Brilliant Cresyl Blue Negative Oocytes Show a Reduced Competence for Embryo Development after In Vitro Fertilisation with Sperm Exposed to Oxidative Stress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. In vitro Production of Bovine Embryos
2.2.1. Oocyte Collection
2.2.2. In Vitro Maturation
2.2.3. In Vitro Fertilisation
2.2.4. In Vitro Culture
2.3. Evaluating Embryo Quality Using the TUNEL Assay
2.4. Statistical Analysis
3. Results
3.1. Embryo Development and Timing of Development after Fertilisation with NOX S
3.2. Embryo Development and Timing of Development after Fertilisation with OX S
3.3. Embryo Quality after Fertilisation with NOX S and OX S
4. Discussion
4.1. Embryo Development after Fertilisation of Oocytes of Different Qualities with NOX S
4.2. Embryo Development after Fertilisation of Oocytes of Different Qualities with OX S
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, R.; Mann, T.; Sherins, R. Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides, and protective action of seminal plasma. Fertil. Steril. 1979, 31, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Clarkson, J.S. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J. Androl. 1988, 9, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Gutteridge, J.M.C.; Halliwell, B. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem. Sci. 1990, 15, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Schiller, J.; Fuchs, B.; Arnhold, J.; Arnold, K. Contribution of reactive oxygen species to cartilage degradation in rheumatic diseases: Molecular pathways, diagnosis and potential therapeutic strategies. Curr. Med. Chem. 2003, 10, 2123–2145. [Google Scholar] [CrossRef]
- Stadtman, E.R.; Levine, R.L. Protein oxidation. Ann. N. Y. Acad. Sci. 2000, 899, 191–208. [Google Scholar] [CrossRef] [PubMed]
- Richter, C.; Park, J.-W.; Ames, B.N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 1988, 85, 6465–6467. [Google Scholar] [CrossRef]
- John Aitken, R.; Clarkson, J.S.; Fishel, S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol. Reprod. 1989, 41, 183–197. [Google Scholar] [CrossRef]
- de Lamirande, E.V.; Gagnon, C. Reactive oxygen species and human spermatozoa. II. Depletion of adenosine triphosphate plays an important role in the inhibition of sperm motility. J. Androl. 1992, 13, 379–386. [Google Scholar]
- Aitken, R.J.; Baker, M.A. Oxidative stress, sperm survival and fertility control. Mol. Cell. Endocrinol. 2006, 250, 66–69. [Google Scholar] [CrossRef]
- Newman, H.; Catt, S.; Vining, B.; Vollenhoven, B.; Horta, F. DNA repair and response to sperm DNA damage in oocytes and embryos, and the potential consequences in ART: A systematic review. MHR Basic Sci. Reprod. Med. 2022, 28, gaab071. [Google Scholar] [CrossRef]
- Fernández-Díez, C.; González-Rojo, S.; Lombó, M.; Herráez, M.P. Impact of sperm DNA damage and oocyte-repairing capacity on trout development. Reproduction 2016, 152, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, T.B.; Dun, M.D.; Smith, N.D.; Curry, B.J.; Connaughton, H.S.; Aitken, R.J. The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. J. Cell Sci. 2013, 126, 1488–1497. [Google Scholar] [CrossRef] [Green Version]
- Zini, A.; Libman, J. Sperm DNA damage: Clinical significance in the era of assisted reproduction. CMAJ 2006, 175, 495–500. [Google Scholar] [CrossRef] [Green Version]
- Ashwood-Smith, M.J.; Edwards, R.G. Genetics and human conception: DNA repair by oocytes. MHR Basic Sci. Reprod. Med. 1996, 2, 46–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandriff, B.; Pedersen, R.A. Repair of the ultraviolet-irradiated male genome in fertilized mouse eggs. Science 1981, 211, 1431–1433. [Google Scholar] [CrossRef] [PubMed]
- Derijck, A.; van der Heijden, G.; Giele, M.; Philippens, M.; de Boer, P. DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum. Mol. Genet. 2008, 17, 1922–1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchetti, F.; Essers, J.; Kanaar, R.; Wyrobek, A.J. Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. Proc. Natl. Acad. Sci. USA 2007, 104, 17725–17729. [Google Scholar] [CrossRef]
- de Sousa, P.A.; Caveney, A.; Westhusin, M.E.; Watson, A.J. Temporal patterns of embryonic gene expression and their dependence on oogenetic factors. Theriogenology 1998, 49, 115–128. [Google Scholar] [CrossRef]
- Telford, N.A.; Watson, A.J.; Schultz, G.A. Transition from maternal to embryonic control in early mammalian development: A comparison of several species. Mol. Reprod. Dev. 1990, 26, 90–100. [Google Scholar] [CrossRef]
- Jurisicova, A.; Latham, K.E.; Casper, R.F.; Varmuza, S.L. Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Mol. Reprod. Dev. 1998, 51, 243–253. [Google Scholar] [CrossRef]
- Rahman, M.B.; Vandaele, L.; Rijsselaere, T.; Zhandi, M.; Maes, D.; Shamsuddin, M.; van Soom, A. Oocyte quality determines bovine embryo development after fertilisation with hydrogen peroxide-stressed spermatozoa. Reprod. Fertil. Dev. 2012, 24, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Horta, F.; Catt, S.; Ramachandran, P.; Vollenhoven, B.; Temple-Smith, P. Female ageing affects the DNA repair capacity of oocytes in IVF using a controlled model of sperm DNA damage in mice. Hum. Reprod. 2020, 35, 529–544. [Google Scholar] [CrossRef]
- Aguila, L.; Treulen, F.; Therrien, J.; Felmer, R.; Valdivia, M.; Smith, L.C. Oocyte Selection for In Vitro Embryo Production in Bovine Species: Noninvasive Approaches for New Challenges of Oocyte Competence. Animals 2020, 10, 2196. [Google Scholar] [CrossRef] [PubMed]
- Alm, H.; Torner, H.; Löhrke, B.; Viergutz, T.; Ghoneim, I.; Kanitz, W. Bovine blastocyst development rate in vitro is influenced by selection of oocytes by brillant cresyl blue staining before IVM as indicator for glucose-6-phosphate dehydrogenase activity. Theriogenology 2005, 63, 2194–2205. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.R. The Possibility of Increasing Oocyte Capacity to Repair Sperm DNA Fragmentation. J. Reprod. Infertil. 2021, 22, 75. [Google Scholar]
- Eckert, J.; Niemann, H. In vitro maturation, fertilization and culture to blastocysts of bovine oocytes in protein-free media. Theriogenology 1995, 43, 1211–1225. [Google Scholar] [CrossRef]
- Bittner, L.; Wyck, S.; Herrera, C.; Siuda, M.; Wrenzycki, C.; van Loon, B.; Bollwein, H. Negative effects of oxidative stress in bovine spermatozoa on in vitro development and DNA integrity of embryos. Reprod. Fertil. Dev. 2018, 30, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Tervit, H.R.; Whittingham, D.G.; Rowson, L.E. Successful culture in vitro of sheep and cattle ova. J. Reprod. Fertil. 1972, 30, 493–497. [Google Scholar] [CrossRef]
- Gardner, D.K.; Lane, M.W.; Lane, M. Bovine blastocyst cell number is increased by culture with EDTA for the first 72 hours of development from the zygote. Theriogenology 1997, 1, 278. [Google Scholar] [CrossRef]
- Byrne, A.T.; Southgate, J.; Brison; Leese, H.J. Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. Reproduction 1999, 117, 97–105. [Google Scholar] [CrossRef]
- Abazari-Kia, A.H.; Mohammadi-Sangcheshmeh, A.; Dehghani-Mohammadabadi, M.; Jamshidi-Adegani, F.; Veshkini, A.; Zhandi, M.; Cinar, M.U.; Salehi, M. Intracellular glutathione content, developmental competence and expression of apoptosis-related genes associated with G6PDH-activity in goat oocyte. J. Assist. Reprod. Genet. 2014, 31, 313–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, D.S.; Rodriguez, P.; Galuppo, A.; Arruda, N.S.; Rodrigues, J.L. Selection of bovine oocytes by brilliant cresyl blue staining: Effect on meiosis progression, organelle distribution and embryo development. Zygote 2013, 21, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Vernunft, A.; Alm, H.; Tuchscherer, A.; Kanitz, W.; Hinrichs, K.; Torner, H. Chromatin and cytoplasmic characteristics of equine oocytes recovered by transvaginal ultrasound-guided follicle aspiration are influenced by the developmental stage of their follicle of origin. Theriogenology 2013, 80, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-G.; Liu, Y.; Zhou, P.; Lan, G.-C.; Han, D.; Miao, D.-Q.; Tan, J.-H. Selection of oocytes for in vitro maturation by brilliant cresyl blue staining: A study using the mouse model. Cell Res. 2007, 17, 722–731. [Google Scholar] [PubMed] [Green Version]
- Bhojwani, S.; Alm, H.; Torner, H.; Kanitz, W.; Poehland, R. Selection of developmentally competent oocytes through brilliant cresyl blue stain enhances blastocyst development rate after bovine nuclear transfer. Theriogenology 2007, 67, 341–345. [Google Scholar] [CrossRef]
- Fakruzzaman, M.; Bang, J.-I.; Lee, K.-L.; Kim, S.-S.; Ha, A.-N.; Ghanem, N.; Han, C.-H.; Cho, K.-W.; White, K.L.; Kong, I.-K. Mitochondrial content and gene expression profiles in oocyte-derived embryos of cattle selected on the basis of brilliant cresyl blue staining. Anim. Reprod. Sci. 2013, 142, 19–27. [Google Scholar] [CrossRef]
- Kątska-Książkiewicz, L.; Opiela, J.; Ryńska, B. Effects of oocyte quality and semen donor on the efficiency of in vitro embryo production in cattle. J. Anim. Feed Sci. 2009, 18, 257–270. [Google Scholar] [CrossRef]
- Opiela, J.; Katska-Ksiazkiewicz, L.; Lipiński, D.; Słomski, R.; Bzowska, M.; Ryńska, B. Interactions among activity of glucose-6-phosphate dehydrogenase in immature oocytes, expression of apoptosis-related genes Bcl-2 and Bax, and developmental competence following IVP in cattle. Theriogenology 2008, 69, 546–555. [Google Scholar] [CrossRef]
- Pujol, M.; López-Béjar, M.; Paramio, M.-T. Developmental competence of heifer oocytes selected using the brilliant cresyl blue (BCB) test. Theriogenology 2004, 61, 735–744. [Google Scholar] [CrossRef]
- Karami-Shabankareh, H.; Mirshamsi, S.M. Selection of developmentally competent sheep oocytes using the brilliant cresyl blue test and the relationship to follicle size and oocyte diameter. Small Rumin. Res. 2012, 105, 244–249. [Google Scholar] [CrossRef]
- Catalá, M.G.; Izquierdo, D.; Uzbekova, S.; Morató, R.; Roura, M.; Romaguera, R.; Papillier, P.; Paramio, M.T. Brilliant Cresyl Blue stain selects largest oocytes with highest mitochondrial activity, maturation-promoting factor activity and embryo developmental competence in prepubertal sheep. Reproduction 2011, 142, 517. [Google Scholar]
- Egerszegi, I.; Alm, H.; Rátky, J.; Heleil, B.; Brüssow, K.-P.; Torner, H. Meiotic progression, mitochondrial features and fertilisation characteristics of porcine oocytes with different G6PDH activities. Reprod. Fertil. Dev. 2010, 22, 830–838. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, P.; Pers-Kamczyc, E.; Renska, N.; Kubickova, S.; Lechniak, D. Disturbances of nuclear maturation in BCB positive oocytes collected from peri-pubertal gilts. Theriogenology 2011, 75, 832–840. [Google Scholar] [PubMed]
- Wongsrikeao, P.; Otoi, T.; Yamasaki, H.; Agung, B.; Taniguchi, M.; Naoi, H.; Shimizu, R.; Nagai, T. Effects of single and double exposure to brilliant cresyl blue on the selection of porcine oocytes for in vitro production of embryos. Theriogenology 2006, 66, 366–372. [Google Scholar] [CrossRef]
- Pereira, G.R.; Lorenzo, P.L.; Carneiro, G.F.; Bilodeau-Goeseels, S.; Kastelic, J.P.; Esteller-Vico, A.; Lopez-Bejar, M.; Liu, I.K.M. Selection of developmentally competent immature equine oocytes with brilliant cresyl blue stain prior to in vitro maturation with equine growth hormone. Zygote 2014, 22, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Rodrıguez-González, E.; Lopez-Bejar, M.; Velilla, E.; Paramio, M.T. Selection of prepubertal goat oocytes using the brilliant cresyl blue test. Theriogenology 2002, 57, 1397–1409. [Google Scholar]
- Vernunft, A. Untersuchungen zur Eizellqualität in Differenten Follikelpopulationen Bei Stuten. Ph.D. Thesis, Freie Universität Berlin, Berlin, Germany, 2011. [Google Scholar]
- Opiela, J.; Lipiński, D.; Słomski, R.; Kątska-Książkiewicz, L. Transcript expression of mitochondria related genes is correlated with bovine oocyte selection by BCB test. Anim. Reprod. Sci. 2010, 118, 188–193. [Google Scholar] [CrossRef]
- Ishizaki, C.; Watanabe, H.; Bhuiyan, M.M.; Fukui, Y. Developmental competence of porcine oocytes selected by brilliant cresyl blue and matured individually in a chemically defined culture medium. Theriogenology 2009, 72, 72–80. [Google Scholar] [CrossRef]
- Roca, J.; Martinez, E.; Vazquez, J.M.; Lucas, X. Selection of immature pig oocytes for homologous in vitro penetration assays with the brilliant cresyl blue test. Reprod. Fertil. Dev. 1998, 10, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Comizzoli, P.; Urner, F.; Sakkas, D.; Renard, J.P. Up-regulation of glucose metabolism during male pronucleus formation determines the early onset of the s phase in bovine zygotes. Biol. Reprod. 2003, 68, 1934–1940. [Google Scholar] [CrossRef]
- Downs, S.M.; Humpherson, P.G.; Leese, H.J. Meiotic induction in cumulus cell-enclosed mouse oocytes: Involvement of the pentose phosphate pathway. Biol. Reprod. 1998, 58, 1084–1094. [Google Scholar] [PubMed] [Green Version]
- Gutnisky, C.; Dalvit, G.C.; Thompson, J.G.; Cetica, P.D. Pentose phosphate pathway activity: Effect on in vitro maturation and oxidative status of bovine oocytes. Reprod. Fertil. Dev. 2014, 26, 931–942. [Google Scholar] [PubMed] [Green Version]
- Herrick, J.R.; Brad, A.M.; Krisher, R.L. Chemical manipulation of glucose metabolism in porcine oocytes: Effects on nuclear and cytoplasmic maturation in vitro. Reproduction 2006, 131, 289–298. [Google Scholar]
- Urner, F.; Sakkas, D. Characterization of glycolysis and pentose phosphate pathway activity during sperm entry into the mouse oocyte. Biol. Reprod. 1999, 60, 973–978. [Google Scholar] [CrossRef]
- Houghton, F.D.; Franchesca, D.; Hawkhead, J.A.; Humpherson, P.G.; Hogg, J.E.; Balen, A.H.; Rutherford, A.J.; Leese, H.J. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod. 2002, 17, 999–1005. [Google Scholar] [CrossRef] [Green Version]
- Hemmings, K.E.; Leese, H.J.; Picton, H.M. Amino acid turnover by bovine oocytes provides an index of oocyte developmental competence in vitro. Biol. Reprod. 2012, 86, 165. [Google Scholar] [CrossRef] [PubMed]
- Kątska-Książkiewicz, L.; Opiela, J.; Ryńska, B. Effects of oocyte quality, semen donor and embryo co-culture system on the efficiency of blastocyst production in goats. Theriogenology 2007, 68, 736–744. [Google Scholar]
- Opiela, J.; Kątska-Książkiewicz, L. The utility of Brilliant Cresyl Blue (BCB) staining of mammalian oocytes used for in vitro embryo production (IVP). Reprod. Biol. 2013, 13, 177–183. [Google Scholar]
- Tiffin, G.J.; Rieger, D.; Betteridge, K.J.; Yadav, B.R.; King, W.A. Glucose and glutamine metabolism in pre-attachment cattle embryos in relation to sex and stage of development. J. Reprod. Fertil. 1991, 93, 125–132. [Google Scholar]
- Williams, T.J. A technique for sexing mouse embryos by a visual colorimetric assay of the X-linked enzyme, glucose 6-phosphate dehydrogenase. Theriogenology 1986, 25, 733–739. [Google Scholar] [PubMed]
- Opiela, J.; Ryńska, B.; Kątska-Książkiewicz, L. BCB test utility evaluated by caspase-3 activity in blastocysts developed from bovine oocytes with different G6PDH level. Ann. Anim. Sci. 2010, 10, 27–38. [Google Scholar]
- van Soom, A.; Ysebaert, M.-T.; de Kruif, A. Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Mol. Reprod. Dev. 1997, 47, 47–56. [Google Scholar] [PubMed]
- Hardy, K. Apoptosis in the human embryo. Rev. Reprod. 1999, 4, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.F.N.; Gadella, B.M.; Colenbrander, B.; Roelen, B.A.J. Exposure of bovine sperm to pro-oxidants impairs the developmental competence of the embryo after the first cleavage. Theriogenology 2007, 67, 609–619. [Google Scholar]
- Xiao, J.; Liu, Y.; Li, Z.; Zhou, Y.; Lin, H.; Wu, X.; Chen, M.; Xiao, W. Effects of the insemination of hydrogen peroxide-treated epididymal mouse spermatozoa on γH2AX repair and embryo development. PLoS ONE 2012, 7, e38742. [Google Scholar]
- Lane, M.; McPherson, N.O.; Fullston, T.; Spillane, M.; Sandeman, L.; Kang, W.X.; Zander-Fox, D.L. Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring. PLoS ONE 2014, 9, e100832. [Google Scholar]
- Wang, B.; Li, Z.; Wang, C.; Chen, M.; Xiao, J.; Wu, X.; Xiao, W.; Song, Y.; Wang, X. Zygotic G2/M cell cycle arrest induced by ATM/Chk1 activation and DNA repair in mouse embryos fertilized with hydrogen peroxide-treated epididymal mouse sperm. PLoS ONE 2013, 8, e73987. [Google Scholar]
- Salvemini, F.; Franzé, A.; Iervolino, A.; Filosa, S.; Salzano, S.; Ursini, M.V. Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression. J. Biol. Chem. 1999, 274, 2750–2757. [Google Scholar] [CrossRef] [Green Version]
- Mann, U.; Shiff, B.; Patel, P. Reasons for worldwide decline in male fertility. Curr. Opin. Urol. 2020, 30, 296–301. [Google Scholar] [CrossRef]
- Farquhar, C.M.; Bhattacharya, S.; Repping, S.; Mastenbroek, S.; Kamath, M.S.; Marjoribanks, J.; Boivin, J. Female subfertility. Nat. Rev. Dis. Prim. 2019, 5, 7. [Google Scholar]
Early-Cleaving Embryos | |||
---|---|---|---|
Sperm | NOX S (N = 228) | OX S (N = 263) | |
Oocyte | |||
US (N = 181) | 46.91 ± 16.83 a | 41.23 ± 12.57 A | |
BCB-pos. (N = 154) | 75.93 ± 11.27 b* | 12.94 ± 13.74 B* | |
BCB-neg. (N = 248) | 62.46 ± 14.45 bc* | 12.40 ± 5.44 B* |
Oocyte | Decrease in CR (%) | Decrease in BR D7 (%) | Decrease in BR D8 (%) |
---|---|---|---|
US | 27.63 ± 23.70 a | 60.37 ± 19.57 a | 62.84 ± 13.89 a |
BCB-pos. | 46.10 ± 32.70 a | 67.05 ± 39.33 ab | 66.56 ± 25.65 a |
BCB-neg. | 37.83 ± 27.61 a | 85.94 ± 14.74 b | 77.04 ± 22.45 a |
Embryos (n) | Total Cell Number | Apoptotic Index (%) | Percentage of Embryos with an Apoptotic Index > 5% (%) | |||||
---|---|---|---|---|---|---|---|---|
Oocyte | NOX S | OX S | NOX S | OX S | NOX S | OX S | NOX S | OX S |
US | 16 | 23 | 153.90 ± 47.20 | 140.50 ± 28.47 | 4.70 ± 3.69 | 4.47 ± 3.90 | 38 | 34 |
BCB-pos. | 17 | 10 | 146.10 ± 43.30 | 147.30 ± 38.65 | 6.73 ± 7.48 | 6.25 ± 12.63 | 44 | 30 |
BCB-neg. | 14 | 13 | 145.90 ± 24.62 * | 124.90 ± 28.13 * | 10.10 ± 11.29 | 5.82 ± 9.41 | 64 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bittner-Schwerda, L.; Herrera, C.; Wyck, S.; Malama, E.; Wrenzycki, C.; Bollwein, H. Brilliant Cresyl Blue Negative Oocytes Show a Reduced Competence for Embryo Development after In Vitro Fertilisation with Sperm Exposed to Oxidative Stress. Animals 2023, 13, 2621. https://doi.org/10.3390/ani13162621
Bittner-Schwerda L, Herrera C, Wyck S, Malama E, Wrenzycki C, Bollwein H. Brilliant Cresyl Blue Negative Oocytes Show a Reduced Competence for Embryo Development after In Vitro Fertilisation with Sperm Exposed to Oxidative Stress. Animals. 2023; 13(16):2621. https://doi.org/10.3390/ani13162621
Chicago/Turabian StyleBittner-Schwerda, Lilli, Carolina Herrera, Sarah Wyck, Eleni Malama, Christine Wrenzycki, and Heinrich Bollwein. 2023. "Brilliant Cresyl Blue Negative Oocytes Show a Reduced Competence for Embryo Development after In Vitro Fertilisation with Sperm Exposed to Oxidative Stress" Animals 13, no. 16: 2621. https://doi.org/10.3390/ani13162621
APA StyleBittner-Schwerda, L., Herrera, C., Wyck, S., Malama, E., Wrenzycki, C., & Bollwein, H. (2023). Brilliant Cresyl Blue Negative Oocytes Show a Reduced Competence for Embryo Development after In Vitro Fertilisation with Sperm Exposed to Oxidative Stress. Animals, 13(16), 2621. https://doi.org/10.3390/ani13162621