Identifying Migration Routes of Wild Asian Elephants in China Based on Ecological Networks Constructed by Circuit Theory Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Methodology
2.2.1. Identification of Ecological Patches (Step 1)
2.2.2. Construction of Ecological Resistance Surface (Step 2)
2.2.3. Identification of Ecological Network (Step 3)
- (1)
- Ecological network identification
- (2)
- Ecological corridor extraction
- (3)
- Ecological pinch point identification
3. Results
3.1. Ecological Patches
3.2. Ecological Resistance Surface
3.3. Ecological Network
3.4. Ecological Corridor
3.5. Ecological Pinch Point
4. Discussion
4.1. Validity of Circuit Theory Model in Identifying Migration Routes of Asian Elephants
4.2. Recommendations for Future Conservation of Asian Elephant Population
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, P.; Wen, H.; Lin, L.; Liu, J.; Zhang, L. Habitat evaluation for Asian elephants (Elephas maximus) in Lincang: Conservation planning for an extremely small population of elephants in China. Biol. Conserv. 2016, 198, 113–121. [Google Scholar] [CrossRef]
- Wang, H.J.; Wang, P.Z.; Zhao, X.; Zhang, W.X.; Li, J.; Xu, C.; Xie, P. What triggered the Asian elephant’s northward migration across southwestern Yunnan? Innovation 2021, 2, 100142. [Google Scholar] [CrossRef] [PubMed]
- Blake, S.; Hedges, S. Sinking the flagship: The case of forest elephants in Asia and Africa. Conserv. Biol. 2004, 18, 1191–1202. [Google Scholar] [CrossRef]
- Leimgruber, P.; Gagnon, J.B.; Wemmer, C.; Kelly, D.S.; Songer, M.A.; Selig, E.R. Fragmentation of Asia’s remaining wildlands: Implications for Asian elephant conservation. Anim. Conserv. 2003, 6, 347–359. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Jin, K. Distribution, population, habitat status and population management of Asian elephant. World For. Res. 2018, 31, 25–30. (In Chinese) [Google Scholar] [CrossRef]
- Min, S.; Huang, J.K.; Waibel, H.; Yang, X.Q.; Cadisch, G. Rubber boom, land use change and the implications for carbon balances in Xishuangbanna, Southwest China. Ecol. Econ. 2019, 156, 57–67. [Google Scholar] [CrossRef]
- Calabrese, A.; Calabrese, J.M.; Songer, M.; Wegmann, M.; Hedges, S.; Rose, R.; Leimgruber, P. Conservation status of Asian elephants: The influence of habitat and governance. Biodivers. Conserv. 2017, 26, 2067–2081. [Google Scholar] [CrossRef]
- Liu, S.L.; Dong, Y.H.; Cheng, F.Y.; Zhang, Y.Q.; Hou, X.Y.; Dong, S.K.; Coxixo, A. Effects of road network on Asian elephant habitat and connectivity between the nature reserves in Xishuangbanna, Southwest China. J. Nat. Conserv. 2017, 38, 11–20. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, Z.L.; Tang, Y.J.; Yao, C.X.; Liu, Y.; Jiang, G.L.; Wang, F.; Liang, L.; Zhao, W.L.; Zhu, G.F.; et al. China’s dams isolate Asian elephants. Science 2020, 367, 373–374. [Google Scholar] [CrossRef]
- Trisurat, Y.; Pattanavibool, A.; Gale, G.A.; Reed, D.H. Improving the viability of large-mammal populations by using habitat and landscape models to focus conservation planning. Wildlife Res. 2010, 37, 401–412. [Google Scholar] [CrossRef]
- Su, K.W.; Ren, J.; Yang, J.; Hou, Y.L.; Wen, Y.L. Human-elephant conflicts and villagers’ attitudes and knowledge in the Xishuangbanna Nature Reserve, China. Int. J. Environ. Res. Public Health 2020, 17, 8910. [Google Scholar] [CrossRef] [PubMed]
- Mcrae, B.H.; Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl. Acad. Sci. USA 2007, 104, 19885–19890. [Google Scholar] [CrossRef] [PubMed]
- Koen, E.L.; Bowman, J.; Garroway, C.J.; Mills, S.C.; Wilson, P.J. Landscape resistance and American marten gene flow. Landsc. Ecol. 2012, 27, 29–43. [Google Scholar] [CrossRef]
- Huang, K.X.; Peng, L.; Wang, X.H.; Deng, W. Integrating circuit theory and landscape pattern index to identify and optimize ecological networks: A case study of the Sichuan Basin, China. Environ. Sci. Pollut. Res. 2022, 29, 66874–66887. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Liu, Y.B.; Luo, X.Y. Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake, China. Sci. Total Environ. 2021, 754, 141868. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Peng, J.; Dong, J.Q.; Zhang, Z.M.; Xu, Z.H.; Meersmans, J. Linking ecological background and demand to identify ecological security patterns across the Guangdong-Hong Kong-Macao Greater Bay Area in China. Landsc. Ecol. 2021, 36, 2135–2150. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.X.; Hu, Y.N.; Du, Y.Y.; Meersmans, J.; Qiu, S.J. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Dong, L.; Lin, L.; Feng, L.M.; Yan, F.; Wang, L.X.; Guo, X.M.; Luo, A.D. Asian elephants in China: Estimating population size and evaluating habitat suitability. PLoS ONE 2015, 10, e0124834. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Y.; Feng, Z.; Wu, K.N.; Lin, Q. Ecological conservation and restoration of Life Community Theory based on the construction of ecological security pattern. Acta Ecol. Sin. 2019, 39, 8725–8732. (In Chinese) [Google Scholar] [CrossRef]
- Chardon, J.P.; Adriaensen, F.; Matthysen, E. Incorporating landscape elements into a connectivity measure: A case study for the Speckled wood butterfly (Pararge aegeria L). Landsc. Ecol. 2003, 18, 561–573. [Google Scholar] [CrossRef]
- Walker, R.; Craighead, F. Analyzing wildlife movement corridors in Montana using GIS. In Proceedings of the 1997 International ESRI Users Conference, Redlands, CA, USA, 8–11 July 1997. [Google Scholar]
- Gray, M.E.; Dickson, B.G.; Nussear, K.E.; Esque, T.C.; Chang, T. A range-wide model of contemporary, omnidirectional connectivity for the threatened Mojave desert tortoise. Ecosphere 2019, 10, e02847. [Google Scholar] [CrossRef] [Green Version]
- Melles, S.J.; Chu, C.; Alofs, K.M.; Jackson, D.A. Potential spread of Great Lakes fishes given climate change and proposed dams: An approach using circuit theory to evaluate invasion risk. Landsc. Ecol. 2015, 20, 919–935. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, N.; Wang, Y.N.; Ma, L.C. A preliminary study on the habitat and behaviors of Asian elephant (Elephas maximus) in Simao, Yunnan, China. Acta Theriol. Sin. 2003, 23, 185–192. (In Chinese) [Google Scholar] [CrossRef]
- Feng, L.M.; Zhang, L. Habitat selection by Asian elephant (Elephas maximus) in Xishuangbanna, Yunnan, China. Acta Theriol. Sin. 2005, 25, 229–236. (In Chinese) [Google Scholar] [CrossRef]
- Lin, L.; Jin, Y.F.; Chen, D.K.; Guo, X.M.; Luo, A.D.; Zhao, J.W.; Wang, Q.Y.; Zhang, L. Population and habitat status of Asian elephants (Elephas maximus) in Mengla Subreserve of Xishuangbanna National Nature Reserve, Yunnan of China. Acta Ecol. Sin. 2014, 34, 1725–1735. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Dai, J.; Cao, D.F.; Li, Z.H.; Zhang, L. Habitat suitability assessment for Asian elephant in Pu’ er prefecture in the Yunnan province of China. Acta Ecol. Sin. 2016, 36, 4163–4170. (In Chinese) [Google Scholar] [CrossRef]
- Shoshan, J.; Eisenberg, J.F. Elephas maximus. Mamm. Species 1982, 182, 1–8. [Google Scholar] [CrossRef]
- Mcrae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef]
- Hanks, E.M.; Hooten, M.B. Circuit theory and model based inference for landscape connectivity. J. Am. Stat. Assoc. 2013, 108, 22–33. [Google Scholar] [CrossRef]
- Wang, Y.J.; Qu, Z.; Zhong, Q.C.; Zhang, Q.P.; Zhang, L.; Zhang, R.; Yi, Y.; Zhang, G.L.; Li, X.C.; Liu, J. Delimitation of ecological corridors in a highly urbanizing region based on circuit theory and MSPA. Ecol. Indic. 2022, 142, 109258. [Google Scholar] [CrossRef]
- Jenks, G.F. The data model concept in statistical mapping. In International Yearbook of Cartography; Frenzel, K., Ed.; Springer Verlag GmbH: Berlin, Germany, 1967; Volume 7, pp. 186–190. [Google Scholar]
- Zhai, T.L.; Huang, L.Y. Linking MSPA and circuit theory to identify the spatial range of ecological networks and its priority areas for conservation and restoration in urban agglomeration. Front. Ecol. Evol. 2022, 10, 828979. [Google Scholar] [CrossRef]
- Pinchpoint Mapper Connectivity Analysis Software. Available online: http://www.circuitscape.org/linkagemapper (accessed on 20 March 2023).
- Dutta, T.; Sharma, S.; McRae, B.; Roy, P.; DeFries, R. Connecting the dots: Mapping habitat connectivity for tigers in central India. Reg. Environ. Change 2016, 16, 53–67. [Google Scholar] [CrossRef]
- Yang, Y.P.; Chen, J.J.; Huang, R.J.; Feng, Z.H.; Zhou, G.Q.; You, H.T.; Han, X.W. Construction of ecological security pattern based on the importance of ecological protection a case study of Guangxi, a karst region in China. Int. J. Environ. Res. Public Health 2022, 19, 5699. [Google Scholar] [CrossRef] [PubMed]
- McClure, M.L.; Hansen, A.J.; Inman, R.M. Connecting models to movements: Testing connectivity model predictions against empirical migration and dispersal data. Landsc. Ecol. 2016, 31, 1419–1432. [Google Scholar] [CrossRef]
- Deith, M.C.M.; Brodie, J.F. Predicting defaunation: Accurately mapping bushmeat hunting pressure over large areas. Proc. R. Soc. B—Biol. Sci. 2020, 287, 20192677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.; Feng, L.M.; Zhao, J.W.; Guo, X.M.; Dao, J.H. A preliminary study on designing ecological corridors in Xishuangbanna National Nature Reserve of with 3S techniques. Front. Biol. 2006, 42, 405–409. [Google Scholar] [CrossRef]
- Buchholtz, E.K.; Stronza, A.; Songhurst, A.; McCulloch, G.; Fitzgerald, L.A. Using landscape connectivity to predict human-wildlife conflict. Biol. Conserv. 2020, 248, 108677. [Google Scholar] [CrossRef]
- Sawyer, H.; Kauffman, M.J.; Nielson, R.M.; Horne, J.S. Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecol. Appl. 2009, 19, 2016–2025. [Google Scholar] [CrossRef]
- Musiega, D.E.; Kazadi, S.N. Simulating the East African wildebeest migration patterns using GIS and remote sensing. Afr. J. Ecol. 2004, 42, 355–362. [Google Scholar] [CrossRef]
- Rayfield, B.; Fortin, M.J.; Fall, A. The sensitivity of least-cost habitat graphs to relative cost surface values. Landsc. Ecol. 2010, 25, 519–532. [Google Scholar] [CrossRef]
- Suksavate, W.; Duengkae, P.; Chaiyes, A. Quantifying landscape connectivity for wild Asian elephant populations among fragmented habitats in Thailand. Glob. Ecol. Conserv. 2019, 19, e00685. [Google Scholar] [CrossRef]
- Tripathy, B.R.; Liu, X.H.; Songer, M.; Zahoor, B.; Wickramasinghe, W.M.S.; Mahanta, K.K. Analysis of landscape connectivity among the habitats of Asian elephants in Keonjhar Forest Division, India. Remote Sens. 2021, 13, 4661. [Google Scholar] [CrossRef]
- An, Y.; Liu, S.L.; Sun, Y.X.; Shi, F.N.; Beazley, R. Construction and optimization of an ecological network based on morphological spatial pattern analysis and circuit theory. Landsc. Ecol. 2021, 36, 2059–2076. [Google Scholar] [CrossRef]
- Li, W.W.; Yu, Y.; Liu, P.; Tang, R.C.; Dai, Y.C.; Li, L.; Zhang, L. Identifying climate refugia and its potential impact on small population of Asian elephant (Elephas maximus) in China. Glob. Ecol. Conserv. 2019, 19, e00664. [Google Scholar] [CrossRef]
- Li, W.W.; Liu, P.; Guo, X.M.; Wang, L.X.; Wang, Q.Y.; Yu, Y.; Dai, Y.C.; Li, L.; Zhang, L. Human-elephant conflict in Xishuangbanna Prefecture, China: Distribution, diffusion, and mitigation. Glob. Ecol. Conserv. 2018, 16, e00462. [Google Scholar] [CrossRef]
- Samojlik, T.; Selva, N.; Daszkiewicz, P.; Fedotova, A.; Wajrak, A.; Kuijper, D.P.J. Lessons from Bialowieza Forest on the history of protection and the world’s first reintroduction of a large carnivore. Conserv. Biol. 2018, 32, 808–816. [Google Scholar] [CrossRef]
- Yang, H.B.; Lupi, F.; Zhang, J.D.; Liu, J.G. Hidden cost of conservation: A demonstration using losses from human-wildlife conflicts under a payment for ecosystem services program. Ecol. Econ. 2020, 169, 106462. [Google Scholar] [CrossRef]
- Dickman, A.J. Complexities of conflict: The importance of considering social factors for effectively resolving human-wildlife conflict. Anim. Conserv. 2010, 13, 458–466. [Google Scholar] [CrossRef]
- Kansky, R.; Knight, A.T. Key factors driving attitudes towards large mammals in conflict with humans. Biol. Conserv. 2014, 179, 93–105. [Google Scholar] [CrossRef] [Green Version]
- King, L.E.; Lala, F.; Nzumu, H.; Mwambingu, E.; Douglas-Hamilton, I. Beehive fences as a multidimensional conflict-mitigation tool for farmers coexisting with elephants. Conserv. Biol. 2017, 31, 743–752. [Google Scholar] [CrossRef] [PubMed]
- de Mel, S.J.C.; Seneweera, S.; de Mel, R.K.; Dangolla, A.; Weerakoon, D.K.; Maraseni, T.; Allen, B.L. Current and future approaches to mitigate conflict between humans and Asian elephants: The potential use of aversive geofencing devices. Animals 2022, 12, 2965. [Google Scholar] [CrossRef] [PubMed]
- Mallegowda, P.; Rengaian, G.; Krishnan, J.; Niphadkar, M. Assessing habitat quality of forest-corridors through NDVI analysis in dry tropical forests of South India: Implications for conservation. Remote Sens. 2015, 7, 1619–1639. [Google Scholar] [CrossRef] [Green Version]
- Sitompul, A.F.; Griffin, C.R.; Rayl, N.D.; Fuller, T.K. Spatial and temporal habitat use of an Asian elephant in Sumatra. Animals 2013, 3, 670–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Resistance Factor Type | Factor of Resistance | Class of Classification | Value of Resistance |
---|---|---|---|
Terrain | Elevation (m) | <1000 | 10 |
1000–1500 | 50 | ||
1500–2000 | 100 | ||
>2000 | 10,000 | ||
Slope | <10 | 10 | |
10–15 | 50 | ||
15–30 | 100 | ||
>30 | 10,000 | ||
Terrain roughness | <1.1 | 10 | |
1.1–1.2 | 50 | ||
1.2–1.3 | 100 | ||
>1.3 | 10,000 | ||
Surface state | Land-use type | Shrubbery, grassland, sparse woodland | 10 |
Forest, bare land, dry land | 100 | ||
Swamp, river beach, rural settlement | 200 | ||
Other woodland, paddy field, bare rock land | 400 | ||
Urban land, other construction land, river canal, lake, reservoir, permanent glaciers, snow | 10,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Liu, H.-J.; Jiang, Z.-Y.; Ni, R.-P. Identifying Migration Routes of Wild Asian Elephants in China Based on Ecological Networks Constructed by Circuit Theory Model. Animals 2023, 13, 2618. https://doi.org/10.3390/ani13162618
Jiang X, Liu H-J, Jiang Z-Y, Ni R-P. Identifying Migration Routes of Wild Asian Elephants in China Based on Ecological Networks Constructed by Circuit Theory Model. Animals. 2023; 13(16):2618. https://doi.org/10.3390/ani13162618
Chicago/Turabian StyleJiang, Xin, Hong-Jie Liu, Zhi-Yun Jiang, and Ru-Ping Ni. 2023. "Identifying Migration Routes of Wild Asian Elephants in China Based on Ecological Networks Constructed by Circuit Theory Model" Animals 13, no. 16: 2618. https://doi.org/10.3390/ani13162618