Effect of Bacillus subtilis and Oregano Oil on Performance, Gut Microbiome, and Intestinal Morphology in Pullets
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Growth Performance
2.3. Analyses of HE:LY Ratio in Blood
2.4. Ileal Morphology
2.5. 16S rRNA Analysis of Bacterial Cecal Composition
2.6. Statistical Analyses
3. Results
3.1. Growth Performance
3.2. HE:LY Ratio
3.3. Histomorphological Analysis
3.4. Cecal Microbial Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeoman, C.J.; Chia, N.; Jeraldo, P.; Sipos, M.; Goldenfeld, N.D.; White, B.A. The microbiome of the chicken gastrointestinal tract. Anim. Health Res. Rev. 2012, 13, 89–99. [Google Scholar] [CrossRef]
- Videnska, P.; Sedlar, K.; Lukac, M.; Faldynova, M.; Gerzova, L.; Cejkova, D.; Sisak, F.; Rychlik, I. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS ONE 2014, 9, e115142. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yan, T.; Ren, Z.; Yang, X. Age-associated changes in caecal microbiome and their apparent correlations with growth performances of layer pullets. Anim. Nutr. 2021, 7, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Hahn-Didde, D.; Purdum, S.E. Prebiotics and probiotics used alone or in combination and effects on pullet growth and intestinal microbiology. J. Appl. Poult. Res. 2016, 25, 1–11. [Google Scholar] [CrossRef]
- Fijan, S. Microorganisms with claimed probiotic properties: An overview of recent literature. Int. J. Environ. Res. Public Health 2014, 11, 4745–4767. [Google Scholar] [CrossRef]
- Li, X.; Wu, S.; Li, X.; Yan, T.; Duan, Y.; Yang, X.; Duan, Y.; Sun, Q.; Yang, X. Simultaneous supplementation of Bacillus subtilis and antibiotic growth promoters by stages improved intestinal function of pullets by altering gut microbiota. Front. Microbiol. 2018, 9, 2328. [Google Scholar] [CrossRef]
- Neijat, M.; Habtewold, J.; Shirley, R.B.; Welsher, A.; Barton, J.; Thiery, P.; Kiarie, E. Bacillus subtilis strain DSM 29784 modulates the cecal microbiome, concentration of short-chain fatty acids, and apparent retention of dietary components in shaver white chickens during grower, developer, and laying phases. Appl. Environ. Microbiol. 2019, 85, e00402-19. [Google Scholar] [CrossRef]
- Meligy, A.M.; Abd El-Hamid, M.I.; Yonis, A.E.; Elhaddad, G.Y.; Abdel-Raheem, S.M.; El-Ghareeb, W.R.; Mohamed, M.H.A.; Ismail, H.; Ibrahim, D. Liposomal encapsulated oregano, cinnamon, and clove oils enhanced the performance, bacterial metabolites antioxidant potential, and intestinal microbiota of broiler chickens. Poult. Sci. 2023, 102, 102683. [Google Scholar] [CrossRef]
- Ibrahim, D.; Ismail, T.A.; Khalifa, E.; Abd El-Kader, S.A.; Mohamed, D.I.; Mohamed, D.T.; Shahin, S.E.; El-Hamis, M.I.A. Supplementing garlic nanohydrogel optimized growth, gastrointestinal integrity and economics and ameliorated necrotic enteritis in broiler chickens using a Clostridium perfringens challenge model. Animals 2021, 11, 2027. [Google Scholar] [CrossRef]
- Gross, W.B.; Siegel, H.S. Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Dis. 1983, 27, 972–979. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, S.; Wang, H.; Piao, X. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: A review. J. Anim. Sci. Biotechnol. 2015, 6, 7. [Google Scholar] [CrossRef]
- Lambert, R.J.W.; Skandamis, P.N.; Coote, P.J.; Nychas, G.J. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef]
- Feng, J.; Lu, M.; Wang, J.; Zhang, H.; Qiu, K.; Qi, G.; Wu, S. Dietary oregano essential oil supplementation improves intestinal functions and alters gut microbiota in late-phase laying hens. J. Anim. Sci. Biotechnol. 2021, 12, 72. [Google Scholar] [CrossRef]
- Li, W.; Bai, J.; Li, Y.; Qin, Y.; Yu, D. Effects of Bacillus subtilis on meat quality, nutrient digestibility and serum biochemical parameters of broilers. Chin. J. Prev. Vet. Med. 2014, 34, 1682–1685. [Google Scholar]
- Zhang, S.; Gao, Z.; He, H.; Cao, Z.; Chen, G.; Zhou, P.; Huang, Z. Preliminary observation of the effect of endophytic marine bacterium from mangrove on growth performance and immunologic function of yellow-feather broilers. J. Henan Agric. Sci. 2014, 43, 119–122. [Google Scholar]
- Gao, Z.; Wu, H.; Shi, L.; Zhang, X.; Sheng, R.; Yin, F.; Gooneratne, R. Study of Bacillus subtilis on growth performance, nutrition metabolism and intestinal microflora of 1 to 42 d broiler chickens. Anim. Nutr. 2017, 3, 109–113. [Google Scholar] [CrossRef]
- Abudabos, A.M.; Ali, M.H.; Nassan, M.A.; Saleh, A.A. Ameliorative effect of Bacillus subtilis on growth performance and intestinal architecture in broiler infected with Salmonella. Animals 2019, 9, 190. [Google Scholar] [CrossRef]
- Brenes, A.; Roura, E. Essential oils in poultry nutrition: Main effects and modes of action. Anim. Feed. Sci. Technol. 2010, 158, 1–14. [Google Scholar] [CrossRef]
- Hippenstiel, F.; Abdel-Wareth, A.A.A.; Kehraus, S.; Südekum, K.H. Effects of selected herbs and essential oils, and their active components on feed intake and performance of broilers-a review. Arch. Geflügelkd. 2011, 75, 226–234. [Google Scholar]
- Mitchell, E.B.; Johns, J. Avian hematology and related disorders. Vet. Clin. N. Am. Exot. Anim. Pract. 2008, 11, 501–522. [Google Scholar] [CrossRef]
- Davis, G.S.; Anderson, K.E.; Carroll, A.S. The effects of long-term caging and molt of Single Comb White Leghorn hens on heterophil to lymphocyte ratios, corticosterone and thyroid hormones. Poult. Sci. 2000, 79, 514–518. [Google Scholar] [CrossRef]
- Tang, S.G.H.; Sieo, C.C.; Ramasamy, K.; Saad, W.Z.; Wong, H.K.; Ho, Y.W. Performance, biochemical and haematological responses, and relative organ weights of laying hens fed diets supplemented with prebiotic, probiotic and synbiotic. BMC Vet. Res. 2017, 13, 248. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.C.; Yan, F.F.; Hu, J.Y.; Amen, O.A.; Cheng, H.W. Supplementation of Bacillus subtilis-based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens. J. Anim. Sci. 2018, 96, 1654–1666. [Google Scholar] [CrossRef] [PubMed]
- Yesilbag, D.; Gezen, S.S.; Biricik, H.A.K.A.N.; Bulbul, T. Effect of a rosemary and oregano volatile oil mixture on performance, lipid oxidation of meat and haematological parameters in Pharaoh quails. Br. Poult. Sci. 2012, 53, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Awad, W.A.; Ghareeb, K.; Nitsch, S.; Pasteiner, S.; Abdel-Raheem, S.; Böhm, J. Effects of dietary inclusion of prebiotic, probiotic and synbiotic on the intestinal glucose absorption of broiler chickens. Int. J. Poult. Sci. 2008, 7, 686–691. [Google Scholar] [CrossRef]
- Ferket, P.R.; Parks, C.W.; Grimes, J.L. Benefits of Dietary Antibiotic and Mannanoligosaccharide Supplementation for Poultry; University of Illinois: Champaign, IL, USA, 2002. [Google Scholar]
- Onderci, M.; Sahin, N.; Sahin, K.; Cikim, G.; Aydin, A.; Ozercan, I.; Aydin, S. Efficacy of supplementation of α-amylase-producing bacterial culture on the performance, nutrient use, and gut morphology of broiler chickens fed a corn-based diet. Poult. Sci. 2006, 85, 505–510. [Google Scholar] [CrossRef]
- Montagne, L.; Pluske, J.R.; Hampson, D.J. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed. Sci. Technol. 2003, 108, 95–117. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Xu, H.; Mei, X.; Gong, L.; Wang, B.; Li, W.; Jiang, S. Direct-fed glucose oxidase and its combination with B. amyloliquefaciens SC06 on growth performance, meat quality, intestinal barrier, antioxidative status, and immunity of yellow-feathered broilers. Poult. Sci. 2018, 97, 3540–3549. [Google Scholar] [CrossRef]
- Rajput, I.R.; Li, L.Y.; Xin, X.; Wu, B.B.; Juan, Z.L.; Cui, Z.W.; Yu, D.Y.; Li, W.F. Effect of Saccharomyces boulardii and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens. Poult. Sci. 2013, 92, 956–965. [Google Scholar] [CrossRef]
- Tzora, A.; Giannenas, I.; Karamoutsios, A.; Papaioannou, N.; Papanastasiou, D.; Bonos, E.; Skoufos, S.; Bartzanas, T.; Skoufos, I. Effects of oregano, attapulgite, benzoic acid and their blend on chicken performance, intestinal microbiology and intestinal morphology. J. Poult. Sci. 2017, 54, 218–227. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, Y.; Tang, L.; Zeng, Z.; Gong, L.; Wu, Y.; Li, W.F. Effects of Bacillus amyloliquefaciens instead of antibiotics on growth performance, intestinal health, and intestinal microbiota of broilers. Front. Vet. Sci. 2021, 8, 679368. [Google Scholar] [CrossRef]
- Cremonesi, P.; Biscarini, F.; Castiglioni, B.; Sgoifo, C.A.; Compiani, R.; Moroni, P. Gut microbiome modifications over time when removing in-feed antibiotics from the prophylaxis of post-weaning diarrhea in piglets. PLoS ONE 2022, 17, e0262199. [Google Scholar] [CrossRef]
- Antonopoulos, D.A.; Huse, S.M.; Morrison, H.G.; Schmidt, T.M.; Sogin, M.L.; Young, V.B. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect. Immun. 2009, 77, 2367–2375. [Google Scholar] [CrossRef]
- Karlsson, F.H.; Ussery, D.W.; Nielsen, J.; Nookaew, I. A closer look at bacteroides: Phylogenetic relationship and genomic implications of a life in the human gut. Microb. Ecol. 2011, 61, 473–485. [Google Scholar] [CrossRef]
- Guo, S.; Lei, J.; Liu, L.; Qu, X.; Li, P.; Liu, X.; Guo, Y.; Gao, Q.; Lan, F.; Xiao, B.; et al. Effects of Macleaya cordata extract on laying performance, egg quality, and serum indices in Xuefeng black-bone chicken. Poult. Sci. 2021, 100, 101031. [Google Scholar] [CrossRef]
- Polansky, O.; Sekelova, Z.; Faldynova, M.; Sebkova, A.; Sisak, F.; Rychlik, I. Important metabolic pathways and biological processes expressed by chicken cecal microbiota. Appl. Environ. Microbiol. 2016, 82, 1569–1576. [Google Scholar] [CrossRef]
- Gauffin Cano, P.; Santacruz, A.; Moya, Á.; Sanz, Y. Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS ONE 2012, 7, e41079. [Google Scholar] [CrossRef]
- Khan, S.; Chousalkar, K.K. Transcriptome profiling analysis of caeca in chicks challenged with Salmonella Typhimurium reveals differential expression of genes involved in host mucosal immune response. Appl. Microbiol. Biotechnol. 2020, 104, 9327–9342. [Google Scholar] [CrossRef]
Con | BS | ORO | SEM 1 | p-Values | ||
---|---|---|---|---|---|---|
Initial body weight | 39.57 | 39.72 | 39.67 | 0.113 | 0.6247 | |
0–6 weeks | Body weight | 451.73 | 464.17 | 440.48 | 8.720 | 0.1997 |
Body weight gain | 412.16 | 424.45 | 400.81 | 8.682 | 0.1987 | |
Feed intake | 694.57 | 735.69 | 707.30 | 27.210 | 0.5653 | |
FCR | 1.68 | 1.74 | 1.76 | 0.047 | 0.5372 | |
6–11 weeks | Body weight | 995.43 | 989.21 | 970.48 | 15.499 | 0.5147 |
Body weight gain | 543.70 | 525.04 | 530.00 | 13.032 | 0.5909 | |
Feed intake | 2352.39 | 2347.34 | 2398.27 | 32.366 | 0.4925 | |
FCR | 4.33 | 4.47 | 4.54 | 0.094 | 0.3195 | |
11–18 weeks | Body Weight | 1524.11 | 1538.55 | 1507.17 | 19.202 | 0.5303 |
Body weight gain | 528.68 | 549.33 | 536.69 | 15.399 | 0.6436 | |
Feed intake | 4665.72 | 4421.52 | 4424.55 | 112.507 | 0.2516 | |
FCR | 8.84 a | 8.07 b | 8.24 b | 0.132 | 0.0036 | |
Over all weeks | Body weight gain | 1484.54 | 1498.82 | 1467.50 | 19.194 | 0.5310 |
Feed intake | 7712.68 | 7504.54 | 7530.12 | 112.597 | 0.3911 | |
FCR | 5.20 | 5.01 | 5.13 | 0.060 | 0.1220 |
Con | BS | ORO | SEM 1 | p-Values | |
---|---|---|---|---|---|
HE | 8.17 a | 6.61 b | 7.43 a | 0.174 | 0.0007 |
LY | 13.58 | 12.74 | 13.42 | 0.451 | 0.0913 |
HE:LY | 0.60 a | 0.52 b | 0.55 b | 0.051 | 0.0002 |
Con | BS | ORO | SEM 1 | p-Values | |
---|---|---|---|---|---|
Villus height (µm) | 663.29 b | 720.98 a | 679.28 b | 13.478 | 0.0094 |
Crypt depth (µm) | 130.18 a | 120.00 b | 117.31 b | 3.338 | 0.0187 |
Villus height/Crypt depth | 5.19 b | 6.12 a | 5.91 a | 0.164 | 0.0003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-J.; Kim, H.-S.; Yun, Y.-S.; Kang, H.-K. Effect of Bacillus subtilis and Oregano Oil on Performance, Gut Microbiome, and Intestinal Morphology in Pullets. Animals 2023, 13, 2550. https://doi.org/10.3390/ani13162550
Kim H-J, Kim H-S, Yun Y-S, Kang H-K. Effect of Bacillus subtilis and Oregano Oil on Performance, Gut Microbiome, and Intestinal Morphology in Pullets. Animals. 2023; 13(16):2550. https://doi.org/10.3390/ani13162550
Chicago/Turabian StyleKim, Hee-Jin, Hyun-Soo Kim, Yeon-Seo Yun, and Hwan-Ku Kang. 2023. "Effect of Bacillus subtilis and Oregano Oil on Performance, Gut Microbiome, and Intestinal Morphology in Pullets" Animals 13, no. 16: 2550. https://doi.org/10.3390/ani13162550
APA StyleKim, H.-J., Kim, H.-S., Yun, Y.-S., & Kang, H.-K. (2023). Effect of Bacillus subtilis and Oregano Oil on Performance, Gut Microbiome, and Intestinal Morphology in Pullets. Animals, 13(16), 2550. https://doi.org/10.3390/ani13162550