Geographic Variation in Organ Size in a Toad (Duttaphrynus melanostictus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sample Collection
2.3. Measurement of Body Size
2.4. Anatomy and Measurement of Internal Organs and Reproductive Organs
2.5. Anatomy and Measurement of Brain
2.6. Data Analysis
3. Results
3.1. Effect of Body Condition on Relative Organ Size
3.2. Population Variation and Geographic Variation in Organ Size
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alves-Ferreira, G.; Katzenberger, M.; Fava, F.G.; Costa, R.N.; Carilo Filho, L.M.; Solé, M. Roundup Original DI and thermal stress affect survival, morphology and thermal tolerance in tadpoles of Boana faber (Hylidae, Anura). Ecotoxicology 2023, 32, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Hammond, K.A.; Szewczak, J.O.E.; Król, E. Effects of altitude and temperature on organ phenotypic plasticity along an altitudinal gradient. J. Exp. Biol. 2001, 204, 1991–2000. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.B.; Liu, W.C.; Merilä, J. Andrew meets Rensch: Sexual size dimorphism and the inverse of Rensch’s rule in Andrew’s toad (Bufo andrewsi). Oecologia 2015, 177, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Lopes, G.N.; Serra, R.T.; Piorski, N.M.; Andrade, G.V. Pond characteristics influence the intraspecific variation in the morphometry of the tadpoles of two species of Dendropsophus (Anura: Hylidae) from the Cerrado savanna of northeastern Brazil. An. Acad. Bras. Cienc. 2020, 92, e20181171. [Google Scholar] [CrossRef] [PubMed]
- Naya, D.E.; Veloso, C.; Bozinovic, F. Gut size variation among Bufo spinulosus populations along an altitudinal (and dietary) gradient. Ann. Zool. Fenn. 2009, 46, 16–20. [Google Scholar] [CrossRef]
- Piersma, T.; Gudmundsson, G.A.; Lilliendahl, K. Rapid changes in the size of different functional organ and muscle groups during refueling in a long-distance migrating shorebird. Physiol. Biochem. Zool. 1999, 72, 405–415. [Google Scholar] [CrossRef]
- Volonteri, C.; Hermida, G.N.; Basso, N.G. Eye and Skin Differences between Atelognathus patagonicus Morphotypes: Two Environments, Two Strategies (Anura; Batrachylidae). J. Herpetol. 2022, 56, 99–109. [Google Scholar] [CrossRef]
- Zhong, M.J.; Wang, X.Y.; Huang, Y.Y.; Liao, W.B. Altitudinal variation in organ size in Polypedates megacephalus. Herpetol. J. 2017, 27, 235–238. [Google Scholar]
- Huang, Y.; Mai, C.L.; Liao, W.B.; Kotrschal, A. Body mass variation is negatively associated with brain size: Evidence for the fat-brain trade-off in anurans. Evolution 2020, 74, 1551–1557. [Google Scholar] [CrossRef]
- Park, J.; Do, Y. Phenotypic plasticity in juvenile frogs that experienced predation pressure as tadpoles does not alter their locomotory performance. Biology 2023, 12, 341. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Amshokova, A.; Balčiauskienė, L.; Benedek, A.M.; Cichocki, J.; Csanady, A.; Mendonça, P.G.D.; Nistreanu, V. Geographical clines in the size of the herb field mouse (Apodemus uralensis). Integr. Zool. 2020, 15, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Muñoz, F.; Pagès, N.; Durao, A.F.; England, M.; Werner, D.; Talavera, S. Narrow versus broad: Sexual dimorphism in the wing form of western European species of the subgenus Avaritia (Culicoides, Ceratopogonidae). Integr. Zool. 2021, 16, 769–784. [Google Scholar] [CrossRef] [PubMed]
- Scheun, J.; Neller, S.; Bennett, N.C.; Kemp, L.V.; Ganswindt, A. Endocrine correlates of gender and throat coloration in the southern ground-hornbill (Bucorvus leadbeateri). Integr. Zool. 2021, 16, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Donihue, C.M.; Daltry, J.C.; Challenger, S.; Herrel, A. Population increase and changes in behavior and morphology in the Critically Endangered Redonda ground lizard (Pholidoscelis atratus) following the successful removal of alien rats and goats. Integr. Zool. 2021, 16, 379–389. [Google Scholar] [CrossRef]
- Giacomini, G.; Herrel, A.; Chaverri, G.; Brown, R.P.; Russo, D.; Scaravelli, D.; Meloro, C. Functional correlates of skull shape in Chiroptera: Feeding and echolocation adaptations. Integr. Zool. 2022, 17, 430–442. [Google Scholar] [CrossRef]
- Zamora-Camacho, F.J. Sex and habitat differences in size and coloration of an amphibian’s poison glands match differential predator pressures. Integr. Zool. 2022, 17, 764–776. [Google Scholar] [CrossRef]
- Hinds, L.A.; Henry, S.; Van de Weyer, N.; Robinson, F.; Ruscoe, W.A.; Brown, P.R. Acute oral toxicity of zinc phosphide: An assessment for wild house mice (Mus musculus). Integr. Zool. 2023, 18, 63–75. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, C.; Liao, W.B. Anuran interorbital distance variation: The role of ecological and behavioral factors. Integr. Zool. 2022, 17, 777–786. [Google Scholar] [CrossRef]
- Krasnov, B.R.; Surkova, E.N.; Shenbrot, G.I.; Khokhlova, I.S. Latitudinal gradients in body size and sexual size dimorphism in fleas: Males drive Bergmann’s pattern. Integr. Zool. 2022, 18, 414–426. [Google Scholar] [CrossRef]
- Levis, N.A.; Pfennig, D.W. Phenotypic plasticity, canalization, and the origins of novelty: Evidence and mechanisms from amphibians. Semin. Cell Dev. Biol. 2019, 88, 80–89. [Google Scholar] [CrossRef]
- Lin, X.Q.; Shih, C.; Hou, Y.M.; Shu, X.X.; Zhang, M.H.; Hu, J.H.; Jiang, J.P.; Xie, F. Climatic-niche evolution with key morphological innovations across clades within Scutiger boulengeri (Anura: Megophryidae). Ecol. Evol. 2021, 11, 10353–10368. [Google Scholar] [CrossRef] [PubMed]
- Gangenova, E.; Giombini, M.I.; Zurita, G.A.; Marangoni, F. Morphological responses of three persistent native anuran species after forest conversion into monoculture pine plantations: Tolerance or prosperity? Integr. Zool. 2020, 15, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.B.; Lou, S.L.; Zeng, Y.; Merilä, J. Evolution of anuran brains: Disentangling ecological and phylogenetic sources of variation. J. Evol. Biol. 2015, 28, 1986–1996. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.J.; Jiang, Y.; Mi, Z.P.; Liao, W.B. Testing the role of environmental harshness and sexual selection in limb muscle mass in anurans. Front. Ecol. Evol. 2022, 10, 879885. [Google Scholar] [CrossRef]
- Jin, L.; Yang, S.N.; Liao, W.B.; Lüpold, S. Altitude underlies variation in the mating system, somatic condition, and investment in reproductive traits in male Asian grass frogs (Fejervarya limnocharis). Behav. Ecol. Sociobiol. 2016, 70, 1197–1208. [Google Scholar] [CrossRef]
- Jonsson, N.; Jonsson, B.; Hansen, L.P. Changes in proximate composition and estimates of energetic costs during upstream migration and spawning in Atlantic salmon Salmo salar. J. Anim. Ecol. 1997, 66, 425–436. [Google Scholar] [CrossRef]
- Liao, W.B.; Luo, Y.; Lou, S.L.; Lu, D.; Jehle, R. Geographic variation in life-history traits: Growth season affects age structure, egg size and clutch size in Andrew’s toad (Bufo andrewsi). Front. Zool. 2016, 13, 6. [Google Scholar] [CrossRef]
- Phillips, B.L.; Brown, G.P.; Shine, R. Life-history evolution in range-shifting populations. Ecology 2010, 91, 1617–1627. [Google Scholar] [CrossRef]
- Liao, W.B.; Jiang, Y.; Jin, L.; Lüpold, S. How hibernation in frogs drives brain and reproductive evolution in opposing directions. bioRxiv 2023. [Google Scholar] [CrossRef]
- Jönsson, K.I.; Herczeg, G.; O’Hara, R.B.; Söderman, F.; Ter Schure, A.F.; Larsson, P.; Merilä, J. Sexual patterns of prebreeding energy reserves in the common frog Rana temporaria along a latitudinal gradient. Ecography 2009, 32, 831–839. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, C.; Jiang, Y.; Zhao, L.; Jing, L. Geographical variation of organ size in Andrew’s toad (Bufo andrewsi). Front. Ecol. Evol. 2022, 10, 972942. [Google Scholar] [CrossRef]
- Hesse, R.; Allee, W.C.; Schmidt, K.P. Ecological Animal Geography; John Wiley and Sons Inc.: New York, NY, USA, 1937. [Google Scholar]
- Lou, S.L.; Li, Y.H.; Jin, L.; Mi, Z.P.; Liu, W.C.; Liao, W.B. Altitudinal variation in digestive tract length in Yunnan pond frog (Pelophylax pleuraden). Asian Herpetol. Res. 2013, 4, 263–267. [Google Scholar] [CrossRef]
- Yeung, H.Y.; Yang, J.H. Limb malformation in an Asian Common Toad, Duttaphrynus melanostictus (Schneider 1799)(Anura: Bufonidae), from Hong Kong. Reptiles Amphib. 2021, 28, 548–549. [Google Scholar] [CrossRef]
- Mai, C.L.; Liao, W.B.; Lüpold, S.; Kotrschal, A. Relative brain size is predicted by the intensity of intrasexual competition in frogs. Am. Nat. 2020, 196, 169–179. [Google Scholar] [CrossRef]
- Yu, X.; Zhong, M.J.; Li, D.Y.; Jin, L.; Liao, W.B.; Kotrschal, A. Large-brained frogs mature later and live longer. Evolution 2018, 72, 1174–1183. [Google Scholar] [CrossRef]
- Yue, Y.F.; Jin, L.; Mai, C.L.; Huang, X.F.; Liao, W.B. No evidence for the compensation hypothesis in the swelled vent frog (Feirana quadranus). Asian Herpetol. Res. 2020, 11, 225–229. [Google Scholar]
- Liu, Q.; Feng, H.; Jin, L.; Mi, Z.P.; Zhou, Z.M.; Liao, W.B. Latitudinal variation in body size in Fejervarya limnocharis supports the inverse of Bergmann’s rule. Anim. Biol. 2018, 68, 113–128. [Google Scholar] [CrossRef]
- Yang, S.N.; Feng, H.; Jin, L.; Zhou, Z.M.; Liao, W.B. No evidence for the expensive-tissue hypothesis in Fejervarya limnocharis. Anim. Biol. 2018, 68, 265–276. [Google Scholar] [CrossRef]
- Jiang, A.; Zhong, M.J.; Xie, M.; Lou, S.L.; Jin, L.; Robert, J.; Liao, W.B. Seasonality and age is positively related to brain size in Andrew’s toad (Bufo andrewsi). Evol. Biol. 2015, 42, 339–348. [Google Scholar] [CrossRef]
- Pitcher, T.E.; Stutchbury, B.J.M. Latitudinal variation in testis size in six species of North American songbirds. Can. J. Zool. 1998, 76, 618–622. [Google Scholar] [CrossRef]
- Chen, C.; Huang, Y.Y.; Liao, W.B. A comparison of testes size and sperm length between Polypedates megacephalus populations at different altitudes. Herpetol. J. 2016, 26, 249–252. [Google Scholar]
- Liao, W.B. Evolution of Life-History Traits in Bufo andrewsi; Science Press: Beijing, China, 2015. [Google Scholar]
- McNamara, J.M.; Houston, A.I. The value of fat reserves and the tradeoff between starvation and predation: There’s a special providence in the fall of a sparrow Hamlet Act V sc ii. Acta Biotheor. 1990, 38, 37–61. [Google Scholar] [CrossRef]
- Chappell, M.A.; Hayes, J.P.; Snyder, L.R. Hemoglobin polymorphisms in deer mice (Peromyscus maniculatus): Physiology of beta-globin variants and alpha-globin recombinants. Evolution 1988, 42, 681–688. [Google Scholar]
- Zhao, L.; Mai, C.L.; Liu, G.H.; Liao, W.B. Altitudinal implications in organ size in the Andrew’s toad (Bufo andrewsi). Anim. Biol. 2019, 69, 365–376. [Google Scholar] [CrossRef]
- Soobramoney, S.; Downs, C.T.; Adams, N.J. Morphological variation in the Common Fiscal Lanius collaris along an altitudinal gradient in southern Africa. Ostrich 2005, 76, 130–141. [Google Scholar] [CrossRef]
- Lenfant, C. High altitude adaptation in mammals. Am. Zool. 1973, 13, 447–456. [Google Scholar] [CrossRef]
- Hammond, K.A.; Roth, J.; Janes, D.N.; Dohm, M.R. Morphological and physiological responses to altitude in deer mice Peromyscus maniculatus. Physiol. Biochem. Zool. 1999, 72, 613–622. [Google Scholar] [CrossRef]
- Hock, R.J. Physiological Responses of Deer Mice to Various Native Altitudes. The Physiological Effects of High Altitude; MacMillan: New York, NY, USA, 1964; pp. 59–72. [Google Scholar]
- Sassi, P.L.; Borghi, C.E.; Bozinovic, F. Spatial and seasonal plasticity in digestive morphology of cavies (Microcavia australis) inhabiting habitats with different plant qualities. J. Mammal. 2007, 88, 165–172. [Google Scholar] [CrossRef]
- Bozinovic, F. Nutritional ecophysiology of the Andean mouse Abrothrix andinus: Energy requirements, food quality and turnover time. Comp. Biochem. Physiol. C 1993, 104, 601–604. [Google Scholar] [CrossRef]
- Foley, W.J.; Cork, S.J. Use of fibrous diets by small herbivores: How far can the rules be ‘bent’? Trends Ecol. Evol. 1992, 7, 159–162. [Google Scholar] [CrossRef]
- Gonda, A.; Herczeg, G.; Merilä, J. Evolutionary ecology of intraspecific brain size variation: A review. Ecol. Evol. 2013, 3, 2751–2764. [Google Scholar] [CrossRef] [PubMed]
- Mai, C.L.; Liao, W.B. Brain size evolution in anurans: A review. Anim. Biol. 2019, 69, 265–279. [Google Scholar] [CrossRef]
- Chen, C.; Shao, W.J.; Zhu, X.; Yang, Y.J.; Jiang, Y.; Liao, W.B. Brain size predicts foraging and escaping abilities in the paddy frogs. Integr. Zool. 2023, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Deaner, R.O.; Isler, K.; Burkart, J.; van Schaik, C.P. Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav. Evol. 2007, 70, 115–124. [Google Scholar] [CrossRef]
- Tomasello, M. The Cultural Origins of Human Cognition; Harvard University Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Reader, S.M.; Hager, Y.; Laland, K.N. The evolution of primate general and cultural intelligence. Trans. R. Soc. B Biol. Sci. 2011, 366, 1017–1027. [Google Scholar] [CrossRef]
- Lefebvre, L.; Whittle, P.; Lascaris, E.; Finkelstein, A. Feeding innovations and forebrain size in birds. Anim. Behav. 1997, 53, 549–560. [Google Scholar] [CrossRef]
- Kotrschal, A.; Rogell, B.; Bundsen, A.; Svensson, B.; Zajitschek, S.; Brännström, I.; Immler, S.; Maklakov, A.A.; Kolm, N. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr. Biol. 2013, 23, 168–171. [Google Scholar] [CrossRef]
- Garamszegi, L.Z.; Eens, M. The evolution of hippocampus volume and brain size in relation to food hoarding in birds. Ecol. Lett. 2004, 7, 1216–1224. [Google Scholar] [CrossRef]
- Benson-Amram, S.; Dantzer, B.; Stricker, G.; Swanson, E.M.; Holekamp, K.E. Brain size predicts problem-solving ability in mammalian carnivores. Proc. Natl. Acad. Sci. USA 2016, 113, 2532–2537. [Google Scholar] [CrossRef]
- Striedter, G.F. Principles of Brain Evolution; Sinauer Associates Inc.: Sunderland, MA, USA, 2005. [Google Scholar]
- Aiello, L.C.; Wheeler, P. The expensive-tissue hypothesis—The brain and the digestive system in human and primate evolution. Curr. Anthropol. 1995, 36, 199–221. [Google Scholar] [CrossRef]
- Isler, K.; van Schaik, C.P. The expensive brain: A framework for explaining evolutionary changes in brain size. J. Hum. Evol. 2009, 57, 392–400. [Google Scholar] [CrossRef] [PubMed]
- van Woerden, J.T.; van Schaik, C.P.; Isler, K. Effects of seasonality on brain size evolution: Evidence from strepsirrhine primates. Am. Nat. 2010, 176, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Sol, D.; Duncan, R.P.; Blackburn, T.M.; Cassey, P.; Lefebvre, L. Big brains, enhanced cognition, and response of birds to novel environments. Proc. Natl. Acad. Sci. USA 2005, 102, 5460–5465. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.; Swenson, J.E.; Persson, I.L. Recolonizing carnivores and naive prey: Conservation lessons from Pleistocene extinctions. Science 2001, 291, 1036–1039. [Google Scholar] [CrossRef]
- Liu, Y.T.; Wu, Z.J.; Liao, W.B. Large-brained birds display lower extra-pair paternity. Integr. Zool. 2023, 18, 278–288. [Google Scholar] [CrossRef]
- Sol, D.; Bacher, S.; Reader, S.M.; Lefebvre, L. Brain size predicts the success of mammal species introduced into novel environments. Am. Nat. 2008, 172, S63–S71. [Google Scholar] [CrossRef]
- Liao, W.B.; Jiang, Y.; Li, D.Y.; Jin, L.; Zhong, M.J.; Qi, Y.; Lüpold, S.; Kotrschal, A. Cognition contra camouflage: How the brain mediates predator-driven crypsis evolution. Sci. Adv. 2022, 8, eabq1878. [Google Scholar] [CrossRef]
- Jiang, Y.; Luan, X.F.; Liao, W.B. Anuran brain size predicts food availability-driven population density. Sci. China Life Sci. 2023, 66, 415–417. [Google Scholar] [CrossRef]
- Lüpold, S.; Jin, L.; Liao, W.B. Population density and structure drive differential investment in pre- and post-mating sexual traits in frogs. Evolution 2017, 71, 1686–1699. [Google Scholar] [CrossRef]
- Xiong, W.H. Understand comprehensive perspectives of evolution. Integr. Zool. 2023, 18, 206–207. [Google Scholar] [CrossRef]
- Liu, Y.T.; Jiang, Y.; Xu, J.L.; Liao, W.B. Evolution of avian eye size is associated with habitat openness, food type and brain size. Animals 2023, 13, 1675. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.; Javid, A.; Hussain, S.; Hussain, A.; Bukhari, S.M. Morphological variations, distribution and population estimation of Indian spiny tailed lizard (Uromastyx hardwickii Gray, 1827) from district bahawalnagar, Punjab, Pakistan. Asian Herpetol. Res. 2020, 11, 257–262. [Google Scholar]
- Zedda, M.; Sathe, V.; Chakraborty, P.; Palombo, M.R.; Farina, V. A first comparison of bone histomorphometry in extant domestic horses (Equus caballus) and a Pleistocene Indian wild horse (Equus namadicus). Integr. Zool. 2021, 16, 448–460. [Google Scholar] [CrossRef]
- Huang, S.L.; Li, G.L.; Pan, Y.L.; Song, M.J.; Zhao, J.D.; Wan, X.R.; Krebs, C.J.; Wang, Z.X.; Han, W.N.; Zhang, Z.B. Density-induced social stress alters oxytocin and vasopressin activities in the brain of a small rodent species. Integr. Zool. 2021, 16, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, L.; Murray, L.E. Personality and behavioral changes in Asian elephants (Elephas maximus) following the death of herd members. Integr. Zool. 2021, 16, 170–188. [Google Scholar] [CrossRef]
- Kamdem, M.M.; Ngakou, A.; Yanou, N.; Otomo-Voua, P. Habitat components and population density drive plant litter consumption by Eudrilus eugeniae (Oligochaeta) under tropical conditions. Integr. Zool. 2021, 16, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhong, M.J.; Huang, Y.; Li, F.; Liao, W.B.; Kotrschal, A. Seasonality and brain size are negatively associated in frogs: Evidence for the expensive brain framework. Sci. Rep. 2017, 7, 16629. [Google Scholar] [CrossRef]
- Mai, C.L.; Liao, J.; Zhao, L.; Liu, S.M.; Liao, W.B. Brain size evolution in the frog Fejervarya limnocharis supports neither the cognitive buffer nor the expensive brain hypothesis. J. Zool. 2017, 302, 63–72. [Google Scholar] [CrossRef]
- Liu, Y.T.; Luo, Y.; Gu, J.; Jiang, S.; Liao, W.B. The relationship between brain size and digestive tract length do not support expensive-tissue hypothesis in Hylarana guentheri. Acta Herpetol. 2018, 13, 141–146. [Google Scholar]
Study Site | Sample Size | Longitude (E) | Latitude (N) | Altitude (m) | Average Annual Temperature (°C) | Average Annual Precipitation (mm) |
---|---|---|---|---|---|---|
Midu | 45 | 100°33′ | 25°20′ | 1673 | 17.3 | 824.4 |
Mouding | 50 | 101°33′ | 25°17′ | 1771 | 15.8 | 872 |
Pingjiang | 16 | 108°23′ | 25°58′ | 276 | 18.0 | 1300 |
Pingbian | 18 | 103°41′ | 22°59′ | 1043 | 16.5 | 1650 |
Yuanling | 24 | 110°24′ | 28°26′ | 120 | 16.7 | 1400 |
Factors | Midu | Mouding | Pingjiang | Pingbian | Yuanling | Total |
---|---|---|---|---|---|---|
SVL (mm) | 62.79 ± 8.77 | 61.30 ± 4.25 | 53.08 ± 8.87 | 71.42 ± 21.15 | 51.11 ± 2.64 | 59.25 ± 16.69 |
Weight (g) | 31.07 ± 12.79 | 24.87 ± 5.33 | 18.55 ± 8.86 | 42.18 ± 30.02 | 12.87 ± 2.59 | 24.55 ± 23.77 |
Digestive tract (mm) | 87.17 ± 18.35 | 110.81 ± 17.82 | 123.09 ± 29.70 | 155.46 ± 37.98 | 95.41 ± 14.97 | 122.97 ± 39.31 |
Heart (mg) | 26.25 ± 10.70 | 42.86 ± 21.54 | 16.92 ± 7.61 | 51.83 ± 47.26 | 10.97 ± 4.94 | 28.19 ± 36.01 |
Lungs (mg) | 46.99 ± 22.79 | 42.00 ± 18.38 | 25.66 ± 13.89 | 97.44 ± 94.37 | 32.10 ± 30.34 | 55.70 ± 71.68 |
Gallbladder (mg) | 2.06 ± 1.13 | 1.69 ± 0.79 | 1.26 ± 0.52 | 3.03 ± 1.97 | 1.89 ± 0.73 | 2.34 ± 1.59 |
Liver (mg) | 163.67 ± 78.76 | 125.09 ± 47.84 | 132.96 ± 67.44 | 416.79 ± 400.08 | 50.29 ± 38.96 | 206.72 ± 309.33 |
Kidneys (mg) | 29.06 ± 14.45 | 32.20 ± 15.62 | 23.01 ± 10.92 | 54.55 ± 42.77 | 15.26 ± 7.57 | 31.74 ± 33.58 |
Spleen (mg) | 5.69 ± 4.41 | 2.10 ± 1.67 | 2.44 ± 1.62 | 3.19 ± 2.37 | 1.77 ± 0.57 | 2.38 ± 1.77 |
Testes (mg) | 16.61 ± 5.61 | 12.12 ± 3.95 | 4.72 ± 3.08 | 7.30 | 3.64 ± 1.30 | 3.84 ± 1.41 |
Brain (mm3) | 84.04 ± 14.04 | 60.25 ± 10.64 | 90.51 ± 153.56 | 84.41 ± 21.75 | 48.41 ± 3.82 | 63.48 ± 23.85 |
Organ | β | t | P | R2 |
---|---|---|---|---|
Digestive tract | −0.030 | −0.293 | 0.770 | 0.001 |
Heart | 0.827 | 2.999 | 0.003 | 0.057 |
Lungs | 0.915 | 3.611 | <0.001 | 0.081 |
Gallbladder | −0.107 | −0.353 | 0.725 | 0.001 |
Liver | 1.160 | 4.016 | <0.001 | 0.099 |
Kidneys | 0.786 | 3.426 | <0.001 | 0.073 |
Spleen | 1.829 | 4.821 | <0.001 | 0.161 |
Testes | 0.593 | 2.306 | 0.023 | 0.053 |
Brain | 0.494 | 6.409 | <0.001 | 0.222 |
Factor | Digestive Tract | Heart | Lungs | Gallbladder | Liver | Kidneys | Spleen | Testes | Brain |
---|---|---|---|---|---|---|---|---|---|
Population | |||||||||
F | 47.218 | 14.983 | 2.656 | 2.832 | 10.199 | 3.396 | 16.096 | 17.210 | 41.142 |
P | <0.001 | <0.001 | 0.035 | 0.028 | <0.001 | 0.011 | <0.001 | <0.001 | <0.001 |
Body condition index | |||||||||
F | 17.120 | 9.7775 | 13.263 | 0.053 | 8.609 | 12.118 | 9.468 | 1.974 | 21.718 |
P | <0.001 | 0.002 | <0.001 | 0.819 | 0.004 | <0.001 | 0.003 | 0.163 | <0.001 |
Source | Random | Fixed | |||||
---|---|---|---|---|---|---|---|
VAR | SD | Estimate | SE | df | t | p | |
Digestive tract | |||||||
Population | 0.003 | 0.059 | |||||
Residual | 0.005 | 0.071 | |||||
Latitude | −2.942 | 1.345 | 2.125 | −2.187 | 0.153 | ||
Altitude | −0.197 | 0.085 | 2.064 | −2.329 | 0.141 | ||
Heart | |||||||
Population | 0.014 | 0.119 | |||||
Residual | 0.055 | 0.235 | |||||
Latitude | −0.027 | 2.844 | 2.341 | −0.010 | 0.993 | ||
Altitude | 0.238 | 0.177 | 2.174 | 1.341 | 0.303 | ||
Lungs | |||||||
Population | <0.001 | <0.001 | |||||
Residual | 0.062 | 0.249 | |||||
Latitude | −1.548 | 1.183 | 146.000 | −1.308 | 0.193 | ||
Altitude | 0.054 | 0.066 | 146.000 | 0.831 | 0.407 | ||
Gallbladder | |||||||
Population | 0.009 | 0.096 | |||||
Residual | 0.044 | 0.210 | |||||
Latitude | −1.886 | 2.449 | 1.695 | −0.770 | 0.534 | ||
Altitude | −0.019 | 0.150 | 1.475 | −0.126 | 0.914 | ||
Liver | |||||||
Population | 0.011 | 0.105 | |||||
Residual | 0.069 | 0.263 | |||||
Latitude | −5.186 | 2.630 | 1.882 | −1.972 | 0.195 | ||
Altitude | −0.047 | 0.162 | 1.688 | −0.289 | 0.804 | ||
Kidneys | |||||||
Population | 0.001 | 0.033 | |||||
Residual | 0.049 | 0.222 | |||||
Latitude | −1.912 | 1.282 | 3.761 | −1.491 | 0.215 | ||
Altitude | 0.024 | 0.075 | 2.634 | 0.317 | 0.775 | ||
Spleen | |||||||
Population | 0.044 | 0.209 | |||||
Residual | 0.067 | 0.260 | |||||
Latitude | 2.147 | 4.868 | 2.297 | 0.441 | 0.697 | ||
Altitude | 0.180 | 0.304 | 2.150 | 0.594 | 0.609 | ||
Testes | |||||||
Population | <0.001 | <0.001 | |||||
Residual | 0.022 | 0.148 | |||||
Latitude | 14.907 | 3.276 | 93.000 | 4.551 | <0.001 | ||
Altitude | 0.788 | 0.140 | 93.000 | 5.624 | <0.001 | ||
Brain | |||||||
Population | 0.005 | 0.069 | |||||
Residual | 0.004 | 0.061 | |||||
Latitude | −0.180 | 1.545 | 2.084 | −0.117 | 0.917 | ||
Altitude | 0.056 | 0.098 | 2.046 | 0.575 | 0.622 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, W.; Jin, L.; Qiu, D.; Yan, C.; Liao, W. Geographic Variation in Organ Size in a Toad (Duttaphrynus melanostictus). Animals 2023, 13, 2645. https://doi.org/10.3390/ani13162645
Deng W, Jin L, Qiu D, Yan C, Liao W. Geographic Variation in Organ Size in a Toad (Duttaphrynus melanostictus). Animals. 2023; 13(16):2645. https://doi.org/10.3390/ani13162645
Chicago/Turabian StyleDeng, Weiye, Long Jin, Duojing Qiu, Chengzhi Yan, and Wenbo Liao. 2023. "Geographic Variation in Organ Size in a Toad (Duttaphrynus melanostictus)" Animals 13, no. 16: 2645. https://doi.org/10.3390/ani13162645
APA StyleDeng, W., Jin, L., Qiu, D., Yan, C., & Liao, W. (2023). Geographic Variation in Organ Size in a Toad (Duttaphrynus melanostictus). Animals, 13(16), 2645. https://doi.org/10.3390/ani13162645