Polymorphisms at Candidate Genes for Fat Content and Fatty Acids Composition: Effects on Sheep Milk Production and Fatty Acid Profile Using Two Dietary Supplementations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Genetic Characterization
2.3. Animals and Feeding Management
- Barley diet: Net energy for lactation 1100 kcal/kg DM, crude protein 55 g/Kg DM, WSC (water-soluble carbohydrates) 485 g/Kg DM, NDF (neutral detergent fiber) 322 g/Kg DM, total polyphenols 17.9 mg/g DM, and tannins 12.5 mg/g DM.
- Carob diet: Net energy for lactation 1700 kcal/kg DM, crude protein 129 g/Kg DM, WSC 52 g/Kg, NDF 251 g/Kg DM, total polyphenols 2.8 mg/g DM, and tannins 1.5 mg/g DM.
2.4. Pasture Chemical Composition
2.5. Milk Ceasurements and Analysis
2.6. Statistical Analysis
3. Results
3.1. Genetic Characterization
3.2. Effect of Genotype and Dietary Integration on Milk Production and Fatty Acid Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pulina, G.; Milán, M.J.; Lavín, M.P.; Theodoridis, A.; Morin, E.; Capote, J.; Thomas, D.L.; Francesconi, A.H.D.; Caja, G. Invited review: Current production trends, farm structures, and economics of the dairy sheep and goat sectors. J. Dairy Sci. 2018, 101, 6715–6729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennett, C. Key ingredients of the Mediterranean diet: The nutritious sum of delicious parts. Today’s Dietit. 2016, 18, 28–33. [Google Scholar]
- Loughrey, D.G.; Lavecchia, S.; Brennan, S.; Lawlor, B.A.; Kelly, M.E. The impact of the Mediterranean diet on the cognitive functioning of healthy older adults: A systematic review and meta-analysis. Adv. Nutr. 2017, 8, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; Rexrode, K.M.; Mantzoros, C.S.; Manson, J.E.; Willett, W.C.; Hu, F.B. Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. Circulation 2009, 119, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Garcia, E.; Rodriguez-Artalejo, F.; Li, T.Y.; Fung, T.T.; Li, S.; Willett, W.C.; Rimm, E.B.; Hu, F.B. The Mediterranean-style dietary pattern and mortality among men and women with cardiovascular disease. Am. J. Clin. Nutr. 2014, 99, 172–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, R.G. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 2002, 85, 295–350. [Google Scholar] [CrossRef]
- Hirahatake, K.M.; Astrup, A.; Hill, J.O.; Slavin, J.L.; Allison, D.B.; Maki, K.C. Potential cardiometabolic health benefits of full-fat dairy: The evidence base. Adv. Nutr. 2020, 11, 533–547. [Google Scholar] [CrossRef]
- Brożek, O.M.; Kiełczewska, K.; Bohdziewicz, K. Fatty acid profile and thermal characteristics of ovine and bovine milk and their mixtures. Int. Dairy J. 2022, 129, 105339. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genom. 2008, 9, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Moioli, B.; D’andrea, M.; Pilla, F. Candidate genes affecting sheep and goat milk quality. Small Rumin. Res. 2007, 68, 179–192. [Google Scholar] [CrossRef]
- Crisà, A.; Marchitelli, C.; Pariset, L.; Contarini, G.; Signorelli, F.; Napolitano, F.; Catillo, G.; Valentini, A.; Moioli, B. Exploring polymorphisms and effects of candidate genes on milk fat quality in dairy sheep. J. Dairy Sci. 2010, 93, 3834–3845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Fernández, M.; Gutiérrez-Gil, B.; García-Gámez, E.; Arranz, J.-J. Genetic variability of the Stearoyl-CoA desaturase gene in sheep. Mol. Cell. Probes 2009, 23, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Scatà, M.; Napolitano, F.; Casu, S.; Carta, A.; De Matteis, G.; Signorelli, F.; Annicchiarico, G.; Catillo, G.; Moioli, B. Ovine acyl CoA: Diacylglycerol acyltransferase 1–molecular characterization, polymorphisms and association with milk traits. Anim. Genet. 2009, 40, 737–742. [Google Scholar] [CrossRef]
- Valenti, B.; Criscione, A.; Moltisanti, V.; Bordonaro, S.; De Angelis, A.; Marletta, D.; Di Paola, F.; Avondo, M. Genetic polymorphisms at candidate genes affecting fat content and fatty acid composition in Modicana cows: Effects on milk production traits in different feeding systems. Animal 2019, 13, 1332–1340. [Google Scholar] [CrossRef]
- Tumino, S.; Criscione, A.; Moltisanti, V.; Marletta, D.; Bordonaro, S.; Avondo, M.; Valenti, B. Feeding system resizes the effects of DGAT1 polymorphism on milk traits and fatty acids composition in Modicana cows. Animals 2021, 11, 1616. [Google Scholar] [CrossRef]
- Tao, H.; Chang, G.; Xu, T.; Zhao, H.; Zhang, K.; Shen, X. Feeding a high concentrate diet down-regulates expression of ACACA, LPL and SCD and modifies milk composition in lactating goats. PLoS ONE 2015, 10, e0130525. [Google Scholar] [CrossRef] [Green Version]
- Richane, A.; Ismail, H.B.; Darej, C.; Attia, K.; Moujahed, N. Potential of Tunisian carob pulp as feed for ruminants: Chemical composition and in vitro assessment. Trop. Anim. Health Prod. 2022, 54, 58. [Google Scholar] [CrossRef]
- Guessous, F.; Rihani, N.; Kabbali, A.; Johnson, W. Improving feeding systems for sheep in a Mediterranean rain-fed cereals/livestock area of Morocco. J. Anim. Sci. 1989, 67, 3080–3086. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, A.; Canbolat, O.; Kamalak, A. Evaluation of carob, Ceratonia siliqua pods as a feed for sheep. Livest. Res. Rural Dev. 2006, 18, 104. [Google Scholar]
- Oliveira, L.N.; Pereira, M.A.; Oliveira, C.D.; Oliveira, C.C.; Silva, R.B.; Pereira, R.A.; DeVries, T.J.; Pereira, M.N. Effect of low dietary concentrations of Acacia mearnsii tannin extract on chewing, ruminal fermentation, digestibility, nitrogen partition, and performance of dairy cows. J. Dairy Sci. 2023, 106, 3203–3216. [Google Scholar] [CrossRef]
- Tumino, S.; Mangano, F.; Bognanno, M.; Bordonaro, S.; Chessari, G.; De Angelis, A.; Avondo, M. Effects of BLG polymorphism and dietary supplementation with carob pulp on ewe milk traits and fatty acid composition. Ital. J. Anim. Sci. 2023, 22, 359–368. [Google Scholar] [CrossRef]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Dervishi, E.; Serrano, M.; Joy, M.; Sarto, P.; Somera, A.; González-Calvo, L.; Berzal-Herranz, B.; Molino, F.; Martinez-Royo, A.; Calvo, J. Structural characterisation of the acyl CoA: Diacylglycerol acyltransferase 1 (DGAT1) gene and association studies with milk traits in Assaf sheep breed. Small Rumin. Res. 2015, 131, 78–84. [Google Scholar] [CrossRef]
- Aali, M.; Shahrbabak, M.M.; Shahrbabak, H.M.; Sadeghi, M. Identifying novel SNPs and allelic sequences of the stearoyl-Coa desaturase gene (SCD) in fat-tailed and thin-tailed sheep breeds. Biochem. Genet. 2014, 52, 153–158. [Google Scholar] [CrossRef]
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Yeh, F.; Yang, R.; Boyle, T. POPGENE Version 1.32: Microsoft Windows—Based Freeware for Population Genetic Analysis, Quick User Guide; Center for International Forestry Research, University of Alberta: Edmonton, AB, Canada, 1999; pp. 1–29. [Google Scholar]
- Schennink, A.; Heck, J.M.; Bovenhuis, H.; Visker, M.H.; van Valenberg, H.J.; van Arendonk, J.A. Milk fatty acid unsaturation: Genetic parameters and effects of stearoyl-CoA desaturase (SCD1) and acyl CoA: Diacylglycerol acyltransferase 1 (DGAT1). J. Dairy Sci. 2008, 91, 2135–2143. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, M.; Utsugi, T.; Oyama, K.; Mannen, H.; Kobayashi, M.; Tanabe, Y.; Ogino, A.; Tsuji, S. Genotype of stearoyl-CoA desaturase is associated with fatty acid composition in Japanese Black cattle. Mamm. Genome 2004, 15, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Grisart, B.; Coppieters, W.; Farnir, F.; Karim, L.; Ford, C.; Berzi, P.; Cambisano, N.; Mni, M.; Reid, S.; Simon, P. Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 2002, 12, 222–231. [Google Scholar] [CrossRef] [Green Version]
- Kaupe, B.; Winter, A.; Fries, R.; Erhardt, G. DGAT1 polymorphism in Bos indicus and Bos taurus cattle breeds. J. Dairy Res. 2004, 71, 182–187. [Google Scholar] [CrossRef]
- Demeter, R.; Schopen, G.; Lansink, A.O.; Meuwissen, M.; Van Arendonk, J. Effects of milk fat composition, DGAT1, and SCD1 on fertility traits in Dutch Holstein cattle. J. Dairy Sci. 2009, 92, 5720–5729. [Google Scholar] [CrossRef] [Green Version]
- Souza, F.; Mercadante, M.; Fonseca, L.; Ferreira, L.; Regatieri, I.C.; Ayres, D.; Tonhati, H.; Silva, S.d.L.; Razook, A.; Albuquerque, L.G.d. Assessment of DGAT1 and LEP gene polymorphisms in three Nelore (Bos indicus) lines selected for growth and their relationship with growth and carcass traits. J. Anim. Sci. 2010, 88, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Conte, G.; Mele, M.; Chessa, S.; Castiglioni, B.; Serra, A.; Pagnacco, G.; Secchiari, P. Diacylglycerol acyltransferase 1, stearoyl-CoA desaturase 1, and sterol regulatory element binding protein 1 gene polymorphisms and milk fatty acid composition in Italian Brown cattle. J. Dairy Sci. 2010, 93, 753–763. [Google Scholar] [CrossRef] [Green Version]
- Duchemin, S.; Bovenhuis, H.; Stoop, W.; Bouwman, A.; Van Arendonk, J.; Visker, M. Genetic correlation between composition of bovine milk fat in winter and summer, and DGAT1 and SCD1 by season interactions. J. Dairy Sci. 2013, 96, 592–604. [Google Scholar] [CrossRef] [Green Version]
- Rodero, E.; González, A.; Avilés, C.; Luque, M. Conservation of endangered Spanish cattle breeds using markers of candidate genes for meat quality. Anim. Biotechnol. 2013, 24, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yang, Z.; Shi, X.; Li, J.; Ji, D.; Mao, Y.; Chang, L.; Gao, H. Association of SCD1 and DGAT1 SNPs with the intramuscular fat traits in Chinese Simmental cattle and their distribution in eight Chinese cattle breeds. Mol. Biol. Rep. 2012, 39, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Cai, C.; Qu, K.; Liu, J.; Jia, Y.; Hanif, Q.; Chen, N.; Zhang, J.; Chen, H.; Huang, B. DGAT1 K232A polymorphism is associated with milk production traits in Chinese cattle. Anim. Biotechnol. 2021, 32, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Zidi, A.; Fernández-Cabanás, V.M.; Urrutia, B.; Carrizosa, J.; Polvillo, O.; González-Redondo, P.; Jordana, J.; Gallardo, D.; Amills, M.; Serradilla, J.M. Association between the polymorphism of the goat stearoyl-CoA desaturase 1 (SCD1) gene and milk fatty acid composition in Murciano-Granadina goats. J. Dairy Sci. 2010, 93, 4332–4339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, M.; Cosenza, G.; Iannaccone, M.; Macciotta, N.; Guo, Y.; Di Stasio, L.; Pauciullo, A. The single nucleotide polymorphism g. 133A> C in the stearoyl CoA desaturase gene (SCD) promoter affects gene expression and quali-quantitative properties of river buffalo milk. J. Dairy Sci. 2019, 102, 442–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Q.L.; Chen, Y.L.; Ma, R.X.; Xue, P. Polymorphism of DGAT1 associated with intramuscular fat-mediated tenderness in sheep. J. Sci. Food Agric. 2009, 89, 232–237. [Google Scholar] [CrossRef]
- Yang, J.; Zang, R.; Liu, W.; Xu, H.; Bai, J.; Lu, J.; Wu, J. Polymorphism of a mutation of DGAT1 gene in four Chinese indigenous sheep breeds. Asian J. Anim. Vet. Adv. 2011, 6, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Altwaty, N.H.; Salem, L.M.; Mahrous, K.F. Single nucleotide polymorphisms in the growth hormone receptor gene and Alu1 polymorphisms in the diacylglycerol acyltransferase 1 gene as related to meat production in sheep. J. Vet. World 2020, 13, 884. [Google Scholar] [CrossRef]
- Armstrong, E.; Ciappesoni, G.; Iriarte, W.; Da Silva, C.; Macedo, F.; Navajas, E.; Brito, G.; San Julián, R.; Gimeno, D.; Postiglioni, A. Novel genetic polymorphisms associated with carcass traits in grazing Texel sheep. Meat Sci. 2018, 145, 202–208. [Google Scholar] [CrossRef]
- Mohammadi, H.; Shahrebabak, M.M.; Sadeghi, M. Association between single nucleotide polymorphism in the ovine DGAT1 gene and carcass traits in two Iranian sheep breeds. Anim. Biotechnol. 2013, 24, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Ala Noshahr, F.; Rafat, A. Polymorphism of DGAT1 gene and its relationship with carcass weight and dressing percentage in Moghani sheep breed. Iran. J. Appl. Anim. Sci. 2014, 4, 331–334. [Google Scholar]
- Al-Thuwaini, T.M.; Al-Shuhaib, M.B.S. Variants of the SCD gene and their association with fatty acid composition in Awassi sheep. Mol. Biol. Rep. 2022, 49, 7807–7813. [Google Scholar] [CrossRef] [PubMed]
- Esteves, C.; Livramento, K.; Paiva, L.; Peconick, A.; Garcia, I.; Garbossa, C.; Faria, P. The polymorphisms of genes associated with the profile of fatty acids of sheep. Arq. Bras. De Med. Veterinária E Zootec. 2019, 71, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Portolano, N. Pecore e Capre Italiane; Edagricole: Bologna, Italy, 1987. [Google Scholar]
- García-Fernández, M.; Gutiérrez-Gil, B.; García-Gámez, E.; Sánchez, J.; Arranz, J. Detection of quantitative trait loci affecting the milk fatty acid profile on sheep chromosome 22: Role of the stearoyl-CoA desaturase gene in Spanish Churra sheep. J. Dairy Sci. 2010, 93, 348–357. [Google Scholar] [CrossRef] [Green Version]
- Quiñones, J.; Bravo, S.; Calvo Lacosta, J.H.; Sepúlveda, N. Genetic polymorphism in meat fatty acids in Auraucano Creole sheeps. J. Anim. Plant Sci. 2017, 27, 743–746. [Google Scholar]
- Calvo, J.; González-Calvo, L.; Dervishi, E.; Blanco, M.; Iguácel, L.; Sarto, P.; Pérez-Campo, F.; Serrano, M.; Bolado-Carrancio, A.; Rodríguez-Rey, J. A functional variant in the stearoyl-CoA desaturase (SCD) gene promoter affects gene expression in ovine muscle. Livest. Sci. 2019, 219, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Pecka-Kiełb, E.; Kowalewska-Łuczak, I.; Czerniawska-Piątkowska, E.; Króliczewska, B. FASN, SCD1 and ANXA9 gene polymorphism as genetic predictors of the fatty acid profile of sheep milk. Sci. Rep. 2021, 11, 23761. [Google Scholar] [CrossRef]
- Van Gastelen, S.; Visker, M.; Edwards, J.; Antunes-Fernandes, E.; Hettinga, K.; Alferink, S.; Hendriks, W.; Bovenhuis, H.; Smidt, H.; Dijkstra, J. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows. J. Dairy Sci. 2017, 100, 8939–8957. [Google Scholar] [CrossRef]
- Roy, B.; Brahma, B.; Ghosh, S.; Pankaj, P.; Mandal, G. Evaluation of milk urea concentration as useful indicator for dairy herd management: A review. Asian J. Anim. Vet. Adv. 2011, 6, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Priolo, A.; Lanza, M.; Biondi, L.; Pappalardo, P.; Young, O. Effect of partially replacing dietary barley with 20% carob pulp on post-weaning growth, and carcass and meat characteristics of Comisana lambs. Meat Sci. 1998, 50, 355–363. [Google Scholar] [CrossRef]
- Inserra, L.; Luciano, G.; Bella, M.; Scerra, M.; Cilione, C.; Basile, P.; Lanza, M.; Priolo, A. Effect of including carob pulp in the diet of fattening pigs on the fatty acid composition and oxidative stability of pork. Meat Sci. 2015, 100, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Aloueedat, M.K.; Obeidat, B.S.; Awawdeh, M.S. Effects of partial replacement of conventional with alternative feeds on nutrient intake, digestibility, milk yield and composition of Awassi ewes and lambs. Animals 2019, 9, 684. [Google Scholar] [CrossRef] [Green Version]
- Gobindram, M.N.-E.; Bognanno, M.; Luciano, G.; Lanza, M.; Biondi, L. Carob pulp inclusion in lamb diets: Effect on intake, performance, feeding behaviour and blood metabolites. Anim. Prod. Sci. 2015, 56, 850–858. [Google Scholar] [CrossRef]
- Hassan, A.A.; Yacout, M.H.; Khalel, M.S.; Adrian, T.R.; Dorina, M.; Magdalena, T.R. The economic effect of a daily supplementation of carob pods (Ceratonia siliqua L.) on rumen fermentation and lactating goats performance. Cellulose 2016, 124, 224–225. [Google Scholar]
- Khan, M.Z.; Ma, Y.; Ma, J.; Xiao, J.; Liu, Y.; Liu, S.; Khan, A.; Khan, I.M.; Cao, Z. Association of DGAT1 with cattle, buffalo, goat, and sheep milk and meat production traits. Front. Vet. Sci. 2021, 8, 712470. [Google Scholar] [CrossRef]
- Bovenhuis, H.; Visker, M.; Poulsen, N.A.; Sehested, J.; van Valenberg, H.J.F.; van Arendonk, J.A.M.; Larsen, L.B.; Buitenhuis, A.J. Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk. J. Dairy Sci. 2016, 99, 3113–3123. [Google Scholar] [CrossRef] [Green Version]
- Parodi, P.W. Positional distribution of fatty acids in triglycerides from milk of several species of mammals. Lipids 1982, 17, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Valenti, B.; Luciano, G.; Morbidini, L.; Rossetti, U.; Codini, M.; Avondo, M.; Priolo, A.; Bella, M.; Natalello, A.; Pauselli, M. Dietary Pomegranate Pulp: Effect on Ewe Milk Quality during Late Lactation. Animals 2019, 9, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, B.R.; Barry, T.N.; Attwood, G.T.; McNabb, W.C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Anim. Feed Sci. Technol. 2003, 106, 3–19. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Basdagianni, Z.; Papaloukas, L.; Kyriakou, G.; Karaiskou, C.; Parissi, Z.; Sinapis, E.; Kasapidou, E. A comparative study of the fatty acid and terpene profiles of ovine and caprine milk from Greek mountain sheep breeds and a local goat breed raised under a semi-extensive production system. Food Chem. 2019, 278, 625–629. [Google Scholar] [CrossRef] [PubMed]
Gene | Acc. Num. | Region | SNP | Amino Acid Substitution | Primers Sequence (5′-3′) | Amplicon Size | Reference |
---|---|---|---|---|---|---|---|
DGAT1 | EU178818 | 5′UTR | g.127 C > A | - | GGAACTACGCTTCCCAGGAC ACGTCTCCGTCCTTGTCTGT | 360 | [13] |
Exon 1 | g.358 C > A | p.Asp53Glu | [24] | ||||
SCD | JX944472 | Promoter | g.87 C > A | - | AAATTCCCTTCGGCCAATGAC TCTCACCTCCTCTTGCAGCAA | 527 | |
JX944475 | Promoter | g.257 G > A | - | [25] | |||
JX944473 | 5′UTR | g.379 A > T | - |
Periods | Days | Block a (20 Ewes) | Block b (18 Ewes) |
---|---|---|---|
Pre-experimental | 12 days | 125 g barley + 125 g carob pulp + 8 h on a mixed pasture | 125 g barley + 125 g carob pulp + 8 h on a mixed pasture |
Period 1 | |||
Diet adaptation | 12 days | Progressive adaptation to the experimental diets | |
Data collection | 8 days | 250 g barley + 8 h on a mixed pasture | 250 g carob pulp + 8 h on a mixed pasture |
Period 2 | |||
Diet adaptation | 12 days | Progressive adaptation to the experimental diets | |
Data collection | 8 days | 250 g carob pulp + 8 h on a mixed pasture | 250 g barley + 8 h on a mixed pasture |
SNP | Genotypes Frequency | Allele Frequency | N | χ2 | p | ||
---|---|---|---|---|---|---|---|
DGAT1 g.127 C > A | CC CA AA | 0.75 0.25 - | C A | 0.88 0.12 | 58 19 - | 1.52 | 0.216 |
DGAT1 g.358 C > A | CC CA AA | 1.00 0 0 | C A | 1.00 0 | 77 - - | - | - |
SCD g.87 C > A | CC CA AA | 0.74 0.25 0.01 | C A | 0.86 0.14 | 57 19 1 | 0.17 | 0.676 |
SCD g.257 G > A | GG GA AA | 1.00 0 0 | G A | 1.00 0 | 77 - - | - | - |
SCD g.379 A > T | AA AT TT | 1.00 0 0 | A T | 1.00 0 | 77 - - | - | - |
DGAT1 (G) | Diet (D) | Significance | SEM | |||||
---|---|---|---|---|---|---|---|---|
CA | CC | Carob | Barley | G | D | G × D | ||
Milk yield g/d | 840.0 | 836.1 | 784.1 | 892.0 | 0.953 | 0.103 | 0.897 | 25.7 |
Fat % | 6.50 | 6.40 | 6.98 | 5.92 | 0.712 | <0.001 | 0.588 | 0.16 |
Protein % | 6.16 | 6.43 | 6.17 | 6.42 | 0.107 | 0.131 | 0.793 | 0.06 |
Lactose % | 4.49 | 4.64 | 4.55 | 4.59 | 0.171 | 0.661 | 0.680 | 0.04 |
Urea mg/dL | 30.8 | 26.4 | 26.9 | 30.4 | 0.023 | 0.068 | 0.501 | 0.99 |
Casein % | 4.90 | 5.14 | 4.94 | 5.09 | 0.119 | 0.314 | 0.789 | 0.06 |
DGAT1 (G) | Diet (D) | Significance | SEM | |||||
---|---|---|---|---|---|---|---|---|
CA | CC | Carob | Barley | G | D | G × D | ||
4:0 | 2.68 | 2.33 | 2.31 | 2.71 | 0.006 | 0.002 | 0.180 | 0.07 |
6:0 | 2.42 | 2.25 | 2.24 | 2.43 | 0.043 | 0.025 | 0.371 | 0.04 |
8:0 | 2.47 | 2.41 | 2.39 | 2.48 | 0.532 | 0.314 | 0.635 | 0.05 |
10:0 | 7.28 | 7.54 | 7.50 | 7.32 | 0.322 | 0.497 | 0.896 | 0.15 |
12:0 | 3.92 | 4.24 | 4.20 | 3.97 | 0.037 | 0.152 | 0.964 | 0.08 |
14:0 | 10.4 | 10.6 | 10.9 | 10.1 | 0.271 | 0.001 | 0.848 | 0.11 |
14:1 c9 | 0.21 | 0.21 | 0.24 | 0.18 | 0.890 | 0.030 | 0.245 | 0.01 |
16:0 | 22.6 | 21.7 | 22.8 | 21.5 | 0.207 | 0.045 | 0.395 | 0.24 |
17:0 iso | 0.34 | 0.37 | 0.34 | 0.37 | 0.001 | 0.002 | 0.364 | 0.01 |
17:0 | 0.75 | 0.78 | 0.79 | 0.74 | 0.023 | <0.001 | 0.749 | 0.08 |
17:1 c9 | 0.22 | 0.25 | 0.24 | 0.23 | 0.034 | 0.185 | 0.798 | 0.01 |
18:0 | 9.21 | 8.63 | 8.87 | 8.97 | 0.082 | 0.759 | 0.788 | 0.17 |
18:1 t10 | 2.97 | 3.20 | 2.68 | 3.49 | 0.325 | 0.001 | 0.862 | 0.16 |
18:1 t11 | 0.43 | 0.45 | 0.41 | 0.46 | 0.303 | 0.010 | 0.070 | 0.01 |
18:1 c9 | 15.7 | 15.6 | 15.8 | 15.5 | 0.827 | 0.518 | 0.435 | 0.20 |
18:1 c11 | 0.66 | 0.65 | 0.73 | 0.59 | 0.826 | 0.001 | 0.985 | 0.04 |
18:2 c9c12 | 1.65 | 1.78 | 1.80 | 1.63 | 0.004 | <0001 | 0.272 | 0.03 |
18:2 c9t11 | 1.39 | 1.62 | 1.35 | 1.67 | 0.120 | 0.029 | 0.568 | 0.08 |
18:3 α | 1.73 | 1.87 | 1.73 | 1.88 | 0.082 | 0.057 | 0.926 | 0.04 |
DGAT1 (G) | Diet (D) | Significance | SEM | |||||
---|---|---|---|---|---|---|---|---|
CA | CC | Carob | Barley | G | D | G × D | ||
SFA | 64.2 | 62.7 | 64.4 | 62.4 | 0.125 | 0.037 | 0.691 | 0.53 |
SCFA | 7.57 | 7.00 | 6.94 | 7.62 | 0.029 | 0.010 | 0.276 | 0.14 |
MCFA | 21.6 | 22.4 | 22.6 | 21.4 | 0.141 | 0.041 | 0.980 | 0.31 |
MUFA | 24.5 | 24.9 | 24.2 | 25.2 | 0.434 | 0.043 | 0.728 | 0.26 |
OBCFA | 4.62 | 4.78 | 4.69 | 4.71 | 0.060 | 0.830 | 0.718 | 0.04 |
Trans FA | 4.95 | 5.20 | 4.54 | 5.61 | 0.435 | 0.001 | 0.881 | 0.20 |
PUFA | 4.82 | 5.28 | 4.88 | 5.22 | 0.004 | 0.029 | 0.507 | 0.08 |
AI | 2.38 | 2.29 | 2.47 | 2.20 | 0.304 | 0.005 | 0.847 | 0.04 |
TI | 2.20 | 2.06 | 2.24 | 2.02 | 0.027 | 0.001 | 0.773 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumino, S.; Bognanno, M.; Chessari, G.; Tolone, M.; Bordonaro, S.; Mangano, F.; Marletta, D.; Avondo, M. Polymorphisms at Candidate Genes for Fat Content and Fatty Acids Composition: Effects on Sheep Milk Production and Fatty Acid Profile Using Two Dietary Supplementations. Animals 2023, 13, 2533. https://doi.org/10.3390/ani13152533
Tumino S, Bognanno M, Chessari G, Tolone M, Bordonaro S, Mangano F, Marletta D, Avondo M. Polymorphisms at Candidate Genes for Fat Content and Fatty Acids Composition: Effects on Sheep Milk Production and Fatty Acid Profile Using Two Dietary Supplementations. Animals. 2023; 13(15):2533. https://doi.org/10.3390/ani13152533
Chicago/Turabian StyleTumino, Serena, Matteo Bognanno, Giorgio Chessari, Marco Tolone, Salvatore Bordonaro, Fabrizio Mangano, Donata Marletta, and Marcella Avondo. 2023. "Polymorphisms at Candidate Genes for Fat Content and Fatty Acids Composition: Effects on Sheep Milk Production and Fatty Acid Profile Using Two Dietary Supplementations" Animals 13, no. 15: 2533. https://doi.org/10.3390/ani13152533