Canine Babesiosis Caused by Large Babesia Species: Global Prevalence and Risk Factors—A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Prevalence of Babesia rossi
3. Prevalence of Babesia canis
4. Prevalence of Babesia vogeli
5. Prevalence of Babesia coco
6. Risk Factors for Large Babesia Infections
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baneth, G. Babesia of Domestic Dogs. In Parasitic Protozoa of Farm Animals and Pets, 1st ed.; Florin-Christensen, M., Schnittger, L., Eds.; Springer International Publishing AG, Part of Springer Nature: Cham, Switzerland, 2018; pp. 241–258. [Google Scholar]
- Baneth, G.; Nachum-Biala, Y.; Birkenheuer, A.J.; Schreeg, M.E.; Prince, H.; Florin-Christensen, M.; Schnittger, L.; Aroch, I. A new piroplasmid species infecting dogs: Morphological and molecular characterization and pathogeny of Babesia negevi n. sp. Parasit. Vectors 2020, 13, 130. [Google Scholar] [CrossRef]
- Köster, L.S.; Lobetti, R.G.; Kelly, P. Canine babesiosis: A perspective on clinical complications, biomarkers, and treatment. Vet. Med. Res. Rep. 2015, 6, 119–128. [Google Scholar]
- Shaw, M.; Kolba, N.; Huffman, J.E. Babesia spp. in Ursus americanus (Black Bear) in New Jersey. Northeast. Nat. 2015, 22, 451–458. [Google Scholar] [CrossRef]
- Barash, N.R.; Thomas, B.; Birkenheuer, A.J.; Breitschwerdt, E.B.; Lemler, E.; Qurollo, B.A. Prevalence of Babesia spp. and clinical characteristics of Babesia vulpes infections in North American dogs. J. Vet. Intern. Med. 2019, 33, 2075–2081. [Google Scholar] [CrossRef] [Green Version]
- Fritz, D. A PCR study of piroplasms in 166 dogs and 111 horses in France (March 2006 to March 2008). Parasitol. Res. 2010, 106, 1339–1342. [Google Scholar] [CrossRef]
- Hornok, S.; Horváth, G.; Takács, N.; Kontschán, J.; Szőke, K.; Farkas, R. Molecular identification of badger-associated Babesia sp. DNA in dogs: Updated phylogeny of piroplasms infecting Caniformia. Parasit. Vectors 2018, 11, 235. [Google Scholar] [CrossRef]
- Birkenheuer, A.J.; Neel, J.; Ruslander, D.; Levy, M.G.; Breitschwerdt, E.B. Detection and molecular characterization of a novel large Babesia species in a dog. Vet. Parasitol. 2004, 124, 151–160. [Google Scholar] [CrossRef]
- Holman, P.J.; Backlund, B.B.; Wilcox, A.L.; Stone, R.; Stricklin, A.L.; Bardin, K.E. Detection of a large unnamed Babesia piroplasm originally identified in dogs in North Carolina in a dog with no history of travel to that state. J. Am. Vet. Med. Assoc. 2009, 235, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Sikorski, L.E.; Birkenheuer, A.J.; Holowaychuk, M.K.; McCleary-Wheeler, A.L.; Davis, J.M.; Littman, M.P. Babesiosis Caused by a Large Babesia Species in 7 Immunocompromised Dogs. J. Vet. Intern. Med. 2010, 24, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Marks Stowe, D.A.; Birkenheuer, A.J.; Grindem, C.B. Pathology in practice. Intraerythrocytic infection with organisms consistent with a large Babesia sp. J. Am. Vet. Med. Assoc. 2012, 241, 1029–1031. [Google Scholar] [CrossRef]
- Jacobson, L.S. The South African form of severe and complicated canine babesiosis: Clinical advances 1994–2004. Vet. Parasitol. 2006, 138, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Chauvin, A.; Moreau, E.; Bonnet, S.; Plantard, O.; Malandrin, L. Babesia and its hosts: Adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet. Res. 2009, 40, 37. [Google Scholar] [CrossRef] [Green Version]
- Djokic, V.; Rocha, S.C.; Parveen, N. Lessons Learned for Pathogenesis, Immunology, and Disease of Erythrocytic Parasites: Plasmodium and Babesia. Front. Cell. Infect. Microbiol. 2021, 11, 707. [Google Scholar] [CrossRef]
- Leisewitz, A.; Goddard, A.; De Gier, J.; Van Engelshoven, J.; Clift, S.; Thompson, P.; Schoeman, J.P. Disease severity and blood cytokine concentrations in dogs with natural Babesia rossi infection. Parasite Immunol. 2019, 41, e12630. [Google Scholar] [CrossRef]
- Gójska-Zygner, O.; Bartosik, J.; Górski, P.; Zygner, W. Hyponatraemia and syndrome of inappropriate antidiuretic hormone secretion in non-azotaemic dogs with babesiosis associated with decreased arterial blood pressure. J. Vet. Res. 2019, 63, 339–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zygner, W.; Wędrychowicz, H. Influence of anaemia on azotaemia in dogs infected with Babesia canis in Poland. Bull. Vet. Inst. Pulawy 2009, 53, 663–668. [Google Scholar]
- Rafaj, R.B.; Matijatko, V.; Kis, I.; Kučer, N.; Živičnjak, T.; Lemo, N.; Žvorc, Z.; Brkljačić, M.; Mrljak, V. Alterations in some blood coagulation parameters in naturally occurring cases of canine babesiosis. Acta Vet. Hung. 2009, 57, 295–304. [Google Scholar] [CrossRef]
- Gójska-Zygner, O.; Zygner, W. Hyperaldosteronism and its association with hypotension and azotaemia in canine babesiosis. Vet. Q. 2015, 35, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Schoeman, J.P.; Rees, P.; Herrtage, M.E. Endocrine predictors of mortality in canine babesiosis caused by Babesia canis rossi. Vet. Parasitol. 2007, 148, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Matijatko, V.; Kiš, I.; Torti, M.; Brkljačić, M.; Kučer, N.; Rafaj, R.B.; Grden, D.; Živičnjak, T.; Mrljak, V. Septic shock in canine babesiosis. Vet. Parasitol. 2009, 162, 263–270. [Google Scholar] [CrossRef]
- Kuleš, J.; de Torre-Minguela, C.; Barić Rafaj, R.; Gotić, J.; Nižić, P.; Ceron, J.J.; Mrljak, V. Plasma biomarkers of SIRS and MODS associated with canine babesiosis. Res. Vet. Sci. 2016, 105, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Kuleš, J.; Bilić, P.; Beer Ljubić, B.; Gotić, J.; Crnogaj, M.; Brkljačić, M.; Mrljak, V. Glomerular and tubular kidney damage markers in canine babesiosis caused by Babesia canis. Ticks Tick-Borne Dis. 2018, 9, 1508–1517. [Google Scholar] [CrossRef] [PubMed]
- Zygner, W.; Rodo, A.; Gójska-Zygner, O.; Górski, P.; Bartosik, J.; Kotomski, G. Disorders in blood circulation as a probable cause of death in dogs infected with Babesia canis. J. Vet. Res. 2021, 65, 277–285. [Google Scholar] [CrossRef]
- Lobetti, R.G.; Jacobson, L.S. Renal involvement in dogs with babesiosis. J. S. Afr. Vet. Assoc. 2001, 72, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Möhr, A.J.; Lobetti, R.G.; van der Lugt, J.J. Acute pancreatitis: A newly recognised potential complication of canine babesiosis. J. S. Afr. Vet. Assoc. 2000, 71, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Dvir, E.; Lobetti, R.G.; Jacobson, L.S.; Pearson, J.; Becker, P.J. Electrocardiographic changes and cardiac pathology in canine babesiosis. J. Vet. Cardiol. 2004, 6, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Zygner, W.; Gójska-Zygner, O.; Norbury, L.J. Pathogenesis of Anemia in Canine Babesiosis: Possible Contribution of Pro-Inflammatory Cytokines and Chemokines—A Review. Pathogens 2023, 12, 166. [Google Scholar] [CrossRef]
- Penzhorn, B.L.; Harrison-White, R.F.; Stoltsz, W.H. Completing the cycle: Haemaphysalis elliptica, the vector of Babesia rossi, is the most prevalent tick infesting black-backed jackals (Canis mesomelas), an indigenous reservoir host of B. rossi in South Africa. Ticks Tick-Borne Dis. 2020, 11, 101325. [Google Scholar] [CrossRef]
- Kamani, J. Molecular evidence indicts Haemaphysalis leachi (Acari: Ixodidae) as the vector of Babesia rossi in dogs in Nigeria, West Africa. Ticks Tick-Borne Dis. 2021, 12, 101717. [Google Scholar] [CrossRef]
- Kamani, J.; Chung, P.J.; Lee, C.C.; Chung, Y.T. In search of the vector(s) of Babesia rossi in Nigeria: Molecular detection of B. rossi DNA in Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) ticks collected from dogs, circumstantial evidence worth exploring. Exp. Appl. Acarol. 2018, 76, 243–248. [Google Scholar] [CrossRef]
- Orkun, Ö.; Karaer, Z.; Çakmak, A.; Nalbantoğlu, S. Identification of Tick-Borne Pathogens in Ticks Feeding on Humans in Turkey. PLoS Negl. Trop. Dis. 2014, 8, e3067. [Google Scholar] [CrossRef] [PubMed]
- Orkun, Ö.; Karaer, Z. Molecular characterization of Babesia species in wild animals and their ticks in Turkey. Infect. Genet. Evol. 2017, 55, 8–13. [Google Scholar] [CrossRef]
- Penzhorn, B.L. Why is Southern African canine babesiosis so virulent? An evolutionary perspective. Parasit. Vectors 2011, 4, 51. [Google Scholar] [CrossRef] [Green Version]
- Penzhorn, B.L.; Vorster, I.; Harrison-White, R.F.; Oosthuizen, M.C. Black-backed jackals (Canis mesomelas) are natural hosts of Babesia rossi, the virulent causative agent of canine babesiosis in sub-Saharan Africa. Parasit. Vectors 2017, 10, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viljoen, S.; O’Riain, M.J.; Penzhorn, B.L.; Drouilly, M.; Vorster, I.; Bishop, J.M. Black-backed jackals (Canis mesomelas) from semi-arid rangelands in South Africa harbour Hepatozoon canis and a Theileria species but apparently not Babesia rossi. Vet. Parasitol. Reg. Stud. Rep. 2021, 24, 100559. [Google Scholar] [CrossRef]
- Matjila, P.T.; Leisewitz, A.L.; Jongejan, F.; Bertschinger, H.J.; Penzhorn, B.L. Molecular detection of Babesia rossi and Hepatozoon sp. in African wild dogs (Lycaon pictus) in South Africa. Vet. Parasitol. 2008, 157, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Shabangu, N.; Penzhorn, B.L.; Oosthuizen, M.C.; Vorster, I.; van Schalkwyk, O.L.; Harrison-White, R.F.; Matjila, P.T. A shared pathogen: Babesia rossi in domestic dogs, black-backed jackals (Canis mesomelas) and African wild dogs (Lycaon pictus) in South Africa. Vet. Parasitol. 2021, 291, 109381. [Google Scholar] [CrossRef] [PubMed]
- Prager, K.C.; Mazet, J.A.K.; Munson, L.; Cleaveland, S.; Donnelly, C.A.; Dubovi, E.J.; Szykman Gunther, M.; Lines, R.; Mills, G.; Davies-Mostert, H.T.; et al. The effect of protected areas on pathogen exposure in endangered African wild dog (Lycaon pictus) populations. Biol. Conserv. 2012, 150, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Ciuca, L.; Martinescu, G.; Miron, L.D.; Roman, C.; Acatrinei, D.; Cringoli, G.; Rinaldi, L.; Maurelli, M.P. Occurrence of Babesia Species and Co-Infection with Hepatozoon canis in Symptomatic Dogs and in Their Ticks in Eastern Romania. Pathogens 2021, 10, 1339. [Google Scholar] [CrossRef]
- Matjila, P.T.; Leisewitz, A.L.; Jongejan, F.; Penzhorn, B.L. Molecular detection of tick-borne protozoal and ehrlichial infections in domestic dogs in South Africa. Vet. Parasitol. 2008, 155, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Adamu, M.; Troskie, M.; Oshadu, D.O.; Malatji, D.P.; Penzhorn, B.L.; Matjila, P.T. Occurrence of tick-transmitted pathogens in dogs in Jos, Plateau State, Nigeria. Parasit. Vectors 2014, 7, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, M.; Omobowale, O.; Tozuka, M.; Ohta, K.; Matsuu, A.; Nottidge, H.O.; Hirata, H.; Ikadai, H.; Oyamada, T. Molecular survey of Babesia canis in dogs in Nigeria. J. Vet. Med. Sci. 2007, 69, 1191–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirata, H.; Omobowale, T.; Adebayo, O.; Asanuma, N.; Haraguchi, A.; Murakami, Y.; Kusakisako, K.; Ikeda, K.; Asakawa, M.; Suzuki, K.; et al. Identification and phylogenetic analysis of Babesia parasites in domestic dogs in Nigeria. J. Vet. Med. Sci. 2022, 84, 338–341. [Google Scholar] [CrossRef]
- Proboste, T.; Kalema-Zikusoka, G.; Altet, L.; Solano-Gallego, L.; Fernández de Mera, I.G.; Chirife, A.D.; Muro, J.; Bach, E.; Piazza, A.; Cevidanes, A.; et al. Infection and exposure to vector-borne pathogens in rural dogs and their ticks, Uganda. Parasit. Vectors 2015, 8, 306. [Google Scholar] [CrossRef] [Green Version]
- Chatanga, E.; Kainga, H.; Razemba, T.; Ssuna, R.; Swennen, L.; Hayashida, K.; Sugimoto, C.; Katakura, K.; Nonaka, N.; Nakao, R. Molecular detection and characterization of tick-borne hemoparasites and Anaplasmataceae in dogs in major cities of Malawi. Parasitol. Res. 2021, 120, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Ngoka, I.T.; Mbogo, K.; Kyallo, M.; Oduori, D.O.; Pelle, R. Genetic detection and phylogenetic relationship of Babesia species infecting domestic dogs from select regions in Kenya. Sci. Afr. 2021, 14, e01010. [Google Scholar] [CrossRef]
- Sili, G.; Byaruhanga, C.; Horak, I.; Steyn, H.; Chaisi, M.; Oosthuizen, M.C.; Neves, L. Ticks and tick-borne pathogens infecting livestock and dogs in Tchicala-Tcholoanga, Huambo Province, Angola. Parasitol. Res. 2021, 120, 1097–1102. [Google Scholar] [CrossRef]
- Oyamada, M.; Davoust, B.; Boni, M.; Dereure, J.; Bucheton, B.; Hammad, A.; Itamoto, K.; Okuda, M.; Inokuma, H. Detection of Babesia canis rossi, B. canis vogeli, and Hepatozoon canis in Dogs in a Village of Eastern Sudan by Using a Screening PCR and Sequencing Methodologies. Clin. Diagn. Lab. Immunol. 2005, 12, 1343–1346. [Google Scholar]
- Nalubamba, K.S.; Mudenda, N.B.; Namwila, M.M.; Mulenga, C.S.; Bwalya, E.C.; M’kandawire, E.; Saasa, N.; Hankanga, C.; Oparaocha, E.; Simuunza, M. A Study of Naturally Acquired Canine Babesiosis Caused by Single and Mixed Babesia Species in Zambia: Clinicopathological Findings and Case Management. J. Parasitol. Res. 2015, 2015, 985015. [Google Scholar] [CrossRef]
- Allison, R.W.; Yeagley, T.J.; Levis, K.; Reichard, M.V. Babesia canis rossi infection in a Texas dog. Vet. Clin. Pathol. 2011, 40, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Birkenheuer, A.J.; Buch, J.; Beall, M.J.; Braff, J.; Chandrashekar, R. Global distribution of canine Babesia species identified by a commercial diagnostic laboratory. Vet. Parasitol. Reg. Stud. Rep. 2020, 22, 100471. [Google Scholar] [CrossRef]
- Egorov, D.S.; Balandina, V.N.; Kruchkova, E.N.; Kuzmichev, V.V.; Egorov, S.V. Babesia spp. infections of dogs in the Upper-Volga Area. In Proceedings of the 16th Scientific Conference on the “Theory and Practice of the Struggle against Parasitic Diseases”, Moscow, Russia, 19–20 May 2015; All-Russian, K.I. Skryabin Scientific Research Institute of Parasitology of Animals and Plants: Moscow, Russia; pp. 128–129. [Google Scholar]
- Allan, R.E. The Occurrence of Tick-Borne Pathogens, in Dogs in Welfare Organisations and Townships of Cape Town. Master’s Thesis, University of South Africa, Pretoria, South Africa, 2016. [Google Scholar]
- Mofokeng, L.S.; Taioe, O.M.; Smit, N.J.; Thekisoe, O.M.M. Parasites of veterinary importance from domestic animals in uMkhanyakude district of KwaZulu-Natal province. J. S. Afr. Vet. Assoc. 2020, 91, e1–e11. [Google Scholar] [CrossRef]
- Mellanby, R.J.; Handel, I.G.; Clements, D.N.; Bronsvoort, B.M.; Lengeling, A.; Schoeman, J.P. Breed and Sex Risk Factors for Canine Babesiosis in South Africa. J. Vet. Intern. Med. 2011, 25, 1186–1189. [Google Scholar] [CrossRef]
- Morters, M.K.; Archer, J.; Ma, D.; Matthee, O.; Goddard, A.; Leisewitz, A.L.; Matjila, P.T.; Wood, J.L.N.; Schoeman, J.P. Long-term follow-up of owned, free-roaming dogs in South Africa naturally exposed to Babesia rossi. Int. J. Parasitol. 2020, 50, 103–110. [Google Scholar] [CrossRef]
- Golezardy, H. Prevalence of Babesia Species and Associated Ticks (Acari: Ixodidae) in Captive Cheetah (Acinonyx jubatus) Populations in South Africa. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2011. [Google Scholar]
- Kamani, J.; Baneth, G.; Mumcuoglu, K.Y.; Waziri, N.E.; Eyal, O.; Guthmann, Y.; Harrus, S. Molecular Detection and Characterization of Tick-borne Pathogens in Dogs and Ticks from Nigeria. PLoS Negl. Trop. Dis. 2013, 7, e2108. [Google Scholar] [CrossRef]
- Takeet, M.I.; Oyewusi, A.J.; Abakpa, S.A.; Daramola, O.O.; Peters, S.O. Genetic diversity among Babesia rossi detected in naturally infected dogs in Abeokuta, Nigeria, based on 18S rRNA gene sequences. Acta Parasitol. 2017, 62, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Gruenberger, I.; Liebich, A.V.; Ajibade, T.O.; Obebe, O.O.; Ogbonna, N.F.; Wortha, L.N.; Unterköfler, M.S.; Fuehrer, H.P.; Ayinmode, A.B. Vector-Borne Pathogens in Guard Dogs in Ibadan, Nigeria. Pathogens 2023, 12, 406. [Google Scholar] [CrossRef]
- Williams, B.M.; Berentsen, A.; Shock, B.C.; Teixiera, M.; Dunbar, M.R.; Becker, M.S.; Yabsley, M.J. Prevalence and diversity of Babesia, Hepatozoon, Ehrlichia, and Bartonella in wild and domestic carnivores from Zambia, Africa. Parasitol. Res. 2014, 113, 911–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Y.; Kaneko, C.; Kajihara, M.; Ngonda, S.; Simulundu, E.; Muleya, W.; Thu, M.J.; Hang’ombe, M.B.; Katakura, K.; Takada, A.; et al. Tick-borne haemoparasites and Anaplasmataceae in domestic dogs in Zambia. Ticks Tick Borne Dis. 2018, 9, 988–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wyk, C.L.; Mtshali, K.; Taioe, M.O.; Terera, S.; Bakkes, D.; Ramatla, T.; Xuan, X.; Thekisoe, O. Detection of Ticks and Tick-Borne Pathogens of Urban Stray Dogs in South Africa. Pathogens 2022, 11, 862. [Google Scholar] [CrossRef]
- Lewis, B.D.; Penzhorn, B.L.; Lopez-Rebollar, L.M.; De Waal, D.T. Isolation of a South African vector-specific strain of Babesia canis. Vet. Parasitol. 1996, 63, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Horak, I.G. Ixodid ticks collected at the faculty of veterinary science, Onderstepoort, from dogs diagnosed with Babesia canis infection. J. S. Afr. Vet. Assoc. 1995, 66, 170–171. [Google Scholar]
- Apanaskevich, D.A.; Horak, I.G.; Camicas, J.L. Redescription of Haemaphysalis (Rhipistoma) elliptica (Koch, 1844), an old taxon of the Haemaphysalis (Rhipistoma) leachi group from East and southern Africa, and of Haemaphysalis (Rhipistoma) leachi (Audouin, 1826) (Ixodida, Ixodidae). Onderstepoort J. Vet. Res. 2007, 74, 181–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uilenberg, G.; Franssen, F.F.; Perié, N.M.; Spanjer, A.A. Three groups of Babesia canis distinguished and a proposal for nomenclature. Vet. Q. 1989, 11, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nalubamba, K.S.; Hankanga, C.; Mudenda, N.B.; Masuku, M. The epidemiology of canine Babesia infections in Zambia. Prev. Vet. Med. 2011, 99, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Bajer, A.; Beck, A.; Beck, R.; Behnke, J.M.; Dwużnik-Szarek, D.; Eichenberger, R.M.; Farkas, R.; Fuehrer, H.P.; Heddergott, M.; Jokelainen, P.; et al. Babesiosis in Southeastern, Central and Northeastern Europe: An Emerging and Re-Emerging Tick-Borne Disease of Humans and Animals. Microorganisms 2022, 10, 945. [Google Scholar] [CrossRef]
- Karbowiak, G. The occurrence of the Dermacentor reticulatus tick—Its expansion to new areas and possible causes. Ann. Parasitol. 2014, 60, 37–47. [Google Scholar]
- Kjær, L.J.; Soleng, A.; Edgar, K.S.; Lindstedt, H.E.H.; Paulsen, K.M.; Andreassen, Å.K.; Korslund, L.; Kjelland, V.; Slettan, A.; Stuen, S.; et al. A large-scale screening for the taiga tick, Ixodes persulcatus, and the meadow tick, Dermacentor reticulatus, in southern Scandinavia, 2016. Parasit. Vectors 2019, 12, 338. [Google Scholar] [CrossRef] [Green Version]
- Földvári, G.; Široký, P.; Szekeres, S.; Majoros, G.; Sprong, H. Dermacentor reticulatus: A vector on the rise. Parasit. Vectors 2016, 9, 314. [Google Scholar] [CrossRef] [Green Version]
- Rubel, F.; Brugger, K.; Pfeffer, M.; Chitimia-Dobler, L.; Didyk, Y.M.; Leverenz, S.; Dautel, H.; Kahl, O. Geographical distribution of Dermacentor marginatus and Dermacentor reticulatus in Europe. Ticks Tick Borne Dis. 2016, 7, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, E.; Zanzani, S.A.; Latrofa, M.S.; Lia, R.P.; Dantas-Torres, F.; Otranto, D.; Manfredi, M.T. The southernmost foci of Dermacentor reticulatus in Italy and associated Babesia canis infection in dogs. Parasit. Vectors 2016, 9, 213. [Google Scholar] [CrossRef] [Green Version]
- Rubel, F.; Brugger, K.; Belova, O.A.; Kholodilov, I.S.; Didyk, Y.M.; Kurzrock, L.; García-Pérez, A.L.; Kahl, O. Vectors of disease at the northern distribution limit of the genus Dermacentor in Eurasia: D. reticulatus and D. silvarum. Exp. Appl. Acarol. 2020, 82, 95–123. [Google Scholar] [CrossRef] [PubMed]
- Livanova, N.N.; Fomenko, N.V.; Akimov, I.A.; Ivanov, M.J.; Tikunova, N.V.; Armstrong, R.; Konyaev, S.V. Dog survey in Russian veterinary hospitals: Tick identification and molecular detection of tick-borne pathogens. Parasit. Vectors 2018, 11, 591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dautel, H.; Dippel, C.; Oehme, R.; Hartelt, K.; Schettler, E. Evidence for an increased geographical distribution of Dermacentor reticulatus in Germany and detection of Rickettsia sp. RpA4. Int. J. Med. Microbiol. 2006, 296, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Zygner, W.; Górski, P.; Wędrychowicz, H. New localities of Dermacentor reticulatus tick (vector of Babesia canis canis) in central and eastern Poland. Pol. J. Vet. Sci. 2009, 12, 549–555. [Google Scholar] [PubMed]
- Kiewra, D.; Czulowska, A. Evidence for an increased distribution range of Dermacentor reticulatus in south-west Poland. Exp. Appl. Acarol. 2013, 59, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Drehmann, M.; Springer, A.; Lindau, A.; Fachet, K.; Mai, S.; Thoma, D.; Schneider, C.R.; Chitimia-Dobler, L.; Bröker, M.; Dobler, G.; et al. The Spatial Distribution of Dermacentor Ticks (Ixodidae) in Germany—Evidence of a Continuing Spread of Dermacentor reticulatus. Front. Vet. Sci. 2020, 7, 578220. [Google Scholar] [CrossRef]
- Dwużnik-Szarek, D.; Mierzejewska, E.J.; Rodo, A.; Goździk, K.; Behnke-Borowczyk, J.; Kiewra, D.; Kartawik, N.; Bajer, A. Monitoring the expansion of Dermacentor reticulatus and occurrence of canine babesiosis in Poland in 2016–2018. Parasit. Vectors 2021, 14, 267. [Google Scholar] [CrossRef]
- Noll, M.; Wall, R.; Makepeace, B.L.; Vineer, H.R. Distribution of ticks in the Western Palearctic: An updated systematic review (2015–2021). Parasit. Vectors 2023, 16, 141. [Google Scholar] [CrossRef]
- Mierzejewska, E.J.; Estrada-Peña, A.; Bajer, A. Spread of Dermacentor reticulatus is associated with the loss of forest area. Exp. Appl. Acarol. 2017, 72, 399–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornok, S.; Farkas, R. Influence of biotope on the distribution and peak activity of questing ixodid ticks in Hungary. Med. Vet. Entomol. 2009, 23, 41–46. [Google Scholar] [CrossRef] [PubMed]
- García-Sanmartín, J.; Barandika, J.F.; Juste, R.A.; García-Pérez, A.L.; Hurtado, A. Distribution and molecular detection of Theileria and Babesia in questing ticks from northern Spain. Med. Vet. Entomol. 2008, 22, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Cieniuch, S.; Stańczak, J.; Ruczaj, A. The first detection of Babesia EU1 and Babesia canis canis in Ixodes ricinus ticks (Acari, Ixodidae) collected in urban and rural areas in northern Poland. Pol. J. Microbiol. 2009, 58, 231–236. [Google Scholar] [PubMed]
- Solano-Gallego, L.; Sainz, Á.; Roura, X.; Estrada-Peña, A.; Miró, G. A review of canine babesiosis: The European perspective. Parasit. Vectors 2016, 9, 336. [Google Scholar] [CrossRef] [Green Version]
- Capligina, V.; Seleznova, M.; Akopjana, S.; Freimane, L.; Lazovska, M.; Krumins, R.; Kivrane, A.; Namina, A.; Aleinikova, D.; Kimsis, J.; et al. Large-scale countrywide screening for tick-borne pathogens in field-collected ticks in Latvia during 2017–2019. Parasit. Vectors 2020, 13, 351. [Google Scholar] [CrossRef]
- Liberska, J.; Michalik, J.; Pers-Kamczyc, E.; Wierzbicka, A.; Lane, R.S.; Rączka, G.; Opalińska, P.; Skorupski, M.; Dabert, M. Prevalence of Babesia canis DNA in Ixodes ricinus ticks collected in forest and urban ecosystems in west-central Poland. Ticks Tick Borne Dis. 2021, 12, 101786. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Roura, X.; Sainz, A.; Miró, G.; Solano-Gallego, L. Species of ticks and carried pathogens in owned dogs in Spain: Results of a one-year national survey. Ticks Tick Borne Dis. 2017, 8, 443–452. [Google Scholar] [CrossRef]
- Trotta, M.; Nicetto, M.; Fogliazza, A.; Montarsi, F.; Caldin, M.; Furlanello, T.; Solano-Gallego, L. Detection of Leishmania infantum, Babesia canis, and rickettsiae in ticks removed from dogs living in Italy. Ticks Tick Borne Dis. 2012, 3, 294–297. [Google Scholar] [CrossRef]
- Cassini, R.; Zanutto, S.; Frangipane di Regalbono, A.; Gabrielli, S.; Calderini, P.; Moretti, A.; Tampieri, M.P.; Pietrobelli, M. Canine piroplasmosis in Italy: Epidemiological aspects in vertebrate and invertebrate hosts. Vet. Parasitol. 2009, 165, 30–35. [Google Scholar] [CrossRef]
- Silaghi, C.; Woll, D.; Hamel, D.; Pfister, K.; Mahling, M.; Pfeffer, M. Babesia spp. and Anaplasma phagocytophilum in questing ticks, ticks parasitizing rodents and the parasitized rodents—Analyzing the host-pathogen-vector interface in a metropolitan area. Parasit. Vectors 2012, 5, 191. [Google Scholar] [CrossRef] [Green Version]
- Schaarschmidt, D.; Gilli, U.; Gottstein, B.; Marreros, N.; Kuhnert, P.; Daeppen, J.A.; Rosenberg, G.; Hirt, D.; Frey, C.F. Questing Dermacentor reticulatus harbouring Babesia canis DNA associated with outbreaks of canine babesiosis in the Swiss Midlands. Ticks Tick Borne Dis. 2013, 4, 334–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzięgiel, B.; Kubrak, T.; Adaszek, Ł.; Dębiak, P.; Wyłupek, D.; Bogucka-Kocka, A.; Lechowski, J.; Winiarczyk, S. Prevalence of Babesia canis, Borrelia burgdorferi sensu lato, and Anaplasma phagocytophilum in hard ticks collected from meadows of Lubelskie Voivodship (eastern Poland). Bull. Vet. Inst. Pulawy 2014, 58, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Wójcik-Fatla, A.; Zając, V.; Sawczyn, A.; Cisak, E.; Dutkiewicz, J. Babesia spp. in questing ticks from eastern Poland: Prevalence and species diversity. Parasitol. Res. 2015, 114, 3111–3116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zając, V.; Wójcik-Fatla, A.; Sawczyn, A.; Cisak, E.; Sroka, J.; Kloc, A.; Zając, Z.; Buczek, A.; Dutkiewicz, J.; Bartosik, K. Prevalence of infections and co-infections with 6 pathogens in Dermacentor reticulatus ticks collected in eastern Poland. Ann. Agric. Environ. Med. 2017, 24, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Bilbija, B.; Spitzweg, C.; Papoušek, I.; Fritz, U.; Földvári, G.; Mullett, M.; Ihlow, F.; Sprong, H.; Civáňová Křížová, K.; Anisimov, N.; et al. Dermacentor reticulatus—A tick on its way from glacial refugia to a panmictic Eurasian population. Int. J. Parasitol. 2023, 53, 91–101. [Google Scholar] [CrossRef]
- Kloch, A.; Mierzejewska, E.J.; Karbowiak, G.; Slivinska, K.; Alsarraf, M.; Rodo, A.; Kowalec, M.; Dwużnik, D.; Didyk, Y.M.; Bajer, A. Origins of recently emerged foci of the tick Dermacentor reticulatus in central Europe inferred from molecular markers. Vet. Parasitol. 2017, 237, 63–69. [Google Scholar] [CrossRef]
- Dwużnik-Szarek, D.; Mierzejewska, E.J.; Kiewra, D.; Czułowska, A.; Robak, A.; Bajer, A. Update on prevalence of Babesia canis and Rickettsia spp. in adult and juvenile Dermacentor reticulatus ticks in the area of Poland (2016–2018). Sci. Rep. 2022, 12, 5755. [Google Scholar] [CrossRef]
- Mierzejewska, E.J.; Pawełczyk, A.; Radkowski, M.; Welc-Falęciak, R.; Bajer, A. Pathogens vectored by the tick, Dermacentor reticulatus, in endemic regions and zones of expansion in Poland. Parasit. Vectors 2015, 8, 490. [Google Scholar] [CrossRef] [Green Version]
- Król, N.; Kiewra, D.; Lonc, E.; Janaczyk, B.; Chodorowska-Skubiszewska, A.; Dzięcioł, M.; Gola, M.; Gruszka, R.; Jackowska-Szlachcic, E.; Jagiełło, M.; et al. Dermacentor reticulatus (Fabricius, 1794) and Babesia canis (Piana et Galli-Valerio, 1895) as the parasites of companion animals (dogs and cats) in the Wrocław area, south-western Poland. Ann. Parasitol. 2016, 62, 125–130. [Google Scholar]
- Grochowska, A.; Dunaj-Małyszko, J.; Pancewicz, S.; Czupryna, P.; Milewski, R.; Majewski, P.; Moniuszko-Malinowska, A. Prevalence of Tick-Borne Pathogens in Questing Ixodes ricinus and Dermacentor reticulatus Ticks Collected from Recreational Areas in Northeastern Poland with Analysis of Environmental Factors. Pathogens 2022, 11, 468. [Google Scholar] [CrossRef]
- Grochowska, A.; Dunaj, J.; Pancewicz, S.; Czupryna, P.; Majewski, P.; Wondim, M.; Tryniszewska, E.; Moniuszko-Malinowska, A. Detection of Borrelia burgdorferi s.l., Anaplasma phagocytophilum and Babesia spp. in Dermacentor reticulatus ticks found within the city of Białystok, Poland—First data. Exp. Appl. Acarol. 2021, 85, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Dunaj, J.; Trzeszczkowski, A.; Moniuszko-Malinowska, A.; Rutkowski, K.; Pancewicz, S. Assessment of tick-borne pathogens presence in Dermacentor reticulatus ticks in north-eastern Poland. Adv. Med. Sci. 2021, 66, 113–118. [Google Scholar] [CrossRef]
- Silaghi, C.; Weis, L.; Pfister, K. Dermacentor reticulatus and Babesia canis in Bavaria (Germany)—A Georeferenced Field Study with Digital Habitat Characterization. Pathogens 2020, 9, 541. [Google Scholar] [CrossRef]
- Beelitz, P.; Schumacher, S.; Marholdt, F.; Pfister, K.; Silaghi, C. The prevalence of Babesia canis canis in marsh ticks (Dermacentor reticulatus) in the Saarland. Berl. Munch. Tierarztl. Wochenschr. 2012, 125, 168–171. [Google Scholar] [PubMed]
- Leschnik, M.W.; Khanakah, G.; Duscher, G.; Wille-Piazzai, W.; Hörweg, C.; Joachim, A.; Stanek, G. Species, developmental stage and infection with microbial pathogens of engorged ticks removed from dogs and questing ticks. Med. Vet. Entomol. 2012, 26, 440–446. [Google Scholar] [CrossRef]
- Rybarova, M.; Honsova, M.; Papousek, I.; Siroky, P. Variability of species of Babesia Starcovici, 1893 in three sympatric ticks (Ixodes ricinus, Dermacentor reticulatus and Haemaphysalis concinna) at the edge of Pannonia in the Czech Republic and Slovakia. Folia Parasitol. 2017, 64, 028. [Google Scholar] [CrossRef]
- Duh, D.; Slovák, M.; Saksida, A.; Strašek, K.; Petrovec, M.; Avšič-Županc, T. Molecular detection of Babesia canis in Dermacentor reticulatus ticks collected in Slovakia. Biologia 2006, 61, 231–233. [Google Scholar] [CrossRef]
- Svehlová, A.; Berthová, L.; Sallay, B.; Boldiš, V.; Sparagano, O.A.; Spitalská, E. Sympatric occurrence of Ixodes ricinus, Dermacentor reticulatus and Haemaphysalis concinna ticks and Rickettsia and Babesia species in Slovakia. Ticks Tick Borne Dis. 2014, 5, 600–605. [Google Scholar] [CrossRef]
- Řeháčková, K.; Haláková, M.; Víchová, B.; Kočišová, A. Epizootiological Study of the Occurrence of Canine Babesiosis in Southwestern Slovakia. Folia Vet. 2016, 60, 39–42. [Google Scholar] [CrossRef] [Green Version]
- Kubelová, M.; Tkadlec, E.; Bednář, M.; Roubalová, E.; Siroký, P. West-to-east differences of Babesia canis canis prevalence in Dermacentor reticulatus ticks in Slovakia. Vet. Parasitol. 2011, 180, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Majláthová, V.; Majláth, I.; Víchová, B.; Gul’ová, I.; Derdáková, M.; Sesztáková, E.; Pet’ko, B. Polymerase chain reaction Confirmation of Babesia canis canis and Anaplasma phagocytophilum in Dogs Suspected of Babesiosis in Slovakia. Vector Borne Zoonotic Dis. 2011, 11, 1447–1451. [Google Scholar] [CrossRef]
- Sands, B.; Lihou, K.; Lait, P.; Wall, R. Prevalence of Babesia spp. pathogens in the ticks Dermacentor reticulatus and Ixodes ricinus in the UK. Acta Trop. 2022, 236, 106692. [Google Scholar] [CrossRef]
- de Marco, M.D.M.F.; Hernández-Triana, L.M.; Phipps, L.P.; Hansford, K.; Mitchell, E.S.; Cull, B.; Swainsbury, C.S.; Fooks, A.R.; Medlock, J.M.; Johnson, N. Emergence of Babesia canis in southern England. Parasit. Vectors 2017, 10, 241. [Google Scholar] [CrossRef] [Green Version]
- Cochez, C.; Lempereur, L.; Madder, M.; Claerebout, E.; Simons, L.; De Wilde, N.; Linden, A.; Saegerman, C.; Heyman, P.; Losson, B. Foci report on indigenous Dermacentor reticulatus populations in Belgium and a preliminary study of associated babesiosis pathogens. Med. Vet. Entomol. 2012, 26, 355–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jongejan, F.; Ringenier, M.; Putting, M.; Berger, L.; Burgers, S.; Kortekaas, R.; Lenssen, J.; van Roessel, M.; Wijnveld, M.; Madder, M. Novel foci of Dermacentor reticulatus tic.ks infected with Babesia canis and Babesia caballi in the Netherlands and in Belgium. Parasit. Vectors 2015, 8, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radzijevskaja, J.; Mardosaitė-Busaitienė, D.; Aleksandravičienė, A.; Paulauskas, A. Investigation of Babesia spp. in sympatric populations of Dermacentor reticulatus and Ixodes ricinus ticks in Lithuania and Latvia. Ticks Tick Borne Dis. 2018, 9, 270–274. [Google Scholar] [CrossRef]
- Levytska, V.A.; Mushinsky, A.B.; Zubrikova, D.; Blanarova, L.; Długosz, E.; Vichova, B.; Slivinska, K.A.; Gajewski, Z.; Gizinski, S.; Liu, S.; et al. Detection of pathogens in ixodid ticks collected from animals and vegetation in five regions of Ukraine. Ticks Tick Borne Dis. 2021, 12, 101586. [Google Scholar] [CrossRef] [PubMed]
- Karbowiak, G.; Vichová, B.; Slivinska, K.; Werszko, J.; Didyk, J.; Peťko, B.; Stanko, M.; Akimov, I. The infection of questing Dermacentor reticulatus ticks with Babesia canis and Anaplasma phagocytophilum in the Chernobyl exclusion zone. Vet. Parasitol. 2014, 204, 372–375. [Google Scholar] [CrossRef]
- Daněk, O.; Hrazdilová, K.; Kozderková, D.; Jirků, D.; Modrý, D. The distribution of Dermacentor reticulatus in the Czech Republic re-assessed: Citizen science approach to understanding the current distribution of the Babesia canis vector. Parasit. Vectors 2022, 15, 132. [Google Scholar] [CrossRef]
- Rar, V.A.; Maksimova, T.G.; Zakharenko, L.P.; Bolykhina, S.A.; Dobrotvorsky, A.K.; Morozova, O.V. Babesia DNA detection in canine blood and Dermacentor reticulatus ticks in southwestern Siberia, Russia. Vector Borne Zoonotic Dis. 2005, 5, 285–287. [Google Scholar] [CrossRef]
- Rar, V.A.; Fomenko, N.V.; Dobrotvorsky, A.K.; Livanova, N.N.; Rudakova, S.A.; Fedorov, E.G.; Astanin, V.B.; Morozova, O.V. Tickborne Pathogen Detection, Western Siberia, Russia. Emerg. Infect. Dis. 2005, 11, 1708–1715. [Google Scholar] [CrossRef] [PubMed]
- Tomanović, S.; Chochlakis, D.; Radulović, Z.; Milutinović, M.; Cakić, S.; Mihaljica, D.; Tselentis, Y.; Psaroulaki, A. Analysis of pathogen co-occurrence in host-seeking adult hard ticks from Serbia. Exp. Appl. Acarol. 2013, 59, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Mihaljica, D.; Radulović, Ž.; Tomanović, S.; Ćakić, S.; Penezić, A.; Milutinović, M. Molecular detection of Babesia spp. in ticks in northern Serbia. Arch. Biol. Sci. 2012, 64, 1591–1598. [Google Scholar] [CrossRef]
- Hornok, S.; Kartali, K.; Takács, N.; Hofmann-Lehmann, R. Uneven seasonal distribution of Babesia canis and its two 18S rDNA genotypes in questing Dermacentor reticulatus ticks in urban habitats. Ticks Tick Borne Dis. 2016, 7, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Villa, L.; Zanzani, S.A.; Mortarino, M.; Gazzonis, A.L.; Olivieri, E.; Manfredi, M.T. Molecular Prevalence of Selected Tick-Borne Pathogens in Dermacentor reticulatus Collected in a Natural Park in Italy. Pathogens 2022, 11, 887. [Google Scholar] [CrossRef]
- Zygner, W.; Jaros, S.; Wędrychowicz, H. Prevalence of Babesia canis, Borrelia afzelii, and Anaplasma phagocytophilum infection in hard ticks removed from dogs in Warsaw (central Poland). Vet. Parasitol. 2008, 153, 139–142. [Google Scholar] [CrossRef]
- Schreiber, C.; Krücken, J.; Beck, S.; Maaz, D.; Pachnicke, S.; Krieger, K.; Gross, M.; Kohn, B.; von Samson-Himmelstjerna, G. Pathogens in ticks collected from dogs in Berlin/Brandenburg, Germany. Parasit. Vectors 2014, 7, 535. [Google Scholar] [CrossRef]
- Abdullah, S.; Helps, C.; Tasker, S.; Newbury, H.; Wall, R. Prevalence and distribution of Borrelia and Babesia species in ticks feeding on dogs in the U.K. Med. Vet. Entomol. 2018, 32, 14–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nijhof, A.M.; Bodaan, C.; Postigo, M.; Nieuwenhuijs, H.; Opsteegh, M.; Franssen, L.; Jebbink, F.; Jongejan, F. Ticks and associated pathogens collected from domestic animals in the Netherlands. Vector Borne Zoonotic Dis. 2007, 7, 585–595. [Google Scholar] [CrossRef]
- Namina, A.; Capligina, V.; Seleznova, M.; Krumins, R.; Aleinikova, D.; Kivrane, A.; Akopjana, S.; Lazovska, M.; Berzina, I.; Ranka, R. Tick-borne pathogens in ticks collected from dogs, Latvia, 2011–2016. BMC Vet. Res. 2019, 15, 398. [Google Scholar] [CrossRef]
- Hamel, D.; Silaghi, C.; Zapadynska, S.; Kudrin, A.; Pfister, K. Vector-borne pathogens in ticks and EDTA-blood samples collected from client-owned dogs, Kiev, Ukraine. Ticks Tick Borne Dis. 2013, 4, 152–155. [Google Scholar] [CrossRef]
- Földvári, G.; Márialigeti, M.; Solymosi, N.; Lukács, Z.; Majoros, G.; Kósa, J.P.; Farkas, R. Hard Ticks Infesting Dogs in Hungary and their Infection with Babesia and Borrelia Species. Parasitol. Res. 2007, 101, 25–34. [Google Scholar] [CrossRef]
- Geurden, T.; Becskei, C.; Six, R.H.; Maeder, S.; Latrofa, M.S.; Otranto, D.; Farkas, R. Detection of tick-borne pathogens in ticks from dogs and cats in different European countries. Ticks Tick Borne Dis. 2018, 9, 1431–1436. [Google Scholar] [CrossRef]
- René-Martellet, M.; Moro, C.V.; Chêne, J.; Bourdoiseau, G.; Chabanne, L.; Mavingui, P. Update on epidemiology of canine babesiosis in Southern France. BMC Vet. Res. 2015, 11, 223. [Google Scholar] [CrossRef]
- Porchet, M.J.; Sager, H.; Muggli, L.; Oppliger, A.; Müller, N.; Frey, C.; Gottstein, B. Etude épidémiologique descriptive de la Babésiose canine dans la Région Lémanique. Schweiz. Arch. Tierheilkd. 2007, 149, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Sukara, R.; Chochlakis, D.; Ćirović, D.; Penezić, A.; Mihaljica, D.; Ćakić, S.; Valčić, M.; Tselentis, Y.; Psaroulaki, A.; Tomanović, S. Golden jackals (Canis aureus) as hosts for ticks and tick-borne pathogens in Serbia. Ticks Tick Borne Dis. 2018, 9, 1090–1097. [Google Scholar] [CrossRef] [PubMed]
- Potkonjak, A.; Gutiérrez, R.; Savić, S.; Vračar, V.; Nachum-Biala, Y.; Jurišić, A.; Kleinerman, G.; Rojas, A.; Petrović, A.; Baneth, G.; et al. Molecular detection of emerging tick-borne pathogens in Vojvodina, Serbia. Ticks Tick Borne Dis. 2016, 7, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Domatskiy, V.N. Babesiosis of dogs distribution in the Russian Federation (review). Bull. KrasGAU 2022, 10, 100–108. [Google Scholar] [CrossRef]
- Zygner, W.; Górski, P.; Wędrychowicz, H. Detection of the DNA of Borrelia afzelii, Anaplasma phagocytophilum and Babesia canis in blood samples from dogs in Warsaw. Vet. Rec. 2009, 164, 465–467. [Google Scholar] [CrossRef]
- Welc-Falęciak, R.; Rodo, A.; Siński, E.; Bajer, A. Babesia canis and other tick-borne infections in dogs in Central Poland. Vet Parasitol. 2009, 166, 191–198. [Google Scholar] [CrossRef]
- Bajer, A.; Kowalec, M.; Levytska, V.A.; Mierzejewska, E.J.; Alsarraf, M.; Poliukhovych, V.; Rodo, A.; Wężyk, D.; Dwużnik-Szarek, D. Tick-Borne Pathogens, Babesia spp. and Borrelia burgdorferi s.l., in Sled and Companion Dogs from Central and North-Eastern Europe. Pathogens 2022, 11, 499. [Google Scholar] [CrossRef]
- Adaszek, Ł.; Martinez, A.C.; Winiarczyk, S. The factors affecting the distribution of babesiosis in dogs in Poland. Vet. Parasitol. 2011, 181, 160–165. [Google Scholar] [CrossRef]
- Mierzejewska, E.J.; Dwużnik, D.; Koczwarska, J.; Stańczak, Ł.; Opalińska, P.; Krokowska-Paluszak, M.; Wierzbicka, A.; Górecki, G.; Bajer, A. The red fox (Vulpes vulpes), a possible reservoir of Babesia vulpes, B. canis and Hepatozoon canis and its association with the tick Dermacentor reticulatus occurrence. Ticks Tick Borne Dis. 2021, 12, 101551. [Google Scholar] [CrossRef] [PubMed]
- Konvalinová, J.; Rudolf, I.; Šikutová, S.; Hubálek, Z.; Svobodová, V.; Svoboda, M. Contribution to canine babesiosis in the Czech Republic. Acta Vet. Brno 2012, 81, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Mitkova, B.; Hrazdilova, K.; Novotna, M.; Jurankova, J.; Hofmannova, L.; Forejtek, P.; Modry, D. Autochthonous Babesia canis, Hepatozoon canis and imported Babesia gibsoni infection in dogs in the Czech Republic. Vet. Med. 2017, 62, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Kubelová, M.; Sedlák, K.; Panev, A.; Široký, P. Conflicting results of serological, PCR and microscopic methods clarify the various risk levels of canine babesiosis in Slovakia: A complex approach to Babesia canis diagnostics. Vet. Parasitol. 2013, 191, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Víchová, B.; Miterpáková, M.; Iglódyová, A. Molecular detection of co-infections with Anaplasma phagocytophilum and/or Babesia canis canis in Dirofilaria-positive dogs from Slovakia. Vet. Parasitol. 2014, 203, 167–172. [Google Scholar] [CrossRef]
- Seleznova, M.; Kivrane, A.; Namina, A.; Krumins, R.; Aleinikova, D.; Lazovska, M.; Akopjana, S.; Capligina, V.; Ranka, R. Babesiosis in Latvian domestic dogs, 2016–2019. Ticks Tick Borne Dis. 2020, 11, 101459. [Google Scholar] [CrossRef]
- Paulauskas, A.; Radzijevskaja, J.; Karvelienė, B.; Grigonis, A.; Aleksandravičienė, A.; Zamokas, G.; Babickaitė, L.; Sabūnas, V.; Petkevičius, S. Detection and molecular characterization of canine babesiosis causative agent Babesia canis in the naturally infected dog in Lithuania. Vet. Parasitol. 2014, 205, 702–706. [Google Scholar] [CrossRef]
- Ćoralić, A.; Gabrielli, S.; Zahirović, A.; Stojanović, N.M.; Milardi, G.L.; Jažić, A.; Zuko, A.; Čamo, D.; Otašević, S. First molecular detection of Babesia canis in dogs from Bosnia and Herzegovina. Ticks Tick Borne Dis. 2018, 9, 363–368. [Google Scholar] [CrossRef]
- Hodžić, A.; Alić, A.; Fuehrer, H.P.; Harl, J.; Wille-Piazzai, W.; Duscher, G.G. A molecular survey of vector-borne pathogens in red foxes (Vulpes vulpes) from Bosnia and Herzegovina. Parasit. Vectors 2015, 8, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, A.; Huber, D.; Polkinghorne, A.; Kurilj, A.G.; Benko, V.; Mrljak, V.; Reljić, S.; Kusak, J.; Reil, I.; Beck, R. The prevalence and impact of Babesia canis and Theileria sp. in free-ranging grey wolf (Canis lupus) populations in Croatia. Parasit. Vectors 2017, 10, 168. [Google Scholar] [CrossRef] [Green Version]
- Beck, R.; Vojta, L.; Mrljak, V.; Marinculić, A.; Beck, A.; Zivicnjak, T.; Cacciò, S.M. Diversity of Babesia and Theileria species in symptomatic and asymptomatic dogs in Croatia. Int. J. Parasitol. 2009, 39, 843–848. [Google Scholar] [CrossRef]
- Mrljak, V.; Kuleš, J.; Mihaljević, Ž.; Torti, M.; Gotić, J.; Crnogaj, M.; Živičnjak, T.; Mayer, I.; Šmit, I.; Bhide, M.; et al. Prevalence and Geographic Distribution of Vector-Borne Pathogens in Apparently Healthy Dogs in Croatia. Vector Borne Zoonotic Dis. 2017, 17, 398–408. [Google Scholar] [CrossRef]
- Kovačević Filipović, M.M.; Beletić, A.D.; Ilić Božović, A.V.; Milanović, Z.; Tyrrell, P.; Buch, J.; Breitschwerdt, E.B.; Birkenheuer, A.J.; Chandrashekar, R. Molecular and Serological Prevalence of Anaplasma phagocytophilum, A. platys, Ehrlichia canis, E. chaffeenses, E. ewingii, Borrelia burgdorferi, Babesia canis, B. gibsoni and B. vogeli among Clinically Healthy Outdoor Dogs in Serbia. Vet. Parasitol. Reg. Stud. Rep. 2018, 14, 117–122. [Google Scholar] [CrossRef]
- Duh, D.; Tozon, N.; Petrovec, M.; Strašek, K.; Avšič-Županc, T. Canine babesiosis in Slovenia: Molecular evidence of Babesia canis canis and Babesia canis vogeli. Vet. Res. 2004, 35, 363–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamel, D.; Silaghi, C.; Knaus, M.; Visser, M.; Kusi, I.; Rapti, D.; Rehbein, S.; Pfister, K. Detection of Babesia canis subspecies and other arthropod-borne diseases in dogs from Tirana, Albania. Wien. Klin. Wochenschr. 2009, 121, 42–45. [Google Scholar] [CrossRef]
- Pantchev, N.; Schnyder, M.; Vrhovec, M.G.; Schaper, R.; Tsachev, I. Current Surveys of the Seroprevalence of Borrelia burgdorferi, Ehrlichia canis, Anaplasma phagocytophilum, Leishmania infantum, Babesia canis, Angiostrongylus vasorum and Dirofilaria immitis in Dogs in Bulgaria. Parasitol. Res. 2015, 114, S117–S130. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, G.; Ionică, A.M.; Györke, A.; Dumitrache, M.O. Epidemiological Survey of the Main Tick-Borne Pathogens Infecting Dogs from the Republic of Moldova. Pathogens 2022, 11, 1267. [Google Scholar] [CrossRef] [PubMed]
- Cimpan, A.A.; Nachum-Biala, Y.; Ben-Shitrit, B.; Miron, L.; Baneth, G. Epidemiological Study of Canine Babesiosis and Hepatozoonosis in the South of Romania. Acta Parasitol. 2020, 65, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.O.; Tolf, C.; Tamba, P.; Stefanache, M.; Waldenström, J.; Dobler, G.; Chițimia-Dobler, L. Canine tick-borne diseases in pet dogs from Romania. Parasit. Vectors 2017, 10, 155. [Google Scholar] [CrossRef] [Green Version]
- Hamel, D.; Silaghi, C.; Lescai, D.; Pfister, K. Epidemiological aspects on vector-borne infections in stray and pet dogs from Romania and Hungary with focus on Babesia spp. Parasitol. Res. 2012, 110, 1537–1545. [Google Scholar] [CrossRef]
- Mitková, B.; Hrazdilová, K.; D’Amico, G.; Duscher, G.G.; Suchentrunk, F.; Forejtek, P.; Gherman, C.M.; Matei, I.A.; Ionică, A.M.; Daskalaki, A.A.; et al. Eurasian golden jackal as host of canine vector-borne protists. Parasit. Vectors 2017, 10, 183. [Google Scholar] [CrossRef] [Green Version]
- Hornok, S.; Edelhofer, R.; Farkas, R. Seroprevalence of canine babesiosis in Hungary suggesting breed predisposition. Parasitol. Res. 2006, 99, 638–642. [Google Scholar] [CrossRef] [PubMed]
- Menn, B.; Lorentz, S.; Naucke, T.J. Imported and travelling dogs as carriers of canine vector-borne pathogens in Germany. Parasit. Vectors 2010, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Seibert, S.; Rohrberg, A.; Stockinger, A.; Schaalo, S.; März, I. Occurrence of canine babesiosis in dogs in the Rhine-Main area of Hesse, Germany—A case study of 81 dogs. Tierarztl. Prax. Ausg. K Kleintiere Heimtiere 2022, 50, 162–172. [Google Scholar] [PubMed]
- Pennisi, M.G.; Caprì, A.; Solano-Gallego, L.; Lombardo, G.; Torina, A.; Masucci, M. Prevalence of antibodies against Rickettsia conorii, Babesia canis, Ehrlichia canis, and Anaplasma phagocytophilum antigens in dogs from the Stretto di Messina area (Italy). Ticks Tick Borne Dis. 2012, 3, 315–318. [Google Scholar] [CrossRef]
- Ebani, V.V.; Nardoni, S.; Fognani, G.; Mugnaini, L.; Bertelloni, F.; Rocchigiani, G.; Papini, R.A.; Stefani, F.; Mancianti, F. Molecular detection of vector-borne bacteria and protozoa in healthy hunting dogs from Central Italy. Asian Pac. J. Trop. Biomed. 2015, 5, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Veneziano, V.; Piantedosi, D.; Ferrari, N.; Neola, B.; Santoro, M.; Pacifico, L.; Sgroi, G.; D’Alessio, N.; Panico, T.; Leutenegger, C.M.; et al. Distribution and risk factors associated with Babesia spp. infection in hunting dogs from Southern Italy. Ticks Tick Borne Dis. 2018, 9, 1459–1463. [Google Scholar] [CrossRef]
- Solano-Gallego, L.; Trotta, M.; Carli, E.; Carcy, B.; Caldin, M.; Furlanello, T. Babesia canis canis and Babesia canis vogeli clinicopathological findings and DNA detection by means of PCR-RFLP in blood from Italian dogs suspected of tick-borne disease. Vet. Parasitol. 2008, 157, 211–221. [Google Scholar] [CrossRef]
- Aktas, M.; Özübek, S.; Altay, K.; Ipek, N.D.; Balkaya, İ.; Utuk, A.E.; Kırbas, A.; Şimsek, S.; Dumanlı, N. Molecular detection of tick-borne rickettsial and protozoan pathogens in domestic dogs from Turkey. Parasit. Vectors 2015, 8, 157. [Google Scholar] [CrossRef] [Green Version]
- Khanmohammadi, M.; Zolfaghari-Emameh, R.; Arshadi, M.; Razmjou, E.; Karimi, P. Molecular Identification and Genotyping of Babesia canis in Dogs from Meshkin Shahr County, Northwestern Iran. J. Arthropod Borne Dis. 2021, 15, 97–107. [Google Scholar] [PubMed]
- Wang, J.; Liu, J.; Yang, J.; Liu, Z.; Wang, X.; Li, Y.; Luo, J.; Guan, G.; Yin, H. Molecular detection and genetic diversity of Babesia canis canis in pet dogs in Henan Province, China. Parasitol. Int. 2019, 71, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzade, M.; Esmaeilnejad, B.; Asri-Rezaei, S.; Hadian, M. Molecular identification of Babesia canis canis genotype A in a dog from Iran. Vet. Med. Sci. 2022, 8, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Aktas, M.; Ozubek, S. A survey of canine haemoprotozoan parasites from Turkey, including molecular evidence of an unnamed Babesia. Comp. Immunol. Microbiol. Infect. Dis. 2017, 52, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Tiškina, V.; Capligina, V.; Must, K.; Berzina, I.; Ranka, R.; Jokelainen, P. Fatal Babesia canis canis infection in a splenectomized Estonian dog. Acta Vet. Scand. 2016, 58, 7. [Google Scholar] [CrossRef] [Green Version]
- Kamani, J.; Sannusi, A.; Dogo, A.G.; Tanko, J.T.; Egwu, K.O.; Tafarki, A.E.; Ogo, I.N.; Kemza, S.; Onovoh, E.; Shamaki, D.; et al. Babesia canis and Babesia rossi co-infection in an untraveled Nigerian dog. Vet. Parasitol. 2010, 173, 334–335. [Google Scholar] [CrossRef] [PubMed]
- Tayyub, M.; Ashraf, K.; Lateef, M.; Anjum, A.A.; Ali, M.A.; Ahmad, N.; Nawaz, M.; Nazir, M.M. Genetic Diversity of Canine Babesia Species Prevalent in Pet Dogs of Punjab, Pakistan. Animals 2019, 9, 439. [Google Scholar] [CrossRef] [Green Version]
- Zanet, S.; Bassano, M.; Trisciuoglio, A.; Taricco, I.; Ferroglio, E. Horses infected by Piroplasms different from Babesia caballi and Theileria equi: Species identification and risk factors analysis in Italy. Vet. Parasitol. 2017, 236, 38–41. [Google Scholar] [CrossRef]
- Vilhena, H.; Martinez-Díaz, V.L.; Cardoso, L.; Vieira, L.; Altet, L.; Francino, O.; Pastor, J.; Silvestre-Ferreira, A.C. Feline vector-borne pathogens in the north and centre of Portugal. Parasit. Vectors 2013, 6, 99. [Google Scholar] [CrossRef] [Green Version]
- Hornok, S.; Estók, P.; Kováts, D.; Flaisz, B.; Takács, N.; Szőke, K.; Krawczyk, A.; Kontschán, J.; Gyuranecz, M.; Fedák, A.; et al. Screening of bat faeces for arthropod-borne apicomplexan protozoa: Babesia canis and Besnoitia besnoiti-like sequences from Chiroptera. Parasit. Vectors 2015, 8, 441. [Google Scholar] [CrossRef] [Green Version]
- Corduneanu, A.; Ursache, T.D.; Taulescu, M.; Sevastre, B.; Modrý, D.; Mihalca, A.D. Detection of DNA of Babesia canis in tissues of laboratory rodents following oral inoculation with infected ticks. Parasit. Vectors 2020, 13, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirman, R.; Guven, E. Molecular detection of Babesia and Theileria species/genotypes in sheep and ixodid ticks in Erzurum, Northeastern Turkey: First report of Babesia canis in sheep. Res. Vet. Sci. 2023, 157, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Hornok, S.; Edelhofer, R.; Földvári, G.; Joachim, A.; Farkas, R. Serological evidence for Babesia canis infection of horses and an endemic focus of B. caballi in Hungary. Acta Vet. Hung. 2007, 55, 491–500. [Google Scholar] [CrossRef] [Green Version]
- Dantas-Torres, F.; Latrofa, M.S.; Annoscia, G.; Giannelli, A.; Parisi, A.; Otranto, D. Morphological and genetic diversity of Rhipicephalus sanguineus sensu lato from the New and Old Worlds. Parasit. Vectors 2013, 6, 213. [Google Scholar] [CrossRef] [Green Version]
- Dantas-Torres, F.; Otranto, D. Further thoughts on the taxonomy and vector role of Rhipicephalus sanguineus group ticks. Vet. Parasitol. 2015, 208, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Mihalca, A.D.; Kalmár, Z.; Dumitrache, M.O. Rhipicephalus rossicus, a neglected tick at the margin of Europe: A review of its distribution, ecology and medical importance. Med. Vet. Entomol. 2015, 29, 215–224. [Google Scholar] [CrossRef]
- Bakkes, D.K.; Chitimia-Dobler, L.; Matloa, D.; Oosthuysen, M.; Mumcuoglu, K.Y.; Mans, B.J.; Matthee, C.A. Integrative taxonomy and species delimitation of Rhipicephalus turanicus (Acari: Ixodida: Ixodidae). Int. J. Parasitol. 2020, 50, 577–594. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Available online: https://www.ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/tick-maps (accessed on 16 May 2023).
- Rubel, F.; Dautel, H.; Nijhof, A.M.; Kahl, O. Ticks in the metropolitan area of Berlin, Germany. Ticks Tick Borne Dis. 2022, 13, 102029. [Google Scholar] [CrossRef]
- Hansford, K.M.; Phipps, L.P.; Cull, B.; Pietzsch, M.E.; Medlock, J.M. Rhipicephalus sanguineus importation into the UK: Surveillance, risk, public health awareness and One Health response. Vet. Rec. 2017, 180, 119. [Google Scholar] [CrossRef]
- Richter, S.H.; Eydal, M.; Skírnisson, K.; Ólafsson, E. Tick species (Ixodida) identified in Iceland. Icel. Agric. Sci. 2013, 26, 3–10. [Google Scholar]
- Nowak-Chmura, M. A biological/medical review of alien tick species (Acari: Ixodida) accidentally transferred to Poland. Ann. Parasitol. 2014, 60, 49–59. [Google Scholar] [PubMed]
- Nava, S.; Beati, L.; Venzal, J.M.; Labruna, M.B.; Szabó, M.P.J.; Petney, T.; Saracho-Bottero, M.N.; Tarragona, E.L.; Dantas-Torres, F.; Silva, M.M.S.; et al. Rhipicephalus sanguineus (Latreille, 1806): Neotype designation, morphological re-description of all parasitic stages and molecular characterization. Ticks Tick Borne Dis. 2018, 9, 1573–1585. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.O.; Gruntmeir, J.M.; Hamer, S.A.; Little, S.E. Temperate and tropical lineages of brown dog ticks in North America. Vet. Parasitol. Reg. Stud. Rep. 2017, 7, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Pascoe, E.L.; Nava, S.; Labruna, M.B.; Paddock, C.D.; Levin, M.L.; Marcantonio, M.; Foley, J.E. Predicting the northward expansion of tropical lineage Rhipicephalus sanguineus sensu lato ticks in the United States and its implications for medical and veterinary health. PLoS ONE 2022, 17, e0271683. [Google Scholar] [CrossRef]
- Grant, A.N.; Lineberry, M.W.; Sundstrom, K.D.; Allen, K.E.; Little, S.E. Geographic Distribution and Seasonality of Brown Dog Tick Lineages in the United States. J. Med. Entomol. 2023, 60, 102–111. [Google Scholar] [CrossRef]
- Chandra, S.; Ma, G.C.; Burleigh, A.; Brown, G.; Norris, J.M.; Ward, M.P.; Emery, D.; Šlapeta, J. The brown dog tick Rhipicephalus sanguineus sensu Roberts, 1965 across Australia: Morphological and molecular identification of R. sanguineus s.l. tropical lineage. Ticks Tick Borne Dis. 2020, 11, 101305. [Google Scholar] [CrossRef]
- Roberts, F.H.S. The taxonomic status of the species of the genera Rhipicephalus Koch and Boophilus Curtice (Acarina: Ixodidae) occurring in Australia. Aust. J. Zool. 1965, 13, 491–524. [Google Scholar] [CrossRef]
- Šlapeta, J.; Chandra, S.; Halliday, B. The “tropical lineage” of the brown dog tick Rhipicephalus sanguineus sensu lato identified as Rhipicephalus linnaei (Audouin, 1826). Int. J. Parasitol. 2021, 51, 431–436. [Google Scholar] [CrossRef]
- Šlapeta, J.; Halliday, B.; Chandra, S.; Alanazi, A.D.; Abdel-Shafy, S. Rhipicephalus linnaei (Audouin, 1826) recognised as the “tropical lineage” of the brown dog tick Rhipicephalus sanguineus sensu lato: Neotype designation, redescription, and establishment of morphological and molecular reference. Ticks Tick Borne Dis. 2022, 13, 102024. [Google Scholar] [CrossRef]
- Greay, T.L.; Zahedi, A.; Krige, A.S.; Owens, J.M.; Rees, R.L.; Ryan, U.M.; Oskam, C.L.; Irwin, P.J. Endemic, exotic and novel apicomplexan parasites detected during a national study of ticks from companion animals in Australia. Parasit. Vectors 2018, 11, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, G.K.; Canfield, P.J.; Dunstan, R.H.; Roberts, T.K.; Martin, A.R.; Brown, C.S.; Irving, R. Detection of Anaplasma platys and Babesia canis vogeli and their impact on platelet numbers in free-roaming dogs associated with remote Aboriginal communities in Australia. Aust. Vet. J. 2006, 84, 321–325. [Google Scholar] [CrossRef]
- Hii, S.F.; Kopp, S.R.; Thompson, M.F.; O’Leary, C.A.; Rees, R.L.; Traub, R.J. Canine vector-borne disease pathogens in dogs from south-east Queensland and north-east Northern Territory. Aust. Vet. J. 2012, 90, 130–135. [Google Scholar] [CrossRef]
- Hii, S.F.; Traub, R.J.; Thompson, M.F.; Henning, J.; O’Leary, C.A.; Burleigh, A.; McMahon, S.; Rees, R.L.; Kopp, S.R. Canine tick-borne pathogens and associated risk factors in dogs presenting with and without clinical signs consistent with tick-borne diseases in northern Australia. Aust. Vet. J. 2015, 93, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Šlapeta, J.; Halliday, B.; Dunlop, J.A.; Nachum-Biala, Y.; Salant, H.; Ghodrati, S.; Modrý, D.; Harrus, S. The “southeastern Europe” lineage of the brown dog tick Rhipicephalus sanguineus (sensu lato) identified as Rhipicephalus rutilus Koch, 1844: Comparison with holotype and generation of mitogenome reference from Israel. Curr. Res. Parasitol. Vector Borne Dis. 2023, 3, 100118. [Google Scholar] [CrossRef] [PubMed]
- Sprong, H.; Fonville, M.; Docters van Leeuwen, A.; Devillers, E.; Ibañez-Justicia, A.; Stroo, A.; Hansford, K.; Cull, B.; Medlock, J.; Heyman, P.; et al. Detection of pathogens in Dermacentor reticulatus in northwestern Europe: Evaluation of a high-throughput array. Heliyon 2019, 5, e01270. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.Q.; Xuan, X.N.; Fu, R.L.; Tao, H.Y.; Liu, Y.Q.; Liu, X.Q.; Li, D.M.; Ma, H.M.; Chen, H.Y. Tick-Borne Pathogens in Ixodid Ticks from Poyang Lake Region, Southeastern China. Korean J. Parasitol. 2018, 56, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Wei, F.R.; Lan, Q.X.; Zhu, D.; Ye, J.H.; Liu, Q.; Zhang, Y. Investigation on Babesia in ticks infested on police dogs in selected areas of China. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 2012, 30, 390–392. [Google Scholar]
- Laatamna, A.; Strube, C.; Bakkes, D.K.; Schaper, S.; Aziza, F.Z.; Ben Chelef, H.; Amrane, N.E.H.; Bedraoui, R.; Dobler, G.; Chitimia-Dobler, L. Molecular detection of tick-borne pathogens in Rhipicephalus sanguineus sensu stricto collected from dogs in the steppe and high plateau regions of Algeria. Acta Trop. 2022, 234, 106582. [Google Scholar] [CrossRef]
- Melo, A.L.T.; Witter, R.; Martins, T.F.; Pacheco, T.A.; Alves, A.S.; Chitarra, C.S.; Dutra, V.; Nakazato, L.; Pacheco, R.C.; Labruna, M.B.; et al. A survey of tick-borne pathogens in dogs and their ticks in the Pantanal biome, Brazil. Med. Vet. Entomol. 2016, 30, 112–116. [Google Scholar] [CrossRef]
- Araujo, A.C.; Silveira, J.A.G.; Azevedo, S.S.; Nieri-Bastos, F.A.; Ribeiro, M.F.B.; La-bruna, M.B.; Horta, M.C. Babesia canis vogeli infection in dogs and ticks in the semiarid region of Pernambuco, Brazil. Pesq. Vet. Bras. 2015, 35, 456–461. [Google Scholar] [CrossRef]
- Panti-May, J.A.; Rodríguez-Vivas, R.I. Canine babesiosis: A literature review of prevalence, distribution, and diagnosis in Latin America and the Caribbean. Vet. Parasitol. Reg. Stud. Rep. 2020, 21, 100417. [Google Scholar] [CrossRef]
- Lira-Amaya, J.J.; Rojas-Martínez, C.; Álvarez-Martínez, A.; Pelaez-Flores, A.; Martínez-Ibañez, F.; Perez de la Rosa, D.; Figueroa-Millan, J.V. First Molecular Detection of Babesia canis vogeli in Dogs and Rhipicephalus sanguineus from Mexico. Arch. Palliat. Care 2017, 2, 1013. [Google Scholar]
- Reeves, W.K.; Wolf, S.; Rabago, R.; Gutierrez, T.; Nunn, P.; Johnson, J.; Vice, D. Invertebrate Vectors, Parasites, and Rickettsial Agents in Guam. Micronesica 2012, 43, 225–236. [Google Scholar]
- Harrus, S.; Perlman-Avrahami, A.; Mumcuoglu, K.Y.; Morick, D.; Eyal, O.; Baneth, G. Molecular detection of Ehrlichia canis, Anaplasma bovis, Anaplasma platys, Candidatus Midichloria mitochondrii and Babesia canis vogeli in ticks from Israel. Clin. Microbiol. Infect. 2011, 17, 459–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mumcuoglu, K.Y.; Arslan-Akveran, G.; Aydogdu, S.; Karasartova, D.; Koşar, A.; Savci, U.; Keskin, A.; Taylan-Ozkan, A. Pathogens in ticks collected in Israel: II. Bacteria and protozoa found in Rhipicephalus sanguineus sensu lato and Rhipicephalus turanicus. Ticks Tick Borne Dis. 2022, 13, 101986. [Google Scholar] [CrossRef]
- Maia, C.; Ferreira, A.; Nunes, M.; Vieira, M.L.; Campino, L.; Cardoso, L. Molecular detection of bacterial and parasitic pathogens in hard ticks from Portugal. Ticks Tick Borne Dis. 2014, 5, 409–414. [Google Scholar] [CrossRef]
- Millán, J.; Proboste, T.; Fernández de Mera, I.G.; Chirife, A.D.; de la Fuente, J.; Altet, L. Molecular detection of vector-borne pathogens in wild and domestic carnivores and their ticks at the human–wildlife interface. Ticks Tick Borne Dis. 2016, 7, 284–290. [Google Scholar] [CrossRef]
- Zanet, S.; Battisti, E.; Pepe, P.; Ciuca, L.; Colombo, L.; Trisciuoglio, A.; Ferroglio, E.; Cringoli, G.; Rinaldi, L.; Maurelli, M.P. Tick-borne pathogens in Ixodidae ticks collected from privately-owned dogs in Italy: A country-wide molecular survey. BMC Vet. Res. 2020, 16, 46. [Google Scholar] [CrossRef] [Green Version]
- Azmi, K.; Al-Jawabreh, A.; Nasereddin, A.; Abdelkader, A.; Zaid, T.; Ereqat, S.; Sawalha, S.S.; Baneth, G.; Abdeen, Z. Detection and molecular identification of Hepatozoon canis and Babesia vogeli from domestic dogs in Palestine. Parasitology 2017, 144, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Manoj, R.R.S.; Iatta, R.; Latrofa, M.S.; Capozzi, L.; Raman, M.; Colella, V.; Otranto, D. Canine vector-borne pathogens from dogs and ticks from Tamil Nadu, India. Acta Trop. 2020, 203, 105308. [Google Scholar] [CrossRef]
- Prakash, B.K.; Low, V.L.; Vinnie-Siow, W.Y.; Tan, T.K.; Lim, Y.A.; Morvarid, A.R.; AbuBakar, S.; Sofian-Azirun, M. Detection of Babesia spp. in Dogs and Their Ticks From Peninsular Malaysia: Emphasis on Babesia gibsoni and Babesia vogeli Infections in Rhipicephalus sanguineus sensu lato (Acari: Ixodidae). J. Med. Entomol. 2018, 55, 1337–1340. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.L.; Colella, V.; Greco, G.; Fang, F.; Nurcahyo, W.; Hadi, U.K.; Venturina, V.; Tong, K.B.Y.; Tsai, Y.L.; Taweethavonsawat, P.; et al. Molecular detection of pathogens in ticks and fleas collected from companion dogs and cats in East and Southeast Asia. Parasit. Vectors 2020, 13, 420. [Google Scholar] [CrossRef] [PubMed]
- Jongejan, F.; Su, B.L.; Yang, H.J.; Berger, L.; Bevers, J.; Liu, P.C.; Fang, J.C.; Cheng, Y.W.; Kraakman, C.; Plaxton, N. Molecular evidence for the transovarial passage of Babesia gibsoni in Haemaphysalis hystricis (Acari: Ixodidae) ticks from Taiwan: A novel vector for canine babesiosis. Parasit. Vectors 2018, 11, 134. [Google Scholar] [CrossRef] [PubMed]
- Galay, R.L.; Manalo, A.A.L.; Dolores, S.L.D.; Aguilar, I.P.M.; Sandalo, K.A.C.; Cruz, K.B.; Divina, B.P.; Andoh, M.; Masatani, T.; Tanaka, T. Molecular detection of tick-borne pathogens in canine population and Rhipicephalus sanguineus (sensu lato) ticks from southern Metro Manila and Laguna, Philippines. Parasit. Vectors 2018, 11, 643. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.L.; Colella, V.; Iatta, R.; Bui, K.L.; Dantas-Torres, F.; Otranto, D. Ticks and associated pathogens from dogs in northern Vietnam. Parasitol. Res. 2019, 118, 139–142. [Google Scholar] [CrossRef]
- Huynh, L.N.; Diarra, A.Z.; Pham, Q.L.; Le-Viet, N.; Berenger, J.M.; Ho, V.H.; Nguyen, X.Q.; Parola, P. Morphological, molecular and MALDI-TOF MS identification of ticks and tick-associated pathogens in Vietnam. PLoS Negl. Trop. Dis. 2021, 15, e0009813. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, J.; Shi, Z.; Song, C.; Zheng, X.; Zhang, Y.; Hao, Y.; Dong, H.; Wei, L.; El-Mahallawy, H.S.; et al. Molecular detection of vector-borne agents in dogs from ten provinces of China. Parasit. Vectors 2015, 8, 501. [Google Scholar] [CrossRef] [Green Version]
- Hegab, A.A.; Omar, H.M.; Abuowarda, M.; Ghattas, S.G.; Mahmoud, N.E.; Fahmy, M.M. Screening and phylogenetic characterization of tick-borne pathogens in a population of dogs and associated ticks in Egypt. Parasit. Vectors 2022, 15, 222. [Google Scholar] [CrossRef]
- M’ghirbi, Y.; Bouattour, A. Detection and molecular characterization of Babesia canis vogeli from naturally infected dogs and Rhipicephalus sanguineus ticks in Tunisia. Vet. Parasitol. 2008, 152, 1–7. [Google Scholar] [CrossRef]
- Barradas, P.F.; Mesquita, J.R.; Ferreira, P.; Amorim, I.; Gärtner, F. Detection of tick-borne pathogens in Rhipicephalus sanguineus sensu lato and dogs from different districts of Portugal. Ticks Tick Borne Dis. 2020, 11, 101536. [Google Scholar] [CrossRef] [PubMed]
- Habibi, G.; Imani, A.; Afshari, A.; Bozorgi, S. Detection and Molecular Characterization of Babesia canis vogeli and Theileria annulata in Free-Ranging Dogs and Ticks from Shahriar County, Tehran Province, Iran. Iran. J. Parasitol. 2020, 15, 321–331. [Google Scholar] [CrossRef]
- Ribeiro, C.M.; Matos, A.C.; Azzolini, T.; Bones, E.R.; Wasnieski, E.A.; Richini-Perera, V.B.; Lucheis, S.B.; Vidotto, O. Molecular epidemiology of Anaplasma platys, Ehrlichia canis and Babesia vogeli in stray dogs in Paraná, Brazil. Pesq. Vet. Bras. 2017, 37, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Paulino, P.G.; Pires, M.S.; da Silva, C.B.; Peckle, M.; da Costa, R.L.; Vitari, G.L.V.; de Abreu, A.P.M.; Massard, C.L.; Santos, H.A. Molecular epidemiology of Babesia vogeli in dogs from the southeastern region of Rio de Janeiro, Brazil. Vet. Parasitol. Reg. Stud. Rep. 2018, 13, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Costa-Júnior, L.M.; Zahler-Rinder, M.; Ribeiro, M.F.; Rembeck, K.; Rabelo, E.M.; Pfister, K.; Passos, L.M. Use of a Real Time PCR for detecting subspecies of Babesia canis. Vet. Parasitol. 2012, 188, 160–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotondano, T.E.; Almeida, H.K.; Krawczak Fda, S.; Santana, V.L.; Vidal, I.F.; Labruna, M.B.; de Azevedo, S.S.; Ade lmeida, A.M.; de Melo, M.A. Survey of Ehrlichia canis, Babesia spp. and Hepatozoon spp. in dogs from a semiarid region of Brazil. Rev. Bras. Parasitol. Vet. 2015, 24, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.S.; Santodomingo, A.M.; Castro, L.R. Molecular detection of Babesia canis vogeli and Hepatozoon canis in dogs in the department of Magdalena (Colombia). Rev. Med. Vet. Zoot. 2020, 67, 107–122. [Google Scholar] [CrossRef]
- García-Quesada, A.; Jiménez-Rocha, A.; Romero-Zuñiga, J.J.; Dolz, G. Seroprevalence and prevalence of Babesia vogeli in clinically healthy dogs and their ticks in Costa Rica. Parasit. Vectors 2021, 14, 468. [Google Scholar] [CrossRef]
- Obeta, S.S.; Ibrahim, B.; Lawal, I.A.; Natala, J.A.; Ogo, N.I.; Balogun, E.O. Prevalence of canine babesiosis and their risk factors among asymptomatic dogs in the federal capital territory, Abuja, Nigeria. Parasite Epidemiol. Control 2020, 11, e00186. [Google Scholar] [CrossRef] [PubMed]
- Su, B.L.; Liu, P.C.; Fang, J.C.; Jongejan, F. Correlation between Babesia Species Affecting Dogs in Taiwan and the Local Distribution of the Vector Ticks. Vet. Sci. 2023, 10, 227. [Google Scholar] [CrossRef]
- Shapiro, A.J.; Brown, G.; Norris, J.M.; Bosward, K.L.; Marriot, D.J.; Balakrishnan, N.; Breitschwerdt, E.B.; Malik, R. Vector-borne and zoonotic diseases of dogs in North-west New South Wales and the Northern Territory, Australia. BMC Vet. Res. 2017, 13, 238. [Google Scholar] [CrossRef] [Green Version]
- Barker, E.N.; Langton, D.A.; Helps, C.R.; Brown, G.; Malik, R.; Shaw, S.E.; Tasker, S. Haemoparasites of free-roaming dogs associated with several remote Aboriginal communities in Australia. BMC Vet. Res. 2012, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Jain, J.; Lakshmanan, B.; Nagaraj, H.V.; Praveena, J.E.; Syamala, K.; Aravindakshan, T. Detection of Babesia canis vogeli, Babesia gibsoni and Ehrlichia canis by multiplex PCR in naturally infected dogs in South India. Vet. Arh. 2018, 88, 215–224. [Google Scholar] [CrossRef]
- Augustine, S.; Sabu, L.; Lakshmanan, B. Molecular identification of Babesia spp. in naturally infected dogs of Kerala, South India. J. Parasit. Dis. 2017, 41, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Kundu, K.; Chakravarti, S.; Mohapatra, J.K.; Singh, V.K.; Raja Kumar, B.; Thakur, V.; Churamani, C.P.; Kumar, A. Canine babesiosis among working dogs of organised kennels in India: A comprehensive haematological, biochemical, clinicopathological and molecular epidemiological multiregional study. Prev. Vet. Med. 2019, 169, 104696. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Regañón, D.; Agulla, B.; Piya, B.; Fernández-Ruiz, N.; Villaescusa, A.; García-Sancho, M.; Rodríguez-Franco, F.; Sainz, Á. Stray dogs in Nepal have high prevalence of vector-borne pathogens: A molecular survey. Parasit. Vectors 2020, 13, 174. [Google Scholar] [CrossRef] [Green Version]
- Iatta, R.; Sazmand, A.; Nguyen, V.L.; Nemati, F.; Ayaz, M.M.; Bahiraei, Z.; Zafari, S.; Giannico, A.; Greco, G.; Dantas-Torres, F.; et al. Vector-borne pathogens in dogs of different regions of Iran and Pakistan. Parasitol. Res. 2021, 120, 4219–4228. [Google Scholar] [CrossRef]
- Li, X.W.; Zhang, X.L.; Huang, H.L.; Li, W.J.; Wang, S.J.; Huang, S.J.; Shao, J.W. Prevalence and molecular characterization of Babesia in pet dogs in Shenzhen, China. Comp. Immunol. Microbiol. Infect. Dis. 2020, 70, 101452. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; Yang, J.; Liu, Z.; Gao, S.; Pan, Y.; Guan, G.; Chu, Y.; Liu, G.; Luo, J.; Yin, H. First Molecular Detection of Piroplasm Infection in Pet Dogs from Gansu, China. Front. Microbiol. 2017, 8, 1029. [Google Scholar] [CrossRef] [Green Version]
- Sang, C.; Yang, Y.; Dong, Q.; Xu, B.; Liu, G.; Hornok, S.; Liu, Z.; Wang, Y.; Hazihan, W. Molecular survey of Babesia spp. in red foxes (Vulpes Vulpes), Asian badgers (Meles leucurus) and their ticks in China. Ticks Tick Borne Dis. 2021, 12, 101710. [Google Scholar] [CrossRef]
- Muguiro, D.H.; Nekouei, O.; Lee, K.Y.; Hill, F.; Barrs, V.R. Prevalence of Babesia and Ehrlichia in owned dogs with suspected tick-borne infection in Hong Kong, and risk factors associated with Babesia gibsoni. Prev. Vet. Med. 2023, 214, 105908. [Google Scholar] [CrossRef]
- Chandra, S.; Smith, K.; Alanazi, A.D.; Alyousif, M.S.; Emery, D.; Šlapeta, J. Rhipicephalus sanguineus sensu lato from dogs and dromedary camels in Riyadh, Saudi Arabia: Low prevalence of vector-borne pathogens in dogs detected using multiplexed tandem PCR panel. Folia Parasitol. 2019, 66, 7. [Google Scholar] [CrossRef] [Green Version]
- Alanazi, A.D.; Alouffi, A.S.; Alyousif, M.S.; Alshahrani, M.Y.; Abdullah, H.H.A.M.; Abdel-Shafy, S.; Calvani, N.E.D.; Ansari-Lari, M.; Sazmand, A.; Otranto, D. Molecular Survey of Vector-Borne Pathogens of Dogs and Cats in Two Regions of Saudi Arabia. Pathogens 2021, 10, 25. [Google Scholar] [CrossRef]
- Piratae, S.; Pimpjong, K.; Vaisusuk, K.; Chatan, W. Molecular detection of Ehrlichia canis, Hepatozoon canis and Babesia canis vogeli in stray dogs in Mahasarakham province, Thailand. Ann. Parasitol. 2015, 61, 183–187. [Google Scholar]
- Juasook, A.; Siriporn, B.; Nopphakhun, N.; Phetpoang, P.; Khamyang, S. Molecular detection of tick-borne pathogens in infected dogs associated with Rhipicephalus sanguineus tick infestation in Thailand. Vet. World 2021, 14, 1631–1637. [Google Scholar] [CrossRef] [PubMed]
- Rucksaken, R.; Maneeruttanarungroj, C.; Maswanna, T.; Sussadee, M.; Kanbutra, P. Comparison of conventional polymerase chain reaction and routine blood smear for the detection of Babesia canis, Hepatozoon canis, Ehrlichia canis, and Anaplasma platys in Buriram Province, Thailand. Vet. World 2019, 12, 700–705. [Google Scholar] [CrossRef] [Green Version]
- Luong, N.H.; Kamyingkird, K.; Thammasonthijarern, N.; Phasuk, J.; Nimsuphan, B.; Pattanatanang, K.; Chimnoi, W.; Kengradomkij, C.; Klinkaew, N.; Inpankaew, T. Companion Vector-Borne Pathogens and Associated Risk Factors in Apparently Healthy Pet Animals (Dogs and Cats) in Khukhot City Municipality, Pathum Thani Province, Thailand. Pathogens 2023, 12, 391. [Google Scholar] [CrossRef]
- Sontigun, N.; Boonhoh, W.; Fungwithaya, P.; Wongtawan, T. Multiple blood pathogen infections in apparently healthy sheltered dogs in southern Thailand. Int. J. Vet. Sci. Med. 2022, 10, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Inokuma, H.; Yoshizaki, Y.; Matsumoto, K.; Okuda, M.; Onishi, T.; Nakagome, K.; Kosugi, R.; Hirakawa, M. Molecular survey of Babesia infection in dogs in Okinawa, Japan. Vet. Parasitol. 2004, 121, 341–346. [Google Scholar] [CrossRef]
- Adao, D.E.V.; Herrera, C.M.T.; Galarion, L.H.; Bolo, N.R.; Carlos, R.S.; Carlos, E.T.; Carlos, S.S.; Rivera, W.L. Detection and molecular characterization of Hepatozoon canis, Babesia vogeli, Ehrlichia canis, and Anaplasma platys in dogs from Metro Manila, Philippines. Korean J. Vet. Res. 2017, 57, 79–88. [Google Scholar] [CrossRef]
- Inpankaew, T.; Hii, S.F.; Chimnoi, W.; Traub, R.J. Canine vector-borne pathogens in semi-domesticated dogs residing in northern Cambodia. Parasit. Vectors 2016, 9, 253. [Google Scholar] [CrossRef] [Green Version]
- Selim, A.; Megahed, A.; Ben Said, M.; Alanazi, A.D.; Sayed-Ahmed, M.Z. Molecular survey and phylogenetic analysis of Babesia vogeli in dogs. Sci. Rep. 2022, 12, 6988. [Google Scholar] [CrossRef]
- Zaki, A.A.; Attia, M.M.; Ismael, E.; Mahdy, O.A. Prevalence, genetic, and biochemical evaluation of immune response of police dogs infected with Babesia vogeli. Vet. World 2021, 14, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, L.; Oliveira, A.C.; Granada, S.; Nachum-Biala, Y.; Gilad, M.; Lopes, A.P.; Sousa, S.R.; Vilhena, H.; Baneth, G. Molecular investigation of tick-borne pathogens in dogs from Luanda, Angola. Parasit. Vectors 2016, 9, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matjila, P.T.; Penzhorn, B.L.; Bekker, C.P.; Nijhof, A.M.; Jongejan, F. Confirmation of occurrence of Babesia canis vogeli in domestic dogs in South Africa. Vet. Parasitol. 2004, 122, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Gabrielli, S.; Otašević, S.; Ignjatović, A.; Savić, S.; Fraulo, M.; Arsić-Arsenijević, V.; Momčilović, S.; Cancrini, G. Canine Babesioses in Noninvestigated Areas of Serbia. Vector Borne Zoonotic Dis. 2015, 15, 535–538. [Google Scholar] [CrossRef]
- Licari, E.; Takács, N.; Solymosi, N.; Farkas, R. First detection of tick-borne pathogens of dogs from Malta. Ticks Tick Borne Dis. 2017, 8, 396–399. [Google Scholar] [CrossRef]
- Criado-Fornelio, A.; Rey-Valeiron, C.; Buling, A.; Barba-Carretero, J.C.; Jefferies, R.; Irwin, P. New advances in molecular epizootiology of canine hematic protozoa from Venezuela, Thailand and Spain. Vet. Parasitol. 2007, 144, 261–269. [Google Scholar] [CrossRef]
- Dordio, A.M.; Beck, R.; Nunes, T.; Pereira da Fonseca, I.; Gomes, J. Molecular survey of vector-borne diseases in two groups of domestic dogs from Lisbon, Portugal. Parasit. Vectors 2021, 14, 163. [Google Scholar] [CrossRef]
- Kartashov, S.N.; Kolesnikov, A.G.; Butenkov, A.I.; Kartashova, E.V. Vector dogs infection, clinical and morphological aspects of babesiosis in dogs in the Rostov region. Vet. Patol. 2015, 3, 10–16. [Google Scholar]
- Birkenheuer, A.J.; Correa, M.T.; Levy, M.G.; Breitschwerdt, E.B. Geographic distribution of babesiosis among dogs in the United States and association with dog bites: 150 cases (2000–2003). J. Am. Vet. Med. Assoc. 2005, 227, 942–947. [Google Scholar] [CrossRef] [PubMed]
- Javeed, N.N.; Shultz, L.; Barnum, S.; Foley, J.E.; Hodzic, E.; Pascoe, E.L.; Martínez-López, B.; Quinn, N.; Bucklin, D.; Dear, J.D. Prevalence and geographic distribution of Babesia conradae and detection of Babesia vogeli in free-ranging California coyotes (Canis latrans). Int. J. Parasitol. Parasites Wildl. 2022, 19, 294–300. [Google Scholar] [CrossRef]
- Kidd, L.; Qurollo, B.; Lappin, M.; Richter, K.; Hart, J.R.; Hill, S.; Osmond, C.; Breitschwerdt, E.B. Prevalence of Vector-Borne Pathogens in Southern California Dogs with Clinical and Laboratory Abnormalities Consistent With Immune-Mediated Disease. J. Vet. Intern. Med. 2017, 31, 1081–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Modarelli, J.; Tomeček, J.M.; French, J.T.; Hilton, C.; Esteve-Gasent, M.D. Prevalence of common tick-borne pathogens in white-tailed deer and coyotes in south Texas. Int. J. Parasitol. Parasites Wildl. 2020, 11, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Tovar, R.E.M.; Flores, R.A.N.; Hernández, I.V.N.; Pérez, L.E.R. Detección molecular de Anaplasma platys, Babesia spp., Ehrlichia canis y Hepatozoon canis en caninos (Canis lupus familiaris) con sospecha de hemoparásitos en clínicas veterinarias de Santa Tecla y San Salvador, El Salvador. Rev. Agrocenc. 2019, 2, 29–37. [Google Scholar]
- Wei, L.; Kelly, P.; Ackerson, K.; Zhang, J.; El-Mahallawy, H.S.; Kaltenboeck, B.; Wang, C. First report of Babesia gibsoni in Central America and survey for vector-borne infections in dogs from Nicaragua. Parasit. Vectors 2014, 7, 126. [Google Scholar] [CrossRef] [Green Version]
- Starkey, L.A.; Newton, K.; Brunker, J.; Crowdis, K.; Edourad, E.J.P.; Meneus, P.; Little, S.E. Prevalence of vector-borne pathogens in dogs from Haiti. Vet. Parasitol. 2016, 224, 7–12. [Google Scholar] [CrossRef]
- Wei, L.; Kelly, P.; Ackerson, K.; El-Mahallawy, H.S.; Kaltenboeck, B.; Wang, C. Molecular detection of Dirofilaria immitis, Hepatozoon canis, Babesia spp., Anaplasma platys, and Ehrlichia canis in dogs on Costa Rica. Acta Parasitol. 2014, 60, 21–25. [Google Scholar] [CrossRef]
- Kelly, P.J.; Xu, C.; Lucas, H.; Loftis, A.; Abete, J.; Zeoli, F.; Stevens, A.; Jaegersen, K.; Ackerson, K.; Gessner, A.; et al. Ehrlichiosis, Babesiosis, Anaplasmosis and Hepatozoonosis in Dogs from St. Kitts, West Indies. PLoS ONE 2013, 8, e53450. [Google Scholar] [CrossRef] [Green Version]
- Yabsley, M.J.; McKibben, J.; Macpherson, C.N.; Cattan, P.F.; Cherry, N.A.; Hegarty, B.C.; Breitschwerdt, E.B.; O’Connor, T.; Chandrashekar, R.; Paterson, T.; et al. Prevalence of Ehrlichia canis, Anaplasma platys, Babesia canis vogeli, Hepatozoon canis, Bartonella vinsonii berkhoffii, and Rickettsia spp. in dogs from Grenada. Vet. Parasitol. 2008, 151, 279–285. [Google Scholar] [CrossRef]
- Georges, K.; Ezeokoli, C.D.; Newaj-Fyzul, A.; Campbell, M.; Mootoo, N.; Mutani, A.; Sparagano, O.A. The Application of PCR and Reverse Line Blot Hybridization to Detect Arthropod-borne Hemopathogens of Dogs and Cats in Trinidad. Ann. N. Y. Acad. Sci. 2008, 1149, 196–199. [Google Scholar] [CrossRef]
- Vargas-Hernández, G.; André, M.R.; Faria, J.L.; Munhoz, T.D.; Hernandez-Rodriguez, M.; Machado, R.Z.; Tinucci-Costa, M. Molecular and serological detection of Ehrlichia canis and Babesia vogeli in dogs in Colombia. Vet. Parasitol. 2012, 186, 254–260. [Google Scholar] [CrossRef]
- Galván, C.; Miranda, J.; Mattar, S.; Ballut, J. Babesia spp. in dogs from Córdoba, Colombia. Kafkas Univ. Vet. Fak. Derg. 2018, 24, 829–834. [Google Scholar]
- Levy, J.K.; Crawford, P.C.; Lappin, M.R.; Dubovi, E.J.; Levy, M.G.; Alleman, R.; Tucker, S.J.; Clifford, E.L. Infectious Diseases of Dogs and Cats on Isabela Island, Galapagos. J. Vet. Intern. Med. 2008, 22, 60–65. [Google Scholar] [CrossRef]
- Furtado, M.M.; Taniwaki, S.A.; Metzger, B.; Dos Santos Paduan, K.; O’Dwyer, H.L.; de Almeida Jácomo, A.T.; Porfírio, G.E.O.; Silveira, L.; Sollmann, R.; Tôrres, N.M.; et al. Is the free-ranging jaguar (Panthera onca) a reservoir for Cytauxzoon felis in Brazil? Ticks Tick Borne Dis. 2017, 8, 470–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, V.C.L.; de Lima, E.R.; Dias, M.B.D.M.C.; Fukahori, F.L.P.; de Azevedo Rêgo, M.S.; Júnior, J.W.P.; Kim, P.D.C.P.; Leitão, R.S.C.S.; Mota, R.A.; de Oliveira Carieli, E.P. Parasitological and molecular detection of Babesia canis vogeli in dogs of Recife, Pernambuco and evaluation of risk factors associated. Semin. Cienc. Agrar. 2016, 37, 163–171. [Google Scholar] [CrossRef] [Green Version]
- de Sousa, K.C.M.; Fernandes, M.P.; Herrera, H.M.; Freschi, C.R.; Machado, R.Z.; André, M.R. Diversity of piroplasmids among wild and domestic mammals and ectoparasites in Pantanal wetland, Brazil. Ticks Tick Borne Dis. 2018, 9, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Costa-Júnior, L.M.; Ribeiro, M.F.; Rembeck, K.; Rabelo, E.M.; Zahler-Rinder, M.; Hirzmann, J.; Pfister, K.; Passos, L.M. Canine babesiosis caused by Babesia canis vogeli in rural areas of the State of Minas Gerais, Brazil and factors associated with its seroprevalence. Res. Vet. Sci. 2009, 86, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Vieira, F.T.; Acosta, I.C.L.; Martins, T.F.; Filho, J.M.; Krawczak, F.D.S.; Barbieri, A.R.M.; Egert, L.; Fernandes, D.R.; Braga, F.R.; Labruna, M.B.; et al. Tick-borne infections in dogs and horses in the state of Espírito Santo, Southeast Brazil. Vet. Parasitol. 2018, 249, 43–48. [Google Scholar] [CrossRef]
- Inácio, E.L.; Pérez-Macchi, S.; Alabi, A.; Bittencourt, P.; Müller, A. Prevalence and molecular characterization of piroplasmids in domestic dogs from Paraguay. Ticks Tick Borne Dis. 2019, 10, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Temoche, L.C.; Assad, R.; Seabra-Junior, E.S.; Lemos, T.D.; Almosny, N. Frequency of Babesia vogeli in domestic dogs in the metropolitan area of Piura, Peru. Acta Vet. Brno 2018, 87, 255–260. [Google Scholar] [CrossRef]
- Mascarelli, P.E.; Tartara, G.P.; Pereyra, N.B.; Maggi, R.G. Detection of Mycoplasma haemocanis, Mycoplasma haematoparvum, Mycoplasma suis and other vector-borne pathogens in dogs from Córdoba and Santa Fé, Argentina. Parasit. Vectors 2016, 9, 642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millán, J.; Travaini, A.; Cevidanes, A.; Sacristán, I.; Rodríguez, A. Assessing the natural circulation of canine vector-borne pathogens in foxes, ticks and fleas in protected areas of Argentine Patagonia with negligible dog participation. Int. J. Parasitol. Parasites Wildl. 2018, 8, 63–70. [Google Scholar] [CrossRef]
- Di Cataldo, S.; Ulloa-Contreras, C.; Cevidanes, A.; Hernández, C.; Millán, J. Babesia vogeli in dogs in Chile. Transbound. Emerg. Dis. 2020, 67, 2296–2299. [Google Scholar] [CrossRef]
- Simking, P.; Wongnakphet, S.; Stich, R.W.; Jittapalapong, S. Detection of Babesia vogeli in stray cats of metropolitan Bangkok, Thailand. Vet. Parasitol. 2010, 173, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.P.; Gazêta, G.; André, M.; Coelho, A.; Corrêa, L.; Damasceno, J.; Israel, C.; Pereira, R.; Barbosa, A. Piroplasm Infection in Domestic Cats in the Mountainous Region of Rio de Janeiro, Brazil. Pathogens 2022, 11, 900. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.; Marabini, L.; Dutlow, K.; Zhang, J.; Loftis, A.; Wang, C. Molecular detection of tick-borne pathogens in captive wild felids, Zimbabwe. Parasit. Vectors 2014, 7, 514. [Google Scholar] [CrossRef]
- Krücken, J.; Czirják, G.Á.; Ramünke, S.; Serocki, M.; Heinrich, S.K.; Melzheimer, J.; Costa, M.C.; Hofer, H.; Aschenborn, O.H.K.; Barker, N.A.; et al. Genetic diversity of vector-borne pathogens in spotted and brown hyenas from Namibia and Tanzania relates to ecological conditions rather than host taxonomy. Parasit. Vectors 2021, 14, 328. [Google Scholar] [CrossRef]
- Maggi, R.G.; Krämer, F. A review on the occurrence of companion vector-borne diseases in pet animals in Latin America. Parasit. Vectors 2019, 12, 145. [Google Scholar] [CrossRef] [Green Version]
- Penzhorn, B.L.; Vorster, I.; Redecker, G.; Oosthuizen, M.C. Confirmation of occurrence of Babesia vogeli in a dog in Windhoek, central Namibia. J. S. Afr. Vet. Assoc. 2016, 87, a1427. [Google Scholar] [CrossRef] [Green Version]
- Sibanda, D.R. Molecular Characterization of Tick-Borne Pathogens of Domestic Dogs from Communal Areas in Botswana Hunting Dogs Infected with Multiple Blood-Borne Pathogens. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2011. [Google Scholar]
- Dantas-Torres, F. Biology and ecology of the brown dog tick, Rhipicephalus sanguineus. Parasit. Vectors 2010, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Walker, A.R.; Bouattour, A.; Camicas, J.-L.; Estrada-Peña, A.; Horak, I.G.; Latif, A.A.; Pegram, R.G.; Preston, P.M. Ticks of Domestic Animals in Africa: A Guide to Identification of Species, 1st ed.; Bioscience Reports: Edinburgh, UK, 2003; pp. 45–221. [Google Scholar]
- Dear, J.D.; Birkenheuer, A. Babesia in North America: An Update. Vet. Clin. N. Am. Small Anim. Pract. 2022, 52, 1193–1209. [Google Scholar] [CrossRef] [PubMed]
- Maggi, R.G.; Birkenheuer, A.J.; Hegarty, B.C.; Bradley, J.M.; Levy, M.G.; Breitschwerdt, E.B. Comparison of serological and molecular panels for diagnosis of vector-borne diseases in dogs. Parasit. Vectors 2014, 7, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shock, B.C.; Moncayo, A.; Cohen, S.; Mitchell, E.A.; Williamson, P.C.; Lopez, G.; Garrison, L.E.; Yabsley, M.J. Diversity of piroplasms detected in blood-fed and questing ticks from several states in the United States. Ticks Tick Borne Dis. 2014, 5, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, C.R.; Wilson, K.N.; Ledger, K.J.; White, Z.S.; Dorleans, R.; De Jesus, C.E.; Wisely, S.M. Ticks and Tick-Borne Pathogens in Recreational Greenspaces in North Central Florida, USA. Microorganisms 2023, 11, 756. [Google Scholar] [CrossRef]
- Noden, B.H.; Roselli, M.A.; Loss, S.R. Effect of Urbanization on Presence, Abundance, and Coinfection of Bacteria and Protozoa in Ticks in the US Great Plains. J. Med. Entomol. 2022, 59, 957–968. [Google Scholar] [CrossRef]
- Raghavan, R.K.; Peterson, A.T.; Cobos, M.E.; Ganta, R.; Foley, D. Current and Future Distribution of the Lone Star Tick, Amblyomma americanum (L.) (Acari: Ixodidae) in North America. PLoS ONE 2019, 14, e0209082. [Google Scholar] [CrossRef]
- Modarelli, J.J.; Westrich, B.J.; Milholland, M.; Tietjen, M.; Castro-Arellano, I.; Medina, R.F.; Esteve-Gasent, M.D. Prevalence of protozoan parasites in small and medium mammals in Texas, USA. Int. J. Parasitol. Parasites Wildl. 2020, 11, 229–234. [Google Scholar] [CrossRef]
- Shock, B.C.; Lockhart, J.M.; Birkenheuer, A.J.; Yabsley, M.J. Detection of a Babesia Species in a Bobcat from Georgia. Southeast. Nat. 2013, 12, 243–247. [Google Scholar] [CrossRef]
- Dear, J.D.; Owens, S.D.; Lindsay, L.L.; Biondo, A.W.; Chomel, B.B.; Marcondes, M.; Sykes, J.E. Babesia conradae infection in coyote hunting dogs infected with multiple blood-borne pathogens. J. Vet. Intern. Med. 2018, 32, 1609–1617. [Google Scholar] [CrossRef]
- Stayton, E.; Lineberry, M.; Thomas, J.; Bass, T.; Allen, K.; Chandrashekar, R.; Yost, G.; Reichard, M.; Miller, C. Emergence of Babesia conradae infection in coyote-hunting Greyhounds in Oklahoma, USA. Parasit. Vectors 2021, 14, 402. [Google Scholar] [CrossRef]
- Matsuu, A.; Kawabe, A.; Koshida, Y.; Ikadai, H.; Okano, S.; Higuchi, S. Incidence of canine Babesia gibsoni infection and subclinical infection among Tosa dogs in Aomori Prefecture, Japan. J. Vet. Med. Sci. 2004, 66, 893–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jefferies, R.; Ryan, U.M.; Jardine, J.; Broughton, D.K.; Robertson, I.D.; Irwin, P.J. Blood, Bull Terriers and Babesiosis: Further evidence for direct transmission of Babesia gibsoni in dogs. Aust. Vet. J. 2007, 85, 459–463. [Google Scholar] [CrossRef]
- Irwin, P.J. Canine babesiosis: From molecular taxonomy to control. Parasit. Vectors 2009, 2, S4. [Google Scholar] [CrossRef] [Green Version]
- Imre, M.; Farkas, R.; Ilie, M.; Imre, K.; Hotea, I.; Morariu, S.; Morar, D.; Dărăbuş, G. Seroprevalence of Babesia canis Infection in Clinically Healthy Dogs from Western Romania. J. Parasitol. 2013, 99, 161–163. [Google Scholar] [CrossRef]
- Joachim, A.; Unterköfler, M.S.; Strobl, A.; Bakran-Lebl, K.; Fuehrer, H.P.; Leschnik, M. Canine babesiosis in Austria in the 21st century—A review of cases. Vet. Parasitol. Reg. Stud. Rep. 2023, 37, 100820. [Google Scholar] [CrossRef] [PubMed]
- Castro, V.V.; da Cruz Boa Sorte Ayres, E.; Canei, D.H.; Pereira, M.E.; Sousa, V.R.F.; Chitarra, C.S.; Dutra, V.; Nakazato, L.; de Almeida, A.B.P.F. Molecular prevalence and factors associated with Babesia vogeli infection in dogs in the Cerrado Mato-Grossense region of Brazil. Cienc. Rural 2020, 50, e20190389. [Google Scholar] [CrossRef]
- Jongejan, F.; de Vos, C.; Fourie, J.J.; Beugnet, F. A novel combination of fipronil and permethrin (Frontline Tri-Act®/Frontect®) reduces risk of transmission of Babesia canis by Dermacentor reticulatus and of Ehrlichia canis by Rhipicephalus sanguineus ticks to dogs. Parasit. Vectors 2015, 8, 602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jongejan, F.; Fourie, J.J.; Chester, S.T.; Manavella, C.; Mallouk, Y.; Pollmeier, M.G.; Baggott, D. The prevention of transmission of Babesia canis canis by Dermacentor reticulatus ticks to dogs using a novel combination of fipronil, amitraz and (S)-methoprene. Vet. Parasitol. 2011, 179, 343–350. [Google Scholar] [CrossRef]
- Geurden, T.; Six, R.; Becskei, C.; Maeder, S.; Lloyd, A.; Mahabir, S.; Fourie, J.; Liebenberg, J. Evaluation of the efficacy of sarolaner (Simparica®) in the prevention of babesiosis in dogs. Parasit. Vectors 2017, 10, 415. [Google Scholar] [CrossRef]
- Taenzler, J.; Liebenberg, J.; Roepke, R.K.; Heckeroth, A.R. Prevention of transmission of Babesia canis by Dermacentor reticulatus ticks to dogs after topical administration of fluralaner spot-on solution. Parasit. Vectors 2016, 9, 234. [Google Scholar] [CrossRef] [Green Version]
- Beugnet, F.; Lebon, W.; de Vos, C. Prevention of the transmission of Babesia rossi by Haemaphysalis elliptica in dogs treated with Nexgard®. Parasite 2019, 26, 49. [Google Scholar] [CrossRef]
- Freeman, M.J.; Kirby, B.M.; Panciera, D.L.; Henik, R.A.; Rosin, E.; Sullivan, L.J. Hypotensive shock syndrome associated with acute Babesia canis infection in a dog. J. Am. Vet. Med. Assoc. 1994, 204, 94–96. [Google Scholar]
- Stegeman, J.R.; Birkenheuer, A.J.; Kruger, J.M.; Breitschwerdt, E.B. Transfusion-associated Babesia gibsoni infection in a dog. J. Am. Vet. Med. Assoc. 2003, 222, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Wardrop, K.J.; Birkenheuer, A.; Blais, M.C.; Callan, M.B.; Kohn, B.; Lappin, M.R.; Sykes, J. Update on Canine and Feline Blood Donor Screening for Blood-Borne Pathogens. J. Vet. Intern. Med. 2016, 30, 15–35. [Google Scholar] [CrossRef] [PubMed]
- Nury, C.; Blais, M.C.; Arsenault, J. Risk of transmittable blood-borne pathogens in blood units from blood donor dogs in Canada. J. Vet. Intern. Med. 2021, 35, 1316–1324. [Google Scholar] [CrossRef] [PubMed]
Country/Region | Prevalence of Infected Dogs (No. of Infections) | Time of Blood Collection | Ref. | |
---|---|---|---|---|
South Africa | South Africa (7 out of 9 provinces) | 36.9% (420 out of 1138) | 2000–2006 | [41] |
Cape Town region | 12.7% (16 out of 126) | Before 2014 1 | [54] | |
Eastern South Africa: KwaZulu-Natal province | 0% (0 out of 49) | Before 2020 1 | [55] | |
South Africa (Onderstepoort Veterinary Academic Hospital, University of Pretoria) | 9.6% (1222 out of 12,706) 2 | 2004–2010 | [56] | |
Zenzele (settlement near Johannesburg) | 31.2% (34 out of 109 dogs) 3 | 2008–2014 | [57] | |
North-central part of South Africa (Mogale’s Gate Biodiversity Centre and S.A. Lombard Nature Reserve) | 30.8% (33 out of 107) 4 | Between 2011 and 2017 1 | [35] | |
Northern South Africa (provinces: North West and Limpopo) | 5.3% (16 out of 301) 5 | Before 2008 1 | [37] | |
Northern South Africa (Kruger National Park) | 9.6% (5 out of 52) 5 | Before 2021 1 | [38] | |
Northeast and Southwest | 4.9% (7 out of 143) 6 | 2007–2011 | [58] | |
Nigeria | Various regions of Nigeria | 2% (8 out of 400) | 2004–2005 | [43] |
Central, western, and southern regions of Nigeria (States of Kaduna, Plateau, Kwara, and Rivers) | 6.6% (12 out of 181) | 2011 | [59] | |
Central Nigeria (Plateau State: Jos city) | 38% (38 out of 100) | 2010 | [42] | |
Southwestern Nigeria (Ogun State: Abeokuta city) | 18.7% (39 out of 209) | 2014–2015 | [60] | |
Southwestern Nigeria (Oyo State: Ibadan) | 4% (6 out of 150) | 2020 | [61] | |
Zambia | Eastern and western parts of Zambia (South Luangwa National Park and Liuwa Plain National Park) | 0% (0 out of 40) 7 | 2009–2011 | [62] |
Southwestern Zambia: cities of Mazabuka and Shangombo | 2% (5 out of 247) | 2016 | [63] | |
Uganda | Southwestern Uganda: rural areas near 3 national parks (Bwindi Impenetrable National Park, Mgahinga Gorilla National Park, Queen Elizabeth National Park) | 7.9% (3 out of 38) | 2011 | [45] |
Malawi | Southern, central, and northern part of Malawi (cities of Lilongwe, Blantyre, and Mzuzu) | 23.4% (49 out of 209) | 2018–2019 | [46] |
Kenya | Southern and southwestern regions of Kenya: Nairobi, Mombasa, and Nakuru counties | 7.7% (11 out of 143) | Before 2021 1 | [47] |
Angola | Central-western Angola: Huambo province (Tchicala-Tcholoanga Municipality) | 23.5% (20 out of 85) | 2016 | [48] |
Sudan | Eastern Sudan: village of Barbar el Fugara | 6.4% (5 out of 78) | 1997–2000 | [49] |
Country/Region | Prevalence of Infected Ticks (No. of Infections) | Time of Tick Collection | Ref. | |
---|---|---|---|---|
Poland | Western Poland | 0% (0 out of 1233) | 2016–2018 | [101] |
Western Poland | 0% (0 out of 592) | 2012–2014 | [102] | |
Southwestern Poland (Wrocław) | 0% (0 out of 337) | 2013–2014 | [103] | |
Eastern Poland (Lublin province) | 0.7% (4 out of 582) | 2011–2012 | [97] | |
Eastern Poland | 5.4% (108 out of 1993) | 2011–2014 | [102] | |
Eastern Poland | 5.9% (74 out of 1264) | 2016–2018 | [101] | |
Northeastern Poland (Białystok, Augustów) | 6.7% (18 out of 270) | 2017–2019 | [104] | |
Northeastern Poland (Białystok) | 7.3% (27 out of 368) | 2018 | [105] | |
Northeastern Poland (The Protected Landscape Area of the Bug and Nurzec Valley) | 7% (21 out of 301) | 2016–2017 | [106] | |
Germany | Saxony (Leipzig) | 0% (0 out of 804) | 2009 | [94] |
Bavaria | 0% (0 out of 135) | 2009 | [94] | |
Bavaria | 0.3% (1 out of 301) | 2010–2013 | [107] | |
Saarland | 2.5% (10 out of 397) | 2008 | [108] 1 | |
Austria | Eastern Austria | 16.7% (1 out of 6) | 2007–2008 | [109] |
Slovakia | Western Slovakia 2 | 0% (0 out of 2999) | 2009–2011 | [110] |
Southwestern Slovakia | 1% (1 out of 100) | 2002 | [111] | |
Western Slovakia | 1.8% (11 out of 600) | 2011–2012 | [112] | |
Southwestern Slovakia | 2.2% (1 out of 45) | 2014 | [113] | |
Southwestern Slovakia | 2.3% (28 out of 1205) | 2009 | [114] | |
Eastern Slovakia | 14.7% (48 out of 327) | 2009 | [114] | |
Southern Slovakia | 35.6% (116 out of 326) | 2004–2010 | [115] | |
United Kingdom | Wales and Southern England | 0.3% (1 out of 294) | 2019–2020 | [116] |
Wales | 3.3% (1 out of 30) | 2010–2012 | [117] | |
Southern England (Devon and Essex) | 17.1% (14 out of 82) | 2010–2016 | [117] | |
Spain | Northern Spain (Basque Country) | 1% (1 out of 97) | 2003–2005 | [86] |
Belgium | Belgium | 0% (0 out of 282) | 2010 | [118] |
Belgium | 0% (0 out of 289) | 2011–2013 | [119] | |
The Netherlands | The Netherlands | 3.1% (14 out of 444) | 2011–2013 | [119] |
Latvia | Latvia | 0.3% (2 out of 595) | 2017–2019 | [89] |
Latvia and Lithuania | Latvia and Lithuania | 1.3% (31 out of 2436) 3 | 2013–2015 | [120] |
Ukraine | Various regions | 0% (0 out of 141) | 2018 | [121] |
Chernobyl exclusion zone | 2.9% (6 out of 205) | 2009–2012 | [122] 1 | |
Czech Republic | Czech Republic | 2.8% (22 out of 783) | 2018–2021 | [123] |
Russia | Southwestern Siberia (Novosibirsk) | 4.2% (3 out of 72) | 2003 | [124] |
Southwestern Siberia (Omsk and Novosibirsk) | 3.4% (3 out of 87) | 2003–2004 | [125] | |
Serbia | Serbia | 20.7% (11 out of 53) | 2007, 2009 | [126] |
Northern Serbia | 21.6% (11 out of 51) | 2007, 2009 | [127] | |
Hungary | Budapest | 8.2% (34 out of 413) | 2014–2015 | [128] |
Italy | Lombardy | 10.9% (53 out of 488) | 2015–2016 | [129] |
Switzerland | Swiss Midlands | 82.6% (19 out of 23) | 2011 | [95] |
Country/Region | Prevalence of Infected Ticks (No. of Infections) | Time of Tick Collection | Ref. | |
---|---|---|---|---|
Poland | Southwestern Poland (Wrocław) | 0% (0 out of 46) | 2013–2014 | [103] |
Central Poland | 11% (42 out of 381) | 2003–2005 | [130] | |
Germany | Berlin/Brandenburg Region | 0% (0 out of 140) | 2010–2011 | [131] |
Slovakia | Southwestern Slovakia | 4.8% (1 out of 21) | 2014 | [113] |
United Kingdom | United Kingdom | 10% (1 out of 10) 1 | 2015 | [132] |
The Netherlands and Belgium | The Netherlands and Belgium | 0% (0 out of 133) | 2007–2013 | [119] |
The Netherlands | The Netherlands | 0% (0 out of 344) | 2005–2006 | [133] |
Latvia | Latvia | 14.8% (4 out of 27) | 2016 | [134] |
Ukraine | Various regions | 2.1% (6 out of 281) | 2018 | [121] |
Kiev | 6.1% (2 out of 33) | 2010 | [135] | |
Hungary | Hungary | 29.9% (43 out of 144) | 2004–2007 | [136] |
Hungary | 24.2% (8 out of 33) | Before 2016 2 | [137] | |
France | France | 12% (3 out of 25) | Before 2016 2 | [137] |
Southern France | 9.7% (3 out of 31) | 2010–2012 | [138] | |
Switzerland | Lake Geneva Region | 20% (3 out of 15) | 2005–2006 | [139] |
Austria | Eastern Austria | 33.3% (2 out of 6) | 2007–2008 | [109] |
Russia | Various cities between Smolensk and Krasnoyarsk | 20.3% (82 out of 404) | 2016 | [77] |
Serbia | Serbia | 17% (8 out of 47) 3 | 2010–2013 | [140] |
Northern Serbia: Vojvodina province | 33.3% (6 out of 18) | Before 2016 2 | [141] | |
Spain | Spain | 10.8–58.8% of pools of ticks | 2014–2015 | [91] |
Country/Region | Prevalence of Infected Dogs (No. of Infections) | Time of Blood Collection | Ref. | |
---|---|---|---|---|
Europe | ||||
Poland | Central Poland (Warsaw) | 11.8% (48 out of 408) | 2003–2004 | [143] |
Central Poland | 28% (23 out of 82) | 2006–2008 | [144] | |
Central Poland | 30.4% (72 out of 237) | 2015–2021 | [145] | |
Central and Eastern Poland | 5.3% (1532 out of 28,881) | 2016–2018 | [82] | |
Western Poland (including areas endemic and non-endemic for D. reticulatus) | 0.5% (26 out of 50,323) 1 | 2016–2018 | [82] | |
Poland (16 voivodeships) | 19.7% (158 out of 800) 2 | 2008–2010 | [146] | |
Poland | 8.5% (14 out of 165) 3 | 2013–2017 | [52] | |
Poland (Western and Eastern Poland) | 2.4% (9 out of 381) 4 | 2016–2018 | [147] | |
Czech Republic | Southern Czech Republic: South Moravian Region (Břeclav District) | 0% (0 out of 41) | 2010 | [148] |
Southern Czech Republic: South Moravian Region (Břeclav District) | 12.2% (5 out of 41) 5 | 2010 | [148] | |
Southern Czech Republic: South Moravian Region and South Bohemian Region | 1.3% (5 out of 377) | 2015 | [149] | |
Czech Republic | 10.8% (7 out of 65) 3 | 2013–2017 | [52] | |
Slovakia | Western Slovakia (Malacky District) | 0% (0 out of 100) | 2010 | [150] |
Southern Slovakia (towns: Komárno and Nové Zámky) | 20.5% (24 out of 117) | 2010–2011 | [150] | |
Slovakia | 3.8% (14 out of 366) 6,7 | Before 2014 8 | [151] | |
Ukraine | Western Ukraine | 29% (45 out of 155) | 2015–2021 | [145] |
Kiev | 26.1% (6 out of 23) | 2011 | [135] | |
Latvia | Riga, southern and western Latvia | 16.4% (43 out of 262) 2 | 2016–2019 | [152] |
Lithuania | Central Lithuania: Kaunas | 76.4% (94 out of 123) 2 | 2013–2014 | [153] |
Bosnia and Herzegovina | Sarajevo Canton | 85% (68 out of 80) 2 | 2014–2016 | [154] |
Bosnia and Herzegovina | 0.8% (1 out of 119) 4 | 2013–2014 | [155] | |
Croatia | Western Croatia | 6.5% (7 out of 108) 9 | 1996–2015 | [156] |
Croatia | 2.4% (20 out of 848) | 2007–2008 | [157] | |
Croatia | 20% (87 out of 435) 5 | Before 2017 7 | [158] | |
Serbia | Suburban and rural Belgrade municipalities | 13.5% (15 out of 111) | 2015 | [159] |
Serbia | 4.2% (9 out of 216) 10 | 2010–2013 | [140] | |
Slovenia | Central Slovenia: Ljubljana | 4.6% (11 out of 238) | 2000–2002 | [160] |
Slovenia | 1.3% (1 out of 77) 3 | 2013–2017 | [52] | |
Albania | Central Albania (Tirana city) | 13.3% (4 out of 30) | 2008 | [161] |
Bulgaria | Central Bulgaria (Stara Zagora city) | 16.2% (27 out of 167) 5 | Before 2015 7 | [162] |
Republic of Moldova | Southern Moldova: Cahul city | 11.9% (5 out of 42) | 2018–2019 | [163] |
Central Moldova: Chișinău city | 11.5% (9 out of 78) | 2018–2019 | [163] | |
Romania | Southern Romania | 7% (21 out of 300) | 2017 | [164] |
Southern Romania: Ilfov County | 29.2% (28 out of 96) | 2013–2014 | [165] | |
Romania | 37.6% (41 out of 109) 11 | 2009–2010 | [166] | |
Romania | 8.9% (5 out of 56) 10,12 | 2013–2015 | [167] | |
Hungary | Hungary | 5.7% (37 out of 651) 5 | 2005 | [168] |
Hungary | 50% (39 out of 78) 11 | 2009–2010 | [166] | |
Southwestern Hungary: Somogy County | 5.5% (5 out of 90) | 2017 | [7] | |
Austria | Austria | 9.9% (113 out of 1146) 3 | 2013–2017 | [52] |
Switzerland | Switzerland | 3.3% (51 out of 1540) 3 | 2013–2017 | [52] |
Germany | Germany | 24.3% (1138 out of 4681) 5,13 | 2004–2009 | [169] |
Germany | 4.6% (534 out of 11,472) 3 | 2013–2017 | [52] | |
State of Hesse: Rhine-Main area | 11.6% (81 out of 697) 14 | 2018–2020 | [170] | |
Luxembourg | Luxembourg | 3.3% (4 out of 122) 3 | 2013–2017 | [52] |
Belgium | Belgium | 10.3% (6 out of 58) 3 | 2013–2017 | [52] |
The Netherlands | The Netherlands | 8.4% (64 out of 761) 3 | 2013–2017 | [52] |
Denmark | Denmark | 0.5% (2 out of 431) 3 | 2013–2017 | [52] |
Sweden | Sweden | 2.6% (2 out of 77) 3 | 2013–2017 | [52] |
Norway | Norway | 6.8% (5 out of 74) 3 | 2013–2017 | [52] |
Finland 15 | Finland 15 | 9.6% (7 out of 73) 3 | 2013–2017 | [52] |
Italy | Southern Italy (Strait of Messina—narrow strait between Sicily and Calabria) 15 | 70.3% (175 out of 249) 5,6 | 2009 | [171] |
Central and Northeastern Italy | 2.3% (9 out of 385) | 2005–2006 | [93] | |
Central Italy | 1.7% (2 out of 117) | 2012–2013 | [172] | |
Southern Italy (provinces in Campania region: Naples, Avellino, Salerno) 15 | 0.1% (2 out of 1311) | 2015 | [173] | |
Italy | 5% (46 out of 913) 3 | 2013–2017 | [52] | |
Northern Italy | 29.1% (30 out of 103) 2 | 2003–2008 | [174] | |
Central Italy | 4.6% (2 out of 43) 2 | 2003–2008 | [174] | |
Southern Italy | 11.1% (2 out of 18) 2 | 2003–2008 | [174] | |
France | Southern France | 12.9% (18 out of 140) | 2010–2012 | [138] |
Most of samples from Northern France | 63.2% (105 out of 166) 6 | 2006–2008 | [6] | |
France | 9.1% (268 out of 2931) 3 | 2013–2017 | [52] | |
Spain | Spain | 3.6% (53 out of 1466) 3 | 2013–2017 | [52] |
United Kingdom | United Kingdom | 1.7% (40 out of 2335) 3 | 2013–2017 | [52] |
Portugal | Portugal | 0.7% (1 out of 143) 3 | 2013–2017 | [52] |
Asia | ||||
Turkey | Eastern Turkey: Erzurum province 15 | 0.8% (1 out of 126) | 2010–2012 | [175] |
Iran | Northwestern Iran: Meshkin Shahr County in Ardabil province 15 | 9.3% (4 out of 43) | 2017–2018 | [176] |
China | Henan province: Zhengzhou city 15 | 5.4% (7 out of 130) | 2017–2018 | [177] |
Japan | Japan 15 | 0.03% (1 out of 3463) 3 | 2013–2017 | [52] |
North America | ||||
United States 15 | United States (Canine Vector-Borne Disease Diagnostic Panel, Vector-Borne Disease Diagnostic Laboratory, North Carolina State University) 15 | 0.2% (18 out of 9367) 3,16 | 2015–2018 | [5] |
Country/Region | Prevalence of Infected Ticks (No. of Infections) | Time of Tick Collection | Ref. | |
---|---|---|---|---|
Ticks collected from vegetation/environment | ||||
Israel | Western Israel | 2.3% (3 out of 131 pools) 1 | 2002–2003, 2007–2008 | [220] |
Western Israel | 0.8% (1 out of 124) 2 | Before 2022 3 | [221] | |
Portugal | Southern Portugal: Faro District | 0% (0 out of 230) | 2012 | [222] |
Ticks collected from dogs | ||||
Western Pacific | ||||
United States | Western Pacific Ocean: Guam Island | 1.3% (1 out of 75) | 2010 | [219] |
North America | ||||
Mexico | South-central Mexico: State of Morelos, Cuautla city | 16.7% (3 out of 18) | Before 2017 3 | [218] |
South America | ||||
Brazil | Eastern Brazil: Pernambuco state (the municipality of Petrolina) | 3% (3 out of 100) | 2011–2012 | [216] |
Midwestern Brazil: Mato Grosso State (Poconé municipality) | 1.3% (5 out of 392) | 2009 | [215] | |
Europe | ||||
Portugal | Southern Portugal: Faro District | 0.3% (1 out of 321) | 2012–2013 | [222] |
Western Portugal: Lisbon and Setúbal districts | 0% (0 out of 253) | 2012–2013 | [222] | |
Northeastern Portugal: Guarda District | 0% (0 out of 42) | 2012–2013 | [222] | |
Spain | Northeastern Spain (Barcelona metropolitan area) | 3.2% (1 out of 31 pools) 1,2,4,5 | 2011–2013 | [223] |
France | Southern France | 10.5% (26 out of 248) 4 | 2010–2012 | [138] |
Italy | Italy (78 provinces) | 1.1% (10 out of 949 pools) 1 | 2016–2017 | [224] |
Ukraine | Southeastern Ukraine: Crimea (Sevastopol city) | 0% (0 out of 52) | 2016 | [77] |
Russia | Southern Russia: various cities (Astrakhan, Blagoveshchensk, Krasnodar, Sochi, Stavropol) | 0% (0 out of 43) | 2016 | [77] |
Chechnya | Central Chechnya: Grozny city | 5.9% (1 out of 17) | 2016 | [77] |
Asia | ||||
Palestine | Palestine, 4 districts: Hebron, Jenin, Nablus, and Tubas | 0.5% (1 out of 186) | 2015 | [225] |
India | Southern India: Chennai city | 2% (6 out of 294) | 2018 | [226] |
Malaysia | Peninsular Malaysia | 1.4% (2 out of 140) | Before 2018 3 | [227] |
Malaysia | 33.3% (1 out of 3) | Before 2020 3 | [228] | |
Indonesia | Indonesia | 0% (0 out of 78) | Before 2020 3 | [228] |
Singapore | Singapore | 0% (0 out of 4) | Before 2020 3 | [228] |
Taiwan | Taiwan | 0% (0 out of 21) | Before 2020 3 | [228] |
Northern and Western Taiwan | 3.6% (21 out of 582) | 2015–2017 | [229] | |
Thailand | Thailand | 0% (0 out of 34) | Before 2020 3 | [228] |
Philippines | Philippines | 0% (0 out of 90) | Before 2020 3 | [228] |
Northern Philippines: Metro Manila and Laguna | 0.6% (1 out of 157) | Before 2018 3 | [230] | |
Vietnam | Vietnam | 2.6% (3 out of 117) | Before 2020 3 | [228] |
Northern Vietnam: Hanoi and neighboring provinces | 0.3% (1 out of 302) | 2018 | [231] | |
Various provinces in southern, central, and northern Vietnam | 3.6% (9 out of 251) 4 | 2010, 2018 | [232] | |
China | China | 0% (0 out of 20) | Before 2020 3 | [228] |
Eastern China: Jiangsu province (Taixing city) | 3.4% (5 out of 146) | 2012–2014 | [233] | |
Central China: Chongqing municipality | 25% (4 out of 16) | Before 2012 3 | [213] | |
Southeastern China: Guangdong province | 3.6% (1 out of 28) | Before 2012 3 | [213] | |
Southeastern China: Hainan province | 3.3% (4 out of 121) | Before 2012 3 | [213] | |
Southern China: Guangxi province | 12.5% (11 out of 88) | Before 2012 3 | [213] | |
Eastern China: Zhejiang province | 6.7% (1 out of 15) | Before 2012 3 | [213] | |
Australia | ||||
Australia | Australia: Queensland and Northern Territory | 1.1% (2 out of 184) 6 | 2012–2015 | [206] |
Africa | ||||
Egypt | Northern Egypt: Cairo and Giza cities | 5.5% (8 out of 144) | Before 2022 3 | [234] |
Tunisia | Tunisia, 4 locations: Zaga, Sidi Thabet, Somâa, and Bouhajla | 0.6% (1 out of 160) | 2006 | [235] |
Algeria | Northern Algeria: region of Djelfa and area of Bordj Bou Arreridj | 13% (50 out of 384 pools) 1 | 2017–2019 | [214] |
Country/Region | Prevalence of Infected Dogs (No. of Infections) | Time of Blood Collection | Ref. | |
---|---|---|---|---|
Australia | ||||
Australia | Northern Australia: Tanami Desert, Kakadu National Park, Arnhem Land | 21.4% (46 out of 215) 1 | 2000–2004 | [207] |
Northern Australia: Arnhem Land: Maningrida | 10% (13 out of 130) 1 | 2009–2010 | [208] | |
Northern Australia: Katherine city in the Northern Territory | 8% (11 out of 138) | 2009–2012 | [209] | |
Eastern Australia: southeastern Queensland | 0% (0 out of 100) | 2010 | [208] | |
Eastern Australia: southeastern Queensland | 1% (1 out of 100) | 2009–2012 | [209] | |
Central Australia: Ti-Tree communities in the Northern Territory | 10% (5 out of 51) 1 | 2010 | [246] | |
Eastern Australia: communities in Moree, Mungindi, Toomelah, Boggabilla | 4.4% (2 out of 45) 1 | 2013 | [246] | |
Various Aboriginal communities in western, central, northern, and eastern Australia | 43.6% (17 out of 39) 1 | 2008–2009 | [247] | |
Australia | 3.6% (27 out of 740) 2 | 2013–2017 | [52] | |
Asia | ||||
India | Southern India: Kerala State | 6.3% (19 out of 300) | Before 2018 3 | [248] |
Southern India: Chennai city | 10% (23 out of 230) | 2018 | [226] | |
Southern India: Thrissur district of Kerala State | 7.5% (6 out of 80) 4 | Before 2017 3 | [249] | |
Eight various states of India | 1.2% (4 out of 330) | 2012–2014 | [250] | |
Nepal | Central Nepal: Kathmandu city | 11.4% (8 out of 70) 5 | 2017 | [251] |
Pakistan | Eastern Pakistan: Bahawalpur city | 0% (0 out of 49) | 2018–2019 | [252] |
China | Southeastern China: Guangdong province (Shenzhen city) | 11% (30 out of 272) | 2018 | [253] |
Eastern China: Jiangsu province (Taixing city) | 11.3% (11 out of 97) | 2012–2014 | [233] | |
Northern China: Gansu province | 1.4% (2 out of 141) | 2015–2016 | [254] | |
Northwestern China: Xinjiang Uygur Autonomous Region | 16.7% (2 out of 12) 6 | Before 2021 3 | [255] | |
Southeastern China: Hong Kong | 2.1% (34 out of 1648) | 2018–2021 | [256] | |
Iran | Northern Iran: Mazandaran province | 0% (0 out of 75) | 2018–2019 | [252] |
Northern Iran: Teheran province | 25% (10 out of 40) 1 | 2016–2017 | [237] | |
Western Iran: Provinces of Kermanshah, Khuzestan, and Hamadan | 2% (4 out of 201) | 2018–2019 | [252] | |
Central Iran: Yazd province | 0% (0 out of 78) | 2018–2019 | [252] | |
Saudi Arabia | Central Saudi Arabia: Riyadh city | 1.9% (1 out of 53) | 2016 | [257] |
Central Saudi Arabia: Riyadh province | 0% (0 out of 74) | 2018–2019 | [258] | |
Southwestern Saudi Arabia: Asir province | 30% (21 out of 70) 1 | 2018–2019 | [258] | |
Thailand | Northern Thailand: Mahasarakham province | 6.3% (5 out of 79) 1 | 2014 | [259] |
Central and western Thailand | 18.2% (8 out of 44) | 2020 | [260] | |
Western Thailand: Buriram province | 2% (1 out of 49) | Before 2019 3 | [261] | |
Southern Thailand: Pathum Thani province | 0% (0 out of 95) | 2022 | [262] | |
Southern Thailand | 19.9% (28 out of 141) 7 | 2021 | [263] | |
Japan | Southwestern Japan: Okinawa Island | 6.2% (5 out of 80) 1 | 2001 | [264] |
Japan | 0.1% (5 out of 3463) 2 | 2013–2017 | [52] | |
Singapore | Singapore | 8.4% (118 out of 1396) 2 | 2013–2017 | [52] |
Taiwan | Various parts of Taiwan | 9.5% (37 out of 388) | 2015–2017 | [245] |
Malaysia | Peninsular Malaysia | 2.1% (5 out of 240) | Before 2018 3 | [227] |
Philippines | Northern Philippines: Metro Manila | 5.3% (6 out of 114) | 2013–2014 | [265] |
Northern Philippines: Metro Manila and Laguna | 6.8% (17 out of 248) | Before 2018 3 | [230] | |
Cambodia | Northern Cambodia: Preah Vihear province | 32.7% (33 out of 101) 1 | Before 2016 3 | [266] |
Palestine | Palestine: 10 various districts | 1.9% (7 out of 362) | 2010, 2014, 2015 | [225] |
Turkey | Southeastern Turkey | 1.4% (3 out of 219) | 2015 | [179] |
Africa | ||||
Egypt | Northern Egypt: governorates of Giza, Kafr El Sheikh, Qalyubia, and Gharbia | 5.1% (14 out of 275) | 2019 | [267] |
Northern Egypt: Cairo | 25.6% (62 out of 242) | Before 2021 3 | [268] | |
Northern Egypt: Cairo and Giza cities | 6.4% (8 out of 124) | Before 2022 3 | [234] | |
Sudan | Eastern Sudan: Barbar el Fugara village | 2.6% (2 out of 78) 1 | 1997–2000 | [49] |
Tunisia | Four locations in various parts of Tunisia: Zaga, Sidi Thabet, Somâa, and Bouhajla | 6.7% (12 out of 180) | 2006 | [235] |
Nigeria | Central Nigeria: Jos South in Plateau State | 1.2% (1 out of 84) | 2011 | [59] |
Central Nigeria: Abuja city | 10.8% (52 out of 480) 8 | 2015–2016 | [244] | |
Angola | Western Angola: Luanda city | 5.8% (6 out of 103) | 2013 | [269] |
Zambia | Southern Zambia: Lusaka, Mazabuka, Monze, and Shangombo cities | 2.8% (7 out of 247) | 2016 | [63] |
South Africa | South Africa: various provinces | 4.4% (13 out of 297) | Before 2004 3 | [270] |
Northern South Africa: Northern Gauteng province and North West province | 2.7% (14 out of 527) | 2000–2006 | [41] | |
Central South Africa: Free State province | 10.1% (13 out of 129) | 2000–2006 | [41] | |
Europe | ||||
Albania | Central Albania: Tirana city | 10% (3 out of 30) | 2008 | [161] |
Romania | Romania | 3.7% (4 out of 109) 9 | 2009–2010 | [166] |
Southern Romania | 2.7% (8 out of 300) | 2017 | [164] | |
Eastern Romania: Iasi city | 3.3% (3 out of 90) 4 | 2019 | [40] | |
Hungary | Hungary | 1.3% (1 out of 78) 9 | 2009–2010 | [166] |
Croatia | Croatia | 0.2% (2 out of 848) | 2007–2008 | [157] |
Serbia | Northern Serbia: Pančevo city | 5.1% (3 out of 59) | 2012–2014 | [271] |
Southern Serbia: Niš and Prokuplje cities | 0% (0 out of 66) | 2012–2014 | [271] | |
Central Serbia: Belgrade city | 0% (0 out of 111) | 2015 | [159] | |
Slovenia | Central Slovenia: Ljubljana city | 1.3% (3 out of 238) | 2000–2002 | [160] |
Austria | Austria | 0.3% (3 out of 1146) 2 | 2013–2017 | [52] |
Switzerland | Switzerland | 0.4% (7 out of 1540) 2 | 2013–2017 | [52] |
Italy | Northern Italy | 1% (1 out of 103) 4 | 2003–2008 | [174] |
Central Italy | 16.3% (7 out of 43) 4 | 2003–2008 | [174] | |
Central Italy: Tuscany | 2.6% (3 out of 117) | 2012–2013 | [172] | |
Southern Italy | 16.7% (3 out of 18) 4 | 2003–2008 | [174] | |
Southern Italy: provinces in Campania region | 1.1% (15 out of 1311) | 2015 | [173] | |
Italy | 0.2% (2 out of 913) 2 | 2013–2017 | [52] | |
Malta | Malta | 4% (4 out of 99) | 2013 | [272] |
France | Southern France | 13.6% (19 out of 140) | 2010–2012 | [138] |
France | 0.2% (7 out of 2931) 2 | 2013–2017 | [52] | |
Spain | Central and southern Spain | 1.2% (3 out of 250) | Before 2007 3 | [273] |
Spain | 2.4% (36 out of 1466) 2 | 2013–2017 | [52] | |
Portugal | Twelve various districts | 35.7% (5 out of 14) 10 | 2017–2019 | [236] |
Southern Portugal: Lisbon | 2.8% (4 out of 142) | 2016–2017 | [274] | |
Portugal | 0.7% (1 out of 143) 2 | 2013–2017 | [52] | |
The Netherlands | The Netherlands | 0.8% (6 out of 761) 2 | 2013–2017 | [52] |
Belgium | Belgium | 1.7% (1 out of 58) 2 | 2013–2017 | [52] |
Luxembourg | Luxembourg | 0.8% (1 out of 122) 2 | 2013–2017 | [52] |
Germany | Germany | 0.4% (49 out of 11,472) 2 | 2013–2017 | [52] |
Russia | Southwestern Russia: Rostov Oblast | 4% (4 out of 100) | Before 2015 3 | [275] |
United Kingdom | United Kingdom | 0.3% (8 out of 2335) 2 | 2013–2017 | [52] |
North America | ||||
Canada | Canada | 0.2% (15 out of 6791) 2 | 2013–2017 | [52] |
United States | 37 states of the United States and one Canadian province (Ontario) | 1.5% (10 out of 673) 2 | 2000–2003 | [276] |
Western United States: California | 0.9% (4 out of 461) 11,12 | 2015–2019 | [277] | |
Western United States: California | 7.1% (3 out of 42) 4 | 2009–2011 | [278] | |
Southern United States: Southern Texas | 9% (11 out of 122) | 2016 | [279] | |
United States | 0.3% (29 out of 9367) 2 | 2015–2018 | [5] | |
United States | 0.3% (194 out of 61,185) 2 | 2013–2017 | [52] | |
Mexico | South-central Mexico: State of Morelos (Cuautla city) | 10% (3 out of 30) 4 | Before 2017 3 | [218] |
El Salvador | Southern El Salvador: La Libertad and San Salvador departments | 21% (21 out of 100) 4 | 2016–2017 | [280] |
Nicaragua | Southwestern Nicaragua: Rivas city | 15.4% (6 out of 39) | 2012 | [281] |
Turks and Caicos Islands | Turks and Caicos Islands | 1.2% (1 out of 80) 2 | 2013–2017 | [52] |
Haiti | Haiti | 7.7% (16 out of 207) | 2013 | [282] |
Costa Rica | Northwestern Costa Rica | 20% (8 out of 40) | 2012 | [283] |
Costa Rica | 5.3% (24 out of 453) 13 | 2011–2014 | [243] | |
Costa Rica | 31.2% (125 out of 400) | 2011–2014 | [243] | |
Saint Kitts and Nevis | Saint Kitts island | 7.8% (14 out of 179) | 2009–2011 | [284] |
Saint Kitts and Nevis | 3.6% (4 out of 110) 2 | 2013–2017 | [52] | |
Grenada | School of Veterinary Medicine at St. George’s University | 7% (5 out of 73) | 2006 | [285] |
Trinidad and Tobago | Trinidad island | 3.1% (10 out of 325) | 2004–2006 | [286] |
South America | ||||
Venezuela | Northern Venezuela: Falcón State | 2.2% (3 out of 134) | Before 2007 3 | [273] |
Colombia | Central Colombia: Bogotá, Villavicencio, and Bucaramanga cities | 5.5% (5 out of 91) | Before 2012 3 | [287] |
Northern Colombia: Córdoba Department | 26.2% (11 out of 42) 4 | 2013–2014 | [288] | |
Northern Colombia: Magdalena Department | 13% (22 out of 169) | 2017 | [242] | |
Colombia | 1.8% (2 out of 113) 2 | 2013–2017 | [52] | |
Ecuador | Eastern Pacific Ocean: Galápagos Islands (Isabela Island) | 0% (0 out of 95) 13 | 2004 | [289] |
Brazil | Northern Brazil: Amazon region | 10.6% (5 out of 47) | 2008–2010 | [290] |
Northeastern Brazil: the State of Paraíba (the municipality of Patos) | 10% (10 out of 100) 14 | 2012 | [241] | |
Eastern Brazil: Pernambuco state (the municipality of Petrolina) | 57.9% (234 out of 404) 13 | 2011–2012 | [216] | |
Eastern Brazil: Pernambuco state (Recife city) | 4.8% (7 out of 146) | Before 2016 3 | [291] | |
Eastern Brazil: Cerrado region | 7.9% (5 out of 63) | 2008–2010 | [290] | |
Southwestern Brazil: Mato Grosso do Sul State (Corumbá municipality) | 14.3% (6 out of 42) | 2013–2015 | [292] | |
Midwestern Brazil: Mato Grosso State (Poconé municipality) | 3.1% (10 out of 320) | 2009 | [215] | |
Southeastern Brazil: Minas Gerais State (regions: Lavras, Belo Horizonte, Nanuque) | 28.7% (70 out of 244) 13 | 2004 | [293] | |
Southeastern Brazil: Minas Gerais State (regions: Lavras, Belo Horizonte, Nanuque) | 17.1% (12 out of 70) 15 | 2004 | [293] | |
Southeastern Brazil: Minas Gerais State (regions: Lavras, Belo Horizonte, Nanuque) | 9.9% (25 out of 252) 16 | 2004 | [240] | |
Southeastern Brazil: Minas Gerais State (regions: Lavras, Belo Horizonte, Nanuque) | 10.8% (18 out of 166) 17 | 2004–2005 | [240] | |
Southeastern Brazil: Rio de Janeiro State (Itaguaí municipality) | 14.1% (55 out of 390) 5 | Before 2018 3 | [239] | |
Southeastern Brazil: Espírito Santo State (Alegre, Colatina, Santa Teresa, Serra, Vila Velha, Vitória minicipalities) | 1.3% (5 out of 378) | Before 2018 3 | [294] | |
Southern Brazil: Paraná State | 11% (20 out of 182) | 2014 | [238] | |
Brazil | 1.5% (17 out of 1105) 2 | 2013–2017 | [52] | |
Paraguay | Southwestern Paraguay: Asunción city | 5.5% (21 out of 384) | 2015–2016 | [295] |
Paraguay | 9.2% (37 out of 400) 2 | 2013–2017 | [52] | |
Peru | Northwestern Peru: Piura city | 1.4% (3 out of 212) | 2014–2015 | [296] |
Argentina | Central Argentina: Córdoba and Santa Fé provinces | 7.7% (5 out of 65) | Before 2016 3 | [297] |
Southern Argentina: Santa Cruz province | 0% (0 out of 48) 18 | 2010–2015 | [298] | |
Chile | Middle Chile: Coquimbo region | 7.9% (5 out of 63) | 2018–2019 | [299] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zygner, W.; Gójska-Zygner, O.; Bartosik, J.; Górski, P.; Karabowicz, J.; Kotomski, G.; Norbury, L.J. Canine Babesiosis Caused by Large Babesia Species: Global Prevalence and Risk Factors—A Review. Animals 2023, 13, 2612. https://doi.org/10.3390/ani13162612
Zygner W, Gójska-Zygner O, Bartosik J, Górski P, Karabowicz J, Kotomski G, Norbury LJ. Canine Babesiosis Caused by Large Babesia Species: Global Prevalence and Risk Factors—A Review. Animals. 2023; 13(16):2612. https://doi.org/10.3390/ani13162612
Chicago/Turabian StyleZygner, Wojciech, Olga Gójska-Zygner, Justyna Bartosik, Paweł Górski, Justyna Karabowicz, Grzegorz Kotomski, and Luke J. Norbury. 2023. "Canine Babesiosis Caused by Large Babesia Species: Global Prevalence and Risk Factors—A Review" Animals 13, no. 16: 2612. https://doi.org/10.3390/ani13162612
APA StyleZygner, W., Gójska-Zygner, O., Bartosik, J., Górski, P., Karabowicz, J., Kotomski, G., & Norbury, L. J. (2023). Canine Babesiosis Caused by Large Babesia Species: Global Prevalence and Risk Factors—A Review. Animals, 13(16), 2612. https://doi.org/10.3390/ani13162612