The Protective Effect of a Dietary Extract of Mulberry (Morus alba L.) Leaves against a High Stocking Density, Copper and Trichlorfon in Crucian Carp (Carassius auratus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Reagent
2.2. Preparation of Extract of Mulberry (Morus alba L.) Leaves
2.3. Determination of Flavonoid Content
2.4. The Composition Analyses of Ethyl Ether Extract of Mulberry (Morus alba L.) Leaves
2.5. Experimental Fish and Diets
2.6. Protection Assays for Dietary Ethyl Ether Extract of Mulberry (Morus alba L.) Leaves on High-Density Conditions
2.7. Protection Assays of Dietary Ethyl Ether Extract of Mulberry (Morus alba L.) Leaves on CuSO4 Exposure
2.8. Protection Assays of Dietary Ethyl Ether Extract of Mulberry (Morus alba L.) Leaves on Trichlorfon Exposure
2.9. Biochemical Analysis
2.10. Statistical Analysis
3. Results
3.1. Flavonoid Content in Extract of Mulberry (Morus alba L.) Leaves
3.2. Effects of Dietary Ethyl Ether Extract of Mulberry (Morus alba L.) Leaves on Fish Growth Performance under High-Density Conditions
3.3. Effects of Dietary Mulberry (Morus alba L.) Leaf Ethyl Ether Extract on Fish Digestive and Absorptive Enzyme Activities, as Well as Antioxidant Capacity, under High-Density Conditions
3.4. Effects of Dietary Mulberry (Morus alba L.) Leaf Ethyl Ether Extract on FI under Cu Exposure in Fish
3.5. Effects of Dietary Ethyl Ether Extract of Mulberry (Morus alba L.) Leaves on Digestive, Absorptive and Metabolic Parameters under Cu Exposure in Fish
3.6. Effects of Dietary Ethyl Ether Extract of Mulberry (Morus alba L.) Leaves on Rollover under Trichlorfon Stress in Fish
3.7. Effects of Dietary Ethyl Ether Extract of Mulberry (Morus alba L.) Leaves on Metabolic Parameters and Antioxidant Status under Trichlorfon Stress in Fish Muscle
4. Discussion
4.1. Dietary Extract of Mulberry (Morus alba L.) Leaves Relieves the Detrimental Effects of High-Density Conditions and Cu Exposure on Fish Growth Performance
4.2. Dietary Extract of Mulberry (Morus alba L.) Leaves Relieves the Detrimental Effect of Fish Digestive and Absorptive Capacity under High-Density Conditions and Cu Exposure
4.3. Dietary Extract of Mulberry (Morus alba L.) Leaves Relieves the Detrimental Effect of Oxidative Stress on Fish Digestive Organs under High-Density Conditions
4.4. Dietary Mulberry (Morus alba L.) Leaf Extract Relieves the Detrimental Effect on Fish Muscle Function under Trichlorfon Stress
4.5. Dietary Mulberry (Morus alba L.) Leaf Extract Relieves the Detrimental Effect of Oxidative Stress on Fish Muscles under Trichlorfon Stress
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Braun, N.; de Lima, R.L.; Baldisserotto, B.; Dafre, A.L.; de Oliveira Nuñer, A.P. Growth, biochemical and physiological responses of Salminus brasiliensis with different stocking densities and handling. Aquaculture 2010, 301, 22–30. [Google Scholar] [CrossRef]
- Ellis, T.; North, B.; Scott, A.P.; Bromage, N.R.; Porter, M.; Gadd, D. The relationships between stocking density and welfare in farmed rainbow trout. J. Fish Biol. 2002, 61, 493–531. [Google Scholar] [CrossRef]
- Kucukbay, F.Z.; Yazlak, H.; Karaca, I.; Sahin, N.; Tuzcu, M.; Cakmak, M.N.; Sahin, K. The effects of dietary organic or inorganic selenium in rainbow trout (Oncorhynchus mykiss) under crowding conditions. Aquac. Nutr. 2009, 15, 569–576. [Google Scholar] [CrossRef]
- Chen, G.F.; Feng, L.; Kuang, S.Y.; Liu, Y.; Jiang, J.; Hu, K.; Jiang, W.D.; Li, S.H.; Tang, L.; Zhou, X.Q. Effect of dietary arginine on growth, intestinal enzyme activities and gene expression in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Br. J. Nutr. 2012, 108, 195–207. [Google Scholar] [CrossRef]
- Chen, J.C.; Lin, C.H. Toxicity of copper sulfate for survival, growth, molting and feeding of juveniles of the tiger shrimp, Penaeus monodon. Aquaculture 2001, 192, 55–65. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, L.; Jiang, J.; Liu, Y.; Zhou, X.Q. Effects of dietary protein levels on the growth performance, digestive capacity and amino acid metabolism of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac. Res. 2009, 40, 1073–1082. [Google Scholar] [CrossRef]
- Jiang, W.D.; Wu, P.; Kuang, S.Y.; Liu, Y.; Jiang, J.; Hu, K.; Li, S.H.; Tang, L.; Feng, L.; Zhou, X.Q. Myo-inositol prevents copper-induced oxidative damage and changes in antioxidant capacity in various organs and the enterocytes of juvenile Jian carp (Cyprinus carpio var. Jian). Aquat. Toxicol. 2011, 105, 543–551. [Google Scholar] [CrossRef]
- Thomaz, J.M.; Martins, N.D.; Monteiro, D.A.; Rantin, F.T.; Kalinin, A.L. Cardio-respiratory function and oxidative stress biomarkers in Nile tilapia exposed to the organophosphate insecticide trichlorfon (NEGUVON®). Ecotoxicol. Environ. Saf. 2009, 72, 1413–1424. [Google Scholar] [CrossRef]
- Guimara, A.T.B.; Silva de Assis, H.C.; Boeger, W. The effect of trichlorfon on acetylcholinesterase activity and histopathology of cultivated fish Oreochromis niloticus. Ecotoxicol. Environ. Saf. 2006, 68, 57–62. [Google Scholar] [CrossRef]
- Wang, X.; Chang, X.; Zhao, L.; Feng, J.; Li, H.; Liang, J. Trichlorfon exposure in common carp (Cyprinus carpio L.) leads to oxidative stress, neurotoxicity, and immune responses. Aquaculture 2022, 548, 737681. [Google Scholar] [CrossRef]
- Kwon, D.H.; Jeong, J.W.; Choi, E.O.; Lee, H.W.; Lee, K.W.; Kim, K.Y.; Kim, S.G.; Hong, S.H.; Kim, G.; Park, C.; et al. Inhibitory effects on the production of inflammatory mediators and reactive oxygen species by Mori folium in lipopolysaccharide-stimulated macrophages and zebrafish. Da Acad. Bras. De Ciências 2017, 89, 661–674. [Google Scholar] [CrossRef]
- Li, H.; Lu, L.; Wu, M.; Xiong, X.; Luo, L.; Ma, Y.; Liu, Y. The effects of dietary extract of mulberry leaf on growth performance, hypoxia-reoxygenation stress and biochemical parameters in various organs of fish. Aquac. Rep. 2020, 18, 100494. [Google Scholar] [CrossRef]
- Ali, S.; Saha, S.; Kaviraj, A. Fermented mulberry leaf meal as fishmeal replacer in the formulation of feed for carp Labeo rohita and catfish Heteropneustes fossilis—Optimization by mathematical programming. Trop. Anim. Health Prod. 2019, 52, 839–849. [Google Scholar] [CrossRef]
- Xiong, X.; Li, H.; Qiu, N.; Su, L.; Huang, Z.; Song, L.; Wang, J. Bioconcentration and depuration of cadmium in the selected tissues of rare minnow (Gobiocypris rarus) and the effect of dietary mulberry leaf supplementation on depuration. Environ. Toxicol. Pharmacol. 2020, 73, 103278. [Google Scholar] [CrossRef]
- Jiang, W.; Lin, Y.; Qian, L.; Miao, L.; Liu, B.; Ge, X.; Shen, H. Mulberry leaf meal: A potential feed supplement for juvenile Megalobrama amblycephala “Huahai No. 1”. Fish Shellfish Immunol. 2022, 128, 279–287. [Google Scholar] [CrossRef]
- Chen, G.; Su, Y.; Cai, Y.; He, L.; Yang, G. Comparative transcriptomic analysis reveals beneficial effect of dietary mulberry leaves on the muscle quality of finishing pigs. Vet. Med. Sci. 2019, 5, 526–535. [Google Scholar] [CrossRef]
- Jia, Z.; Tang, M.; Wu, J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food. Chem. 1999, 64, 555–559. [Google Scholar]
- Li, H.; Wu, M.; Wang, J.; Qin, C.J.; Long, J.; Zhou, S.S.; Yuan, P.; Jing, X.Q. Protective role of Angelica sinensis extract on trichlorfon-induced oxidative damage and apoptosis in gills and erythrocytes of fish. Aquaculture 2020, 519, 734895. [Google Scholar] [CrossRef]
- Li, H.; Ma, Y.; Liu, Y.; Wu, M.; Long, J.; Jing, X.; Zhou, S.; Yuan, P.; Jiang, J. Integrated biomarker parameters response to the toxic effects of high stocking density, CuSO4, and trichlorfon on fish and protective role mediated by Angelica sinensis extract. Fish Physiol. Biochem. 2020, 46, 1679–1698. [Google Scholar] [CrossRef]
- OECD. OECD Guidelines for the Testing of Chemicals; Test 203 Fish, Acute Toxicity Test; OECD: Paris, France, 1993. [Google Scholar]
- Li, H.; Wu, M.; Jiang, J.; Sun, X.; Chen, L.; Feng, M.; Yuan, D.; Wen, Z.; Qin, C. The extracts of Angelica sinensis restore the digestive and absorptive capacity through improving antioxidant status in digestive organs of fish treated with trichlorfon. Aquac. Res. 2019, 50, 490–504. [Google Scholar] [CrossRef]
- Rowland, S.J.; Mifsud, C.; Nixon, M.; Boyd, P. Effects of stocking density on the performance of the Australian freshwater silver perch (Bidyanus bidyanus) in cages. Aquaculture 2006, 253, 301–308. [Google Scholar] [CrossRef]
- Gharedaashi, E.; Nekoubin, H.; Imanpoor, M.; Taghizadeh, V. Effect of copper sulfate on the survival and growth performance of Caspian Sea kutum, Rutilus frisii kutum. SpringerPlus 2013, 2, 498. [Google Scholar] [CrossRef]
- Mohanty, M.; Adhikari, S.; Mohanty, P.; Sarangi, N. Role of Waterborne Copper on Survival, Growth and Feed Intake of Indian Major Carp, Cirrhinus mrigala Hamilton. Bull. Environ. Contam. Tox. 2009, 82, 559–563. [Google Scholar] [CrossRef]
- Gilloteaux, J.; Kashouty, R.; Yono, N. The perinuclear space of pancreatic acinar cells and the synthetic pathway of zymogen in Scorpaena scrofa L.: Ultrastructural aspects. Tissue Cell 2008, 40, 7–20. [Google Scholar] [CrossRef]
- Zambonino Infante, J.L.; Cahu, C.L. Ontogeny of the gastrointestinal tract of marine fish larvae. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2001, 130, 477–487. [Google Scholar] [CrossRef]
- Liu, G.; Ye, Z.; Liu, D.; Zhao, J.; Sivaramasamy, E.; Deng, Y.; Zhu, S. Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems. Fish Shellfish Immunol. 2018, 81, 416–422. [Google Scholar] [CrossRef]
- Dong, J.; Zhao, Y.Y.; Yu, Y.H.; Sun, N.; Li, Y.D.; Wei, H.; Yang, Z.Q.; Li, X.D.; Li, L. Effect of stocking density on growth performance, digestive enzyme activities, and nonspecific immune parameters of Palaemonetes sinensis. Fish Shellfish Immunol. 2018, 73, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Liu, M.; Lou, J.; Mi, G.; Yuan, J.; Gu, Z. Stocking density alters growth performance, serum biochemistry, digestive enzymes, immune response, and muscle quality of largemouth bass (Micropterus salmoides) in in-pond raceway system. Fish Physiol. Biochem. 2021, 47, 1243–1255. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.T.; Núñez-Acuña, G.; Détrée, C.; Gallardo-Escárate, C. Coding/non-coding cross-talk in intestinal epithelium transcriptome gives insights on how fish respond to stocking density. Comp. Biochem. Physiol. D 2019, 29, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Long, X.; Cheng, Y.; Liu, Z.; Yan, S. A Comparison Effect of Copper Nanoparticles versus Copper Sulphate on Juvenile Epinephelus coioides: Growth Parameters, Digestive Enzymes, Body Composition, and Histology as Biomarkers. Int. J. Genom. 2015, 2015, 783021. [Google Scholar]
- Chairi, H.; Fernández-Diaz, C.; Navas, J.; Manchado, M.; Rebordinos, L.; Blasco, J. In vivo genotoxicity and stress defences in three flatfish species exposed to CuSO4. Ecotoxicol. Environ. Saf. 2010, 73, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Grosell, M.; Wood, C.M.; Walsh, P.J. Copper homeostasis and toxicity in the elasmobranch Raja erinacea and the teleost Myoxocephalus octodecemspinosus during exposure to elevated water-borne copper. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2003, 135, 179–190. [Google Scholar] [CrossRef]
- Van Der Boon, J.; Van Den Thillart, G.E.E.J.; Addink, A.D. The effects of cortisol administration on intermediary metabolism in teleost fish. Comp. Biochem. Physiol. A 1991, 100, 47–53. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, S.; Chen, G.F.; Jiang, W.D.; Liu, Y.; Jiang, J.; Hu, K.; Li, S.H.; Zhou, X.Q. Antioxidant status of serum, muscle, intestine and hepatopancreas for fish fed graded levels of biotin. Fish Physiol. Biochem. 2013, 40, 499–510. [Google Scholar] [CrossRef]
- Gliszczyńska-Świgło, A. Antioxidant activity of water soluble vitamins in the TEAC (trolox equivalent antioxidant capacity) and the FRAP (ferric reducing antioxidant power) assays. Food Chem. 2006, 96, 131–136. [Google Scholar] [CrossRef]
- Robak, J.; Gryglewski, R.J. Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol. 1988, 37, 837–841. [Google Scholar] [CrossRef]
- Martinez Alvarez, R.M.; Morales, A.E.; Sanz, A. Antioxidant defenses in fish: Biotic and abiotic factors. Rev. Fish Biol. Fish. 2005, 15, 75–88. [Google Scholar] [CrossRef]
- Long, L.; Zhang, H.; Ni, Q.; Liu, H.; Wu, F.; Wang, X. Effects of stocking density on growth, stress, and immune responses of juvenile Chinese sturgeon (Acipenser sinensis) in a recirculating aquaculture system. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019, 219, 25–34. [Google Scholar] [CrossRef]
- Katsube, T.; Yamasaki, M.; Shiwaku, K.; Ishijima, T.; Matsumoto, I.; Abe, K.; Yamasaki, Y. Effect of flavonol glycoside in mulberry (Morus alba L.) leaf on glucose metabolism and oxidative stress in liver in diet-induced obese mice. J. Sci. Food Agric. 2010, 90, 2386–2392. [Google Scholar] [CrossRef]
- Johnston, I.A.; Davison, W.; Goldspink, G. Energy metabolism of carp swimming muscles. J. Comp. Physiol. 1977, 114, 203–216. [Google Scholar] [CrossRef]
- Vieira, L.R.; Sousa, A.; Frasco, M.F.; Lima, I.; Morgado, F.; Guilhermino, L. Acute effects of Benzo[a]pyrene, anthracene and a fuel oil on biomarkers of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Sci. Total Environ. 2008, 395, 87–100. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Parmeggiani, B.; Vendrusculo, R.G.; Ribeiro, L.C.; Muenchen, D.K.; Zeppenfeld, C.C.; Meinhart, A.D.; Wagner, R.; Zanella, R.; et al. Protective effects of diet containing rutin against trichlorfon-induced muscle bioenergetics disruption and impairment on fatty acid profile of silver catfish Rhamdia quelen. Ecotoxicol. Environ. Saf. 2020, 205, 111127. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.P. Amino acids and proteins. In Fish Nutrition; Halver, J.E., Hardy, R.W., Eds.; Academic Press: Cambridge, UK, 2002; pp. 143–181. [Google Scholar]
- Woo, S.J.; Chung, J.K. Effects of trichlorfon on oxidative stress, neurotoxicity, and cortisol levels in common carp, Cyprinus carpio L., at different temperatures. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020, 229, 108698. [Google Scholar] [CrossRef] [PubMed]
- Reed, D.J. Glutathione: Toxicological implications. Annu. Rev. Pharmacol. Toxicol. 1990, 30, 603–631. [Google Scholar] [CrossRef]
- Choi, J.; Kang, H.J.; Kim, S.Z.; Kwon, T.O.; Jeong, S.I.; Jang, S.I. Antioxidant effect of astragalin isolated from the leaves of Morus alba L. against free radical-induced oxidative hemolysis of human red blood cells. Arch. Pharmacal Res. 2013, 36, 912–917. [Google Scholar] [CrossRef]
Peak Number | Retention Time (min) | Compound Name | Molecular Weight (amu) | Molecular Formula | Matching Degree (%) |
---|---|---|---|---|---|
I | 5.90 | 2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl- | 180 | C11H16O2 | 93 |
II | 7.68 | Phytol, acetate | 338 | C22H42O2 | 83 |
Bicyclo [3.1.1]heptane, 2,6,6-trimethyl-, (1.alpha.,2.beta.,5.alpha.)- | 138 | C10H18 | 60 | ||
Bicyclo [3.1.1]heptane, 2,6,6-trimethyl- | 138 | C10H18 | 60 | ||
III | 8.03 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 296 | C20H40O | 87 |
Ingredients | 0.00% | 0.10% | 0.20% | 0.30% | 0.40% | 0.50% | 0.60% | 0.70% |
---|---|---|---|---|---|---|---|---|
Fish meal | 25.0 | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
Soybean meal | 32.0 | 32 | 32 | 32 | 32 | 32 | 32 | 32 |
Wheat flour | 36.6 | 36.6 | 36.6 | 36.6 | 36.6 | 36.6 | 36.6 | 36.6 |
DL-methionine | 0.70 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
Threonine | 0.40 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Fish oil | 1.50 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Sunflower oil | 1.80 | 1.7 | 1.6 | 1.5 | 1.4 | 1.3 | 1.2 | 1.1 |
Vitamin mixture 1 | 1.00 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Mineral mixture 2 | 1.00 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
EEE | 0.00 | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 |
Proximate analysis | ||||||||
Dry matter | 92.86 | 93.12 | 92.58 | 93.24 | 92.67 | 92.49 | 93.33 | 92.45 |
Crude protein | 34.73 | 34.87 | 34.69 | 34.77 | 34.92 | 34.86 | 34.69 | 34.75 |
Crude lipid | 5.56 | 5.53 | 5.57 | 5.52 | 5.63 | 5.54 | 5.58 | 5.51 |
Crude Ash | 8.19 | 8.25 | 8.31 | 8.22 | 8.40 | 8.24 | 8.17 | 8.15 |
Extracts | Flavonoids (mg g Dry Extract−1) |
---|---|
CHE | 40.11 ± 2.42 a |
EEE | 63.69 ± 2.01 c |
AE | 48.65 ± 1.72 b |
AQE | 41.27 ± 1.65 a |
Densities (Fish L−1) + EEE (g kg−1 Diet) | Pr > F 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.48 + 0 (K) | 0.97 + 0 (Y) | 0.97 + 1 (E1) | 0.97 + 2 (E2) | 0.97 + 3 (E3) | 0.97 + 4 (E4) | 0.97 + 5 (E5) | 0.97 + 6 (E6) | 0.97 + 7 (E7) | ANOVA | Linear Trend | Quadratic Trend | |
IBW (g fish−1) | 7.20 ± 0.23 a | 7.24 ± 0.24 a | 7.28 ± 0.26 a | 7.23 ± 0.25 a | 7.20 ± 0.25 a | 7.21 ± 0.26 a | 7.26 ± 0.27 a | 7.21 ± 0.27 a | 7.17 ± 0.28 a | |||
FBW (g fish−1) | 34.05 ± 1.35 e | 22.25 ± 1.26 a | 23.83 ± 1.33 a | 25.95 ± 1.12 b | 28.69 ± 1.67 c | 30.12 ± 0.98 cd | 31.88 ± 0.99 d | 31.69 ± 1.66 d | 31.90 ± 1.37 d | 0.00 | 0.00 | 0.00 |
WG (g fish−1) | 26.85 ± 1.53 e | 15.01 ± 1.26 a | 16.54 ± 1.50 a | 18.72 ± 1.34 b | 21.49 ± 1.80 c | 22.93 ± 0.87 cd | 24.62 ± 1.05 d | 24.48 ± 1.52 d | 24.73 ± 1.20 d | 0.00 | 0.00 | 0.00 |
SGR (% d−1) | 2.59 ± 0.11 e | 1.87 ± 0.10 a | 1.97 ± 0.14 a | 2.13 ± 0.13 b | 2.30 ± 0.13 c | 2.39 ± 0.06 cd | 2.47 ± 0.08 de | 2.47 ± 0.07 de | 2.49 ± 0.06 de | 0.00 | 0.00 | 0.00 |
FI (g fish−1) | 39.47 ± 1.80 e | 29.95 ± 1.61 a | 31.80 ± 1.55 a | 33.77 ± 1.16 b | 34.85 ± 1.25 bc | 36.00 ± 1.09 cd | 37.73 ± 1.16 de | 37.46 ± 1.15 de | 37.11 ± 1.15 d | 0.00 | 0.00 | 0.00 |
FE (%) | 68.13 ± 5.01 b | 50.12 ± 3.49 a | 52.03 ± 4.12 a | 55.51 ± 4.80 a | 61.60 ± 3.49 b | 63.74 ± 3.43 b | 65.34 ± 4.47 b | 65.38 ± 3.75 b | 66.76 ± 4.73 b | 0.00 | 0.00 | 0.00 |
SR (%) | 100.00 ± 0.00 a | 100.00 ± 0.00 a | 100.00 ± 0.00 a | 100.00 ± 0.00 a | 100.00 ± 0.00 a | 100.00 ± 0.00 a | 100.00 ± 0.00 a | 100.00 ± 0.00 a | 100.00 ± 0.00 a |
Densities (Fish L−1) + EEE (g kg−1 Diet) | Pr > F 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.48 + 0 (K) | 0.97 + 0 (Y) | 0.97 + 1 (E1) | 0.97 + 2 (E2) | 0.97 + 3 (E3) | 0.97 + 4 (E4) | 0.97 + 5 (E5) | 0.97 + 6 (E6) | 0.97 + 7 (E7) | ANOVA | Linear Trend | Quadratic Trend | |
Hepatopancreas | ||||||||||||
Trypsin (U mg−1 protein) | 1.02 ± 0.06 ab | 0.99 ± 0.06 a | 0.99 ± 0.08 a | 1.03 ± 0.09 ab | 1.15 ± 0.09 abc | 1.09 ± 0.11 abc | 1.20 ± 0.10 c | 1.16 ± 0.09 bc | 1.04 ± 0.09 abc | 0.04 | 0.01 | 0.14 |
Lipase (U mg−1 protein) | 43.19 ± 2.67 bc | 33.36 ± 2.63 a | 37.88 ± 2.52 ab | 44.58 ± 2.66 c | 43.94 ± 2.72 c | 46.27 ± 4.63 c | 44.59 ± 4.46 c | 45.04 ± 2.69 c | 40.95 ± 2.73 bc | 0.00 | 0.01 | 0.08 |
ASA (U g−1 protein) | 60.40 ± 3.89 a | 57.55 ± 4.32 a | 59.41 ± 4.73 a | 61.20 ± 4.65 a | 62.60 ± 5.59 a | 61.77 ± 4.63 a | 60.84 ± 3.06 a | 61.20 ± 3.75 a | 58.89 ± 5.35 a | 0.93 | 0.68 | 0.34 |
MDA (nmol mg−1 protein) | 10.93 ± 0.80 a | 15.86 ± 1.09 b | 16.14 ± 1.40 b | 15.24 ± 1.18 b | 15.38 ± 1.18 b | 12.61 ± 0.84 a | 11.79 ± 1.03 a | 12.03 ± 1.17 a | 10.80 ± 1.03 a | 0.00 | 0.00 | 0.00 |
CAT (U mg−1 protein) | 31.91 ± 2.16 c | 22.22 ± 1.58 a | 22.36 ± 1.95 a | 26.18 ± 1.90 ab | 27.03 ± 2.03 ab | 26.72 ± 2.26 ab | 31.05 ± 2.09 bc | 33.52 ± 2.37 c | 34.77 ± 3.11 c | 0.00 | 0.00 | 0.00 |
GPx (U mg−1 protein) | 442.01 ± 25.59 ab | 432.13 ± 28.95 a | 458.85 ± 28.95 ab | 457.50 ± 36.31 ab | 494.25 ± 37.31 ab | 505.16 ± 29.45 b | 479.75 ± 33.18 ab | 481.74 ± 41.72 ab | 473.72 ± 33.55 ab | 0.02 | 0.02 | 0.10 |
Intestine | ||||||||||||
Lipase (U mg−1 protein) | 42.49 ± 2.63 bc | 34.47 ± 2.71 a | 39.27 ± 2.72 ab | 47.64 ± 2.58 cd | 46.15 ± 2.57 cd | 48.43 ± 2.47 d | 48.99 ± 2.50 d | 46.15 ± 2.59 cd | 46.69 ± 4.24 cd | 0.00 | 0.00 | 0.03 |
Amylase (U mg−1 protein) | 1.37 ± 0.04 d | 1.01 ± 0.04 a | 1.19 ± 0.05 bc | 1.18 ± 0.08 bc | 1.20 ± 0.05 bc | 1.24 ± 0.06 bc | 1.29 ± 0.07 cd | 1.13 ± 0.04 b | 1.15 ± 0.06 b | 0.00 | 0.33 | 0.80 |
Na+/K+-ATPase (U mg−1 protein) | 4.08 ± 0.21 b | 3.08 ± 0.21 a | 3.44 ± 0.22 a | 3.40 ± 0.17 a | 3.90 ± 0.22 b | 3.86 ± 0.14 b | 4.22 ± 0.18 b | 3.87 ± 0.14 b | 3.92 ± 0.12 b | 0.00 | 0.00 | 0.10 |
AKP (U g−1 protein) | 325.18 ± 19.13 b | 261.78 ± 14.06 a | 282.11 ± 18.51 ab | 278.70 ± 14.61 ab | 294.76 ± 19.15 ab | 289.99 ± 16.29 ab | 295.41 ± 17.97 ab | 288.31 ± 19.17 ab | 266.22 ± 16.20 a | 0.01 | 0.14 | 0.67 |
AHR (U mg−1 protein) | 163.70 ± 10.54 c | 102.81 ± 7.99 a | 127.52 ± 10.91 b | 122.51 ± 5.74 b | 139.07 ± 9.93 b | 159.99 ± 11.96 c | 177.85 ± 12.72 c | 175.49 ± 12.50 c | 158.91 ± 9.83 c | 0.00 | 0.00 | 0.01 |
MDA (nmol mg−1 protein) | 13.36 ± 0.74 a | 18.71 ± 1.41 d | 17.29 ± 0.94 cd | 15.94 ± 1.37 bc | 16.05 ± 1.29 bc | 15.10 ± 1.31 abc | 14.39 ± 1.30 ab | 16.44 ± 1.19 bc | 16.32 ± 1.35 bc | 0.00 | 0.77 | 0.51 |
SOD (U mg−1 protein) | 17.12 ± 1.04 a | 18.59 ± 1.00 ab | 19.14 ± 1.23 ab | 18.94 ± 1.05 ab | 19.72 ± 1.11 b | 20.16 ± 1.18 b | 19.66 ± 1.12 b | 19.17 ± 1.25 ab | 18.03 ± 0.82 ab | 0.03 | 0.14 | 0.00 |
GPx (U mg−1 protein) | 306.40 ± 22.42 ab | 295.78 ± 16.06 a | 311.99 ± 24.87 ab | 344.56 ± 19.40 bc | 339.68 ± 27.76 bc | 348.39 ± 28.35 bc | 359.49 ± 26.86 c | 351.90 ± 21.99 bc | 343.71 ± 22.40 bc | 0.04 | 0.00 | 0.11 |
EEE (g kg−1 Diet) + Cu (mg L−1) | FI (% of Body Weight) |
---|---|
0 + 0.0 (K) | 4.49 ± 0.31 g |
0 + 0.7 (Y) | 0.10 ± 0.00 a |
1 + 0.7 (E1) | 1.09 ± 0.09 b |
2 + 0.7 (E2) | 1.85 ± 0.08 c |
3 + 0.7 (E3) | 2.72 ± 0.17 d |
4 + 0.7 (E4) | 3.61 ± 0.25 e |
5 + 0.7 (E5) | 3.79 ± 0.18 ef |
6 + 0.7 (E6) | 3.85 ± 0.08 f |
7 + 0.7 (E7) | 3.92 ± 0.19 f |
EEE (g kg−1 Diet) + Cu (mg L−1) | Pr > F 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.48 + 0 (K) | 0.97 + 0 (Y) | 0.97 + 1 (E1) | 0.97 + 2 (E2) | 0.97 + 3 (E3) | 0.97 + 4 (E4) | 0.97 + 5 (E5) | 0.97 + 6 (E6) | 0.97 + 7 (E7) | ANOVA | Linear Trend | Quadratic Trend | |
Hepatopancreas | ||||||||||||
Lipase (U mg−1 tissue) | 1.01 ± 0.07 ab | 0.97 ± 0.06 a | 0.97 ± 0.07 a | 1.02 ± 0.06 ab | 1.20 ± 0.09 c | 1.14 ± 0.07 bc | 1.06 ± 0.09 abc | 1.02 ± 0.09 ab | 0.98 ± 0.09 a | 0.02 | 0.29 | 0.01 |
Amylase (U g−1 tissue) | 50.10 ± 3.70 c | 38.79 ± 2.42 a | 43.64 ± 2.41 ab | 48.48 ± 2.42 bc | 51.72 ± 3.71 c | 52.53 ± 3.70 c | 50.91 ± 2.43 c | 49.29 ± 3.71 c | 50.10 ± 2.80 c | 0.00 | 0.00 | 0.38 |
GOT (U g−1 tissue) | 0.81 ± 0.06 a | 0.96 ± 0.07 b | 0.95 ± 0.06 b | 0.96 ± 0.06 b | 0.91 ± 0.08 ab | 0.87 ± 0.07 ab | 0.86 ± 0.07 ab | 0.90 ± 0.08 ab | 0.95 ± 0.06 b | 0.02 | 0.82 | 0.42 |
GPT (U g−1 tissue) | 0.69 ± 0.04 a | 0.94 ± 0.06 c | 0.89 ± 0.07 bc | 0.86 ± 0.08 bc | 0.84 ± 0.06 bc | 0.85 ± 0.07 bc | 0.78 ± 0.06 ab | 0.81 ± 0.07 ab | 0.85 ± 0.08 bc | 0.02 | 0.99 | 0.08 |
Intestine | ||||||||||||
Trypsin (U mg−1 protein) | 1.50 ± 0.10 d | 0.87 ± 0.07 a | 0.99 ± 0.06 ab | 1.14 ± 0.07 bc | 1.64 ± 0.10 e | 1.25 ± 0.07 c | 1.28 ± 0.10 c | 1.29 ± 0.06 c | 1.12 ± 0.07 bc | 0.00 | 0.20 | 0.23 |
Amylase (U mg−1 protein) | 1.06 ± 0.02 bc | 0.93 ± 0.04 a | 0.98 ± 0.03 ab | 1.10 ± 0.05 c | 1.09 ± 0.02 c | 1.23 ± 0.02 d | 1.03 ± 0.04 bc | 1.04 ± 0.04 bc | 0.99 ± 0.04 ab | 0.00 | 0.06 | 0.00 |
AKP (U g−1 protein) | 364.30 ± 25.22 cd | 297.42 ± 18.95 a | 312.35 ± 13.68 ab | 317.40 ± 17.95 ab | 352.41 ± 26.68 bc | 436.93 ± 30.91 e | 422.28 ± 27.12 e | 411.41 ± 32.15 e | 400.21 ± 25.71 de | 0.00 | 0.00 | 0.43 |
EEE (g kg−1 Diet) + Trichlorfon (mg L−1) | Rollover (% of Total) |
---|---|
0 + 0.0 (K) | 0.00 ± 0.00 a |
0 + 2.2 (Y) | 100.00 ± 0.00 g |
1 + 2.2 (E1) | 79.17 ± 2.89 f |
2 + 2.2 (E2) | 66.67 ± 5.64 e |
3 + 2.2 (E3) | 57.50 ± 4.61 d |
4 + 2.2 (E4) | 47.50 ± 4.33 c |
5 + 2.2 (E5) | 42.50 ± 2.50 bc |
6 + 2.2 (E6) | 40.00 ± 3.33 b |
7 + 2.2 (E7) | 40.83 ± 3.82 b |
EEE (g kg−1 Diet) + Trichlorfon (mg L−1) | Pr > F 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.48 + 0 (K) | 0.97 + 0 (Y) | 0.97 + 1 (E1) | 0.97 + 2 (E2) | 0.97 + 3 (E3) | 0.97 + 4 (E4) | 0.97 + 5 (E5) | 0.97 + 6 (E6) | 0.97 + 7 (E7) | ANOVA | Linear Trend | Quadratic Trend | |
LDH (U mg−1 protein) | 2.37 ± 0.20 c | 1.30 ± 0.10 a | 1.43 ± 0.07 ab | 1.46 ± 0.13 ab | 1.55 ± 0.08 b | 1.49 ± 0.08 ab | 1.52 ± 0.08 ab | 1.44 ± 0.10 ab | 1.47 ± 0.12 ab | 0.00 | 0.00 | 0.00 |
GOT (U g−1 protein) | 20.74 ± 1.33 b | 16.94 ± 0.96 a | 17.46 ± 1.27 a | 19.26 ± 0.60 ab | 18.88 ± 0.77 ab | 19.04 ± 0.78 ab | 18.60 ± 0.74 ab | 18.51 ± 0.84 ab | 18.11 ± 1.19 a | 0.01 | 0.40 | 0.53 |
GPT (U g−1 protein) | 12.07 ± 1.02 cd | 8.54 ± 0.53 a | 9.67 ± 0.90 ab | 9.31 ± 0.69 ab | 10.43 ± 0.58 bc | 12.82 ± 0.70 d | 11.76 ± 0.55 cd | 10.43 ± 0.56 bc | 10.85 ± 0.72 bc | 0.00 | 0.02 | 0.41 |
ASA (U g−1 protein) | 60.11 ± 4.37 ab | 53.23 ± 4.62 a | 53.86 ± 3.08 a | 53.42 ± 2.77 a | 55.24 ± 3.14 a | 58.52 ± 3.54 ab | 64.12 ± 2.62 b | 63.44 ± 4.34 b | 63.46 ± 4.53 b | 0.00 | 0.04 | 0.01 |
AHR (U mg−1 protein) | 114.84 ± 2.93 d | 79.73 ± 3.38 a | 78.90 ± 2.83 a | 80.78 ± 2.28 a | 83.93 ± 2.64 a | 98.33 ± 4.01 b | 106.73 ± 3.49 c | 109.81 ± 3.15 cd | 121.76 ± 3.94 e | 0.00 | 0.00 | 0.00 |
PC (nmol mg−1 protein) | 2.04 ± 0.22 ab | 3.05 ± 0.16 d | 2.62 ± 0.14 c | 2.31 ± 0.14 bc | 2.33 ± 0.15 bc | 2.07 ± 0.16 ab | 2.01 ± 0.16 ab | 1.76 ± 0.15 a | 1.79 ± 0.13 a | 0.00 | 0.00 | 0.00 |
CAT (U mg−1 protein) | 26.57 ± 2.04 c | 16.05 ± 1.00 a | 15.94 ± 1.40 a | 18.64 ± 1.19 ab | 21.23 ± 1.89 b | 19.21 ± 1.78 ab | 17.83 ± 1.26 ab | 18.03 ± 1.55 ab | 15.29 ± 1.18 a | 0.00 | 0.00 | 0.13 |
GR (U g−1 protein) | 39.29 ± 1.66 c | 23.22 ± 1.55 a | 22.76 ± 1.71 a | 25.38 ± 1.76 a | 27.13 ± 1.68 a | 33.52 ± 1.72 b | 36.49 ± 3.08 bc | 37.58 ± 3.18 bc | 36.62 ± 1.81 bc | 0.00 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Long, J.; Li, H.; Xu, J.; Yuan, J.; Yang, Q.; Feng, L.; Wu, M.; Jiang, J. The Protective Effect of a Dietary Extract of Mulberry (Morus alba L.) Leaves against a High Stocking Density, Copper and Trichlorfon in Crucian Carp (Carassius auratus). Animals 2023, 13, 2652. https://doi.org/10.3390/ani13162652
Chen G, Long J, Li H, Xu J, Yuan J, Yang Q, Feng L, Wu M, Jiang J. The Protective Effect of a Dietary Extract of Mulberry (Morus alba L.) Leaves against a High Stocking Density, Copper and Trichlorfon in Crucian Carp (Carassius auratus). Animals. 2023; 13(16):2652. https://doi.org/10.3390/ani13162652
Chicago/Turabian StyleChen, Gangfu, Jiao Long, Huatao Li, Jing Xu, Jia Yuan, Qihui Yang, Lin Feng, Min Wu, and Jun Jiang. 2023. "The Protective Effect of a Dietary Extract of Mulberry (Morus alba L.) Leaves against a High Stocking Density, Copper and Trichlorfon in Crucian Carp (Carassius auratus)" Animals 13, no. 16: 2652. https://doi.org/10.3390/ani13162652
APA StyleChen, G., Long, J., Li, H., Xu, J., Yuan, J., Yang, Q., Feng, L., Wu, M., & Jiang, J. (2023). The Protective Effect of a Dietary Extract of Mulberry (Morus alba L.) Leaves against a High Stocking Density, Copper and Trichlorfon in Crucian Carp (Carassius auratus). Animals, 13(16), 2652. https://doi.org/10.3390/ani13162652