explain nearly half of size reduction in dog breeds. Genome Res. 2013, 23, 1985–1995. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Williams, F.J.; Dreger, D.L.; Plassais, J.; Davis, B.W.; Parker, H.G.; Ostrander, E.A. Genetic selection of athletic success in sport-hunting dogs. Proc. Natl. Acad. Sci. USA 2018, 115, E7212–E7221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandon, D.; Ressler, K.; Petticord, D.; Papa, A.; Jiranek, J.; Wilkinson, R.; Kartzinel, R.Y.; Ostrander, E.A.; Burney, N.; Borden, C.; et al. Homozygosity for Mobile Element Insertions Associated with WBSCR17 Could Predict Success in Assistance Dog Training Programs. Genes 2019, 10, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortellari, M.; Bionda, A.; Cocco, R.; Sechi, S.; Liotta, L.; Crepaldi, P. Genomic Analysis of the Endangered Fonni’s Dog Breed: A Comparison of Genomic and Phenotypic Evaluation Scores. Animals 2023, 13, 818. [Google Scholar] [CrossRef] [PubMed]
- Bionda, A.; Cortellari, M.; Bigi, D.; Chiofalo, V.; Liotta, L.; Crepaldi, P. Selection Signatures in Italian Livestock Guardian and Herding Shepherd Dogs. Vet. Sci. 2023, 10, 3. [Google Scholar] [CrossRef]
- Parker, H.G. The History and Relationships of Dog Breeds. In The Genetics of the Dog; Ostrander, E.A., Ruvinsky, A., Eds.; CAB International: Croydon, UK, 2012; pp. 38–56. [Google Scholar]
- vonHoldt, B.M.; Pollinger, J.P.; Lohmueller, K.E.; Han, E.; Parker, H.G.; Quignon, P.; Degenhardt, J.D.; Boyko, A.R.; Earl, D.A.; Auton, A.; et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 2010, 464, 898–902. [Google Scholar] [CrossRef] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.H.; Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 2011, 12, 246. [Google Scholar] [CrossRef] [Green Version]
- Holsinger, K.E.; Weir, B.S. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. Rev. Genet. 2009, 10, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Vitti, J.J.; Grossman, S.R.; Sabeti, P.C. Detecting Natural Selection in Genomic Data. Annu. Rev. Genet. 2013, 47, 97–120. [Google Scholar] [CrossRef]
- Szpiech, Z.A.; Hernandez, R.D. selscan: An Efficient Multithreaded Program to Perform EHH-Based Scans for Positive Selection. Mol. Biol. Evol. 2014, 31, 2824–2827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peripolli, E.; Munari, D.P.; Silva, M.V.G.B.; Lima, A.L.F.; Irgang, R.; Baldi, F. Runs of homozygosity: Current knowledge and applications in livestock. Anim. Genet. 2017, 48, 255–271. [Google Scholar] [CrossRef]
- Kukekova, A.V.; Johnson, J.L.; Xiang, X.; Feng, S.; Liu, S.; Rando, H.M.; Kharlamova, A.V.; Herbeck, Y.; Serdyukova, N.A.; Xiong, Z.; et al. Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours. Nat. Ecol. Evol. 2018, 2, 1479–1491. [Google Scholar] [CrossRef] [Green Version]
- Freudenberg, F.; Carreño Gutierrez, H.; Post, A.M.; Reif, A.; Norton, W.H.J. Aggression in non-human vertebrates: Genetic mechanisms and molecular pathways. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2016, 171, 603–640. [Google Scholar] [CrossRef] [PubMed]
- Morrill, K.; Hekman, J.; Li, X.; McClure, J.; Logan, B.; Goodman, L.; Gao, M.; Dong, Y.; Alonso, M.; Carmichael, E.; et al. Ancestry-inclusive dog genomics challenges popular breed stereotypes. Science 2022, 376, eabk0639. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.P.; Fuller, J.L. Dog Behavior. The Genetic Basis; The University of Chicago: Chicago, IL, USA, 1965; ISBN 9780415475976. [Google Scholar]
- MacLean, E.L.; Snyder-Mackler, N.; vonHoldt, B.M.; Serpell, J.A. Highly heritable and functionally relevant breed differences in dog behaviour. Proc. Biol. Sci. 2019, 286, 20190716. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Ren, R.; Chen, P.; Xu, Z.; Wang, Y. Identification of Binding Partners of Deafness-Related Protein PDZD7. Neural Plast. 2018, 2018, 2062346. [Google Scholar] [CrossRef] [PubMed]
- Collin, R.W.J.; Kalay, E.; Tariq, M.; Peters, T.; van der Zwaag, B.; Venselaar, H.; Oostrik, J.; Lee, K.; Ahmed, Z.M.; Caylan, R.; et al. Mutations of ESRRB encoding estrogen-related receptor beta cause autosomal-recessive nonsyndromic hearing impairment DFNB35. Am. J. Hum. Genet. 2008, 82, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Shearer, A.E.; Hildebrand, M.S.; Schaefer, A.M.; Smith, R.J. Genetic Hearing Loss Overview. In GeneReviews® [Internet]; Adam, M., Mirzaa, G., Pagon, R., Wallace, S., Bean, L., Gripp, K., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2023. [Google Scholar]
- Brand, Y.; Levano, S.; Radojevic, V.; Naldi, A.M.; Setz, C.; Ryan, A.F.; Pak, K.; Hemmings, B.A.; Bodmer, D. All Akt isoforms (Akt1, Akt2, Akt3) are involved in normal hearing, but only Akt2 and Akt3 are involved in auditory hair cell survival in the mammalian inner ear. PLoS ONE 2015, 10, e0121599. [Google Scholar] [CrossRef]
- Zhang, T.; Shi, Z.; Wang, Y.; Wang, L.; Zhang, B.; Chen, G.; Wan, Q.; Chen, L. Akt3 deletion in mice impairs spatial cognition and hippocampal CA1 long long-term potentiation through downregulation of mTOR. Acta Physiol. 2019, 225, e13167. [Google Scholar] [CrossRef]
- Smits, J.J.; Oostrik, J.; Beynon, A.J.; Kant, S.G.; de Koning Gans, P.A.M.; Rotteveel, L.J.C.; Klein Wassink-Ruiter, J.S.; Free, R.H.; Maas, S.M.; van de Kamp, J.; et al. De novo and inherited loss-of-function variants of ATP2B2 are associated with rapidly progressive hearing impairment. Hum. Genet. 2019, 138, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Ding, E.; Yin, H.; Zhang, H.; Zhu, B. Research and Discussion on the Relationships between Noise-Induced Hearing Loss and ATP2B2 Gene Polymorphism. Int. J. Genom. 2019, 2019, 5048943. [Google Scholar] [CrossRef]
- Schmutz, S.M.; Berryere, T.G.; Goldfinch, A.D. TYRP1 and MC1R genotypes and their effects on coat color in dogs. Mamm. Genome 2002, 13, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Bannasch, D.L.; Kaelin, C.B.; Letko, A.; Loechel, R.; Hug, P.; Jagannathan, V.; Henkel, J.; Roosje, P.; Hytönen, M.K.; Lohi, H.; et al. Dog colour patterns explained by modular promoters of ancient canid origin. Nat. Ecol. Evol. 2021, 5, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Anderson, H.; Honkanen, L.; Ruotanen, P.; Mathlin, J.; Donner, J. Comprehensive genetic testing combined with citizen science reveals a recently characterized ancient MC1R mutation associated with partial recessive red phenotypes in dog. Canine Med. Genet. 2020, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, S.M.; Dreger, D.L. Genetic Interactions among Three Pigmentation Loci in Domestic Dogs. In Proceedings of the 10th World Congress on Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014. [Google Scholar]
- Dreger, D.L.; Hooser, B.N.; Hughes, A.M.; Ganesan, B.; Donner, J.; Anderson, H.; Holtvoigt, L.; Ekenstedt, K.J. True Colors: Commercially-acquired morphological genotypes reveal hidden allele variation among dog breeds, informing both trait ancestry and breed potential. PLoS ONE 2019, 14, e0223995. [Google Scholar] [CrossRef] [Green Version]
- Cadieu, E.; Neff, M.W.; Quignon, P.; Walsh, K.; Chase, K.; Parker, H.G.; VonHoldt, B.M.; Rhue, A.; Boyko, A.; Byers, A.; et al. Coat Variation in the Domestic Dog Is Governed by Variants in Three Genes. Science 2009, 326, 150–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Bi, Y.; Wang, Z.; Zhu, H.; Liu, M.; Wu, X.; Pan, C. Goat SNX29: mRNA expression, InDel and CNV detection, and their associations with litter size. Front. Vet. Sci. 2022, 9, 981315. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Chen, Y.; Xin, D.; Liu, T.; He, L.; Kang, Y.; Pan, C.; Shen, W.; Lan, X.; Liu, M. Effect of indel variants within the sorting nexin 29 (SNX29) gene on growth traits of goats. Anim. Biotechnol. 2022, 33, 914–919. [Google Scholar] [CrossRef]
- Momozawa, Y.; Merveille, A.-C.; Battaille, G.; Wiberg, M.; Koch, J.; Willesen, J.L.; Proschowsky, H.F.; Gouni, V.; Chetboul, V.; Tiret, L.; et al. Genome wide association study of 40 clinical measurements in eight dog breeds. Sci. Rep. 2020, 10, 6520. [Google Scholar] [CrossRef] [Green Version]
- Rudd Garces, G.; Christen, M.; Loechel, R.; Jagannathan, V.; Leeb, T. FYCO1 Frameshift Deletion in Wirehaired Pointing Griffon Dogs with Juvenile Cataract. Genes 2022, 13, 334. [Google Scholar] [CrossRef] [PubMed]
- Plassais, J.; Kim, J.; Davis, B.W.; Karyadi, D.M.; Hogan, A.N.; Harris, A.C.; Decker, B.; Parker, H.G.; Ostrander, E.A. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat. Commun. 2019, 10, 1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaysse, A.; Ratnakumar, A.; Derrien, T.; Axelsson, E.; Rosengren Pielberg, G.; Sigurdsson, S.; Fall, T.; Seppälä, E.H.; Hansen, M.S.T.; Lawley, C.T.; et al. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet. 2011, 7, e1002316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plassais, J.; Lagoutte, L.; Correard, S.; Paradis, M.; Guaguère, E.; Hédan, B.; Pommier, A.; Botherel, N.; Cadiergues, M.-C.; Pilorge, P.; et al. A Point Mutation in a lincRNA Upstream of GDNF Is Associated to a Canine Insensitivity to Pain: A Spontaneous Model for Human Sensory Neuropathies. PLoS Genet. 2016, 12, e1006482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene Symbol | CFA | Gene Position | Gene Name |
---|---|---|---|
JAK2 | 1 | 93,321,921–93,435,774 | Janus kinase 2 |
SYK | 1 | 95,903,325–95,986,549 | Spleen associated tyrosine kinase |
ZNF599 | 1 | 117,643,042–117,656,167 | Zinc finger protein 599 |
WDR41 | 3 | 29,073,170–29,286,566 | WD repeat domain 41 |
UBE3A | 3 | 35,376,364–35,440,245 | Ubiquitin protein ligase E3A |
HTT | 3 | 61,080,904–61,221,554 | Huntingtin |
TMEM254 | 4 | 29,317,165–29,323,691 | Transmembrane protein 254 |
C5orf42 | 4 | 71,430,719–71,566,921 | Chromosome 5 open reading frame 42 |
CDH12 | 4 | 82,716,681–83,126,350 | Cadherin 12 |
CADM1 | 5 | 17,865,290–18,191,185 | Cell adhesion molecule 1 |
MMP20 | 5 | 29,106,717–29,154,396 | Matrix metallopeptidase 20 |
KLHDC4 | 5 | 65,386,519–65,443,427 | Kelch domain containing 4 |
WBSCR17 | 6 | 2,132,919–2,563,654 | Williams–Beuren syndrome chromosome region 17 |
VAV3 | 6 | 43,729,781–44,000,437 | Vav guanine nucleotide exchange factor 3 |
ADGRL2 | 6 | 65,596,760–65,786,099 | Adhesion G protein-coupled receptor L2 |
SDCCAG8 | 7 | 34,396,345–34,631,157 | Serologically defined colon cancer antigen 8 |
AKT3 | 7 | 34,636,388–34,931,586 | AKT serine/threonine kinase 3 |
RHOJ | 8 | 37,802,907–37,880,272 | Ras homolog family member J |
PPP1R36 | 8 | 38,975,044–39,006,998 | Protein phosphatase 1 regulatory subunit 36 |
ESRRB | 8 | 49,253,497–49,424,763 | Estrogen related receptor beta |
RPH3AL | 9 | 45,333,293–45,420,867 | Rabphilin 3A-like (without C2 domains) |
TSPAN8 | 10 | 12,785,741–12,817,966 | Tetraspanin 8 |
TRHDE | 10 | 13,746,701–14,118,059 | Thyrotropin releasing hormone degrading enzyme |
TYRP1 | 11 | 33,317,645–33,335,498 | Tyrosinase related protein 1 |
CLTA | 11 | 52,659,891–52,680,985 | Clathrin light chain A |
RSPO2 | 13 | 8,610,233–8,755,897 | R-spondin 2 |
CEP83 | 15 | 34,418,139–34,499,159 | Centrosomal protein 83 |
TMCC3 | 15 | 34,629,079–34,850,528 | Transmembrane and coiled-coil domain family 3 |
RNF103 | 17 | 38,549,288–38,570,900 | Ring finger protein 103 |
EXT2 | 18 | 44,983,793–45,129,935 | Exostosin glycosyltransferase 2 |
UGGT1 | 19 | 22,419,831–22,533,441 | UDP-glucose glycoprotein glucosyltransferase 1 |
ATP2B2 | 20 | 7,863,328–8,034,474 | Atpase plasma membrane Ca2+ transporting 2 |
SRGAP3 | 20 | 8,894,162–9,142,066 | SLIT-ROBO Rho gtpase activating protein 3 |
GRM5 | 21 | 10,982,218–11,492,456 | Glutamate metabotropic receptor 5 |
CPNE4 | 23 | 28,621,367–29,077,642 | Copine 4 |
RPLP0 | 26 | 16,148,467–16,153,614 | Ribosomal protein lateral stalk subunit P0 |
TDRD1 | 28 | 25,027,863–25,081,833 | Tudor domain containing 1 |
ATRNL1 | 28 | 25,816,300–26,605,650 | Attractin like 1 |
BMP3 | 32 | 5,207,833–5,231,966 | Bone morphogenetic protein 3 |
DGKG | 34 | 18,823,690–19,016,190 | Diacylglycerol kinase gamma |
CFA | Shepherd Dogs | Hunting Dogs |
---|---|---|
1 | 60,722,335–62,055,218 | |
2 | 75,050,435–75,093,914 | |
3 | 1,181,619–1,332,812 | |
4 | 60,764,954–62,083,754 | |
90,826,390–91,354,784 | ||
66,913,735–68,448,466 | ||
70,219,838–70,306,623 | ||
70,975,962–71,689,191 | ||
73,608,702–74,243,079 | ||
81,342,622–82,298,383 | ||
84,651,292–86,449,303 | ||
5 | 2,035,658–3,736,188 | 2,394,506–2,498,212 |
6 | 1,091,264–2,670,297 | |
3,107,405–4,017,962 | 3,061,041–3,846,530 | |
35,840,074–36,402,977 | ||
13 | 991,157–2,333,650 | |
3,220,205–4,326,026 | 3,090,566–3,980,130 | |
7,399,253–8,178,263 | 7,132,660–9,926,208 | |
37,422,915–38,584,657 | ||
14 | 3,894,739–4,055,262 | |
17 | 2,578,048–2,795,460 | |
48,186,828–51,326,457 | ||
51,667,891–51,907,562 | ||
22 | 342,310–5,456,059 | 707,849–3,176,744 |
23 | 2,398,565–3,839,815 | |
24 | 23,382,682–23,398,090 | |
24,656,717–25,686,788 | ||
25 | 2,091,732–4,600,230 | 2,605,150–4,576,087 |
30 | 972,855–2,482,138 | 314,526–2,267,036 |
31 | 230,277–1,242,356 | |
1,641,111–1,805,149 | ||
34 | 666,725–2,003,315 | 938,929–1,911,095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bionda, A.; Cortellari, M.; Liotta, L.; Crepaldi, P. The Shepherd and the Hunter: A Genomic Comparison of Italian Dog Breeds. Animals 2023, 13, 2438. https://doi.org/10.3390/ani13152438
Bionda A, Cortellari M, Liotta L, Crepaldi P. The Shepherd and the Hunter: A Genomic Comparison of Italian Dog Breeds. Animals. 2023; 13(15):2438. https://doi.org/10.3390/ani13152438
Chicago/Turabian StyleBionda, Arianna, Matteo Cortellari, Luigi Liotta, and Paola Crepaldi. 2023. "The Shepherd and the Hunter: A Genomic Comparison of Italian Dog Breeds" Animals 13, no. 15: 2438. https://doi.org/10.3390/ani13152438
APA StyleBionda, A., Cortellari, M., Liotta, L., & Crepaldi, P. (2023). The Shepherd and the Hunter: A Genomic Comparison of Italian Dog Breeds. Animals, 13(15), 2438. https://doi.org/10.3390/ani13152438