Effects of Dietary Inclusion of Asiaticoside on Growth Performance, Lipid Metabolism, and Gut Microbiota in Yellow-Feathered Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Design
2.2. Measurement of Growth Performance
2.3. Slaughter Indicators and Organ Index
2.4. Sample Collection
2.5. Determination of Serum Biochemical Indicators and Liver Parameters
2.6. Hematoxylin and Eosin (h&e) Staining
2.7. RNA Extraction and Quantitative Real-Time PCR
2.8. Western Blotting
2.9. Reverse Screening and KEGG Analysis
2.10. Cecal Microbiome Analysis by 16S rDNA Sequencing
2.11. Statistical Analysis
3. Results
3.1. Effect of Dietary Asi on Growth Performance
3.2. Effect of Dietary Asi on Abdominal Fat Deposition
3.3. Effect of Dietary Asi on Hepatic Lipid Deposition and Serum Lipid Metabolism
3.4. Effect of Dietary Asi on PI3K/AKT Pathway
3.5. Effect of Dietary Asi on the Expression of Genes Involving in the Lipogenesis and Lipid Breakdown
3.6. Effect of Dietary Asi on Cecal Microbiota
3.7. Correlation of Gut Microbiota with Metabolic Phenotypes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: An Italian consensus document. Food Nutr. Res. 2015, 59, 27606. [Google Scholar] [CrossRef] [PubMed]
- Moreira, G.; Boschiero, C.; Cesar, A.; Reecy, J.M.; Godoy, T.F.; Pertille, F.; Ledur, M.C.; Moura, A.; Garrick, D.J.; Coutinho, L.L. Integration of genome wide association studies and whole genome sequencing provides novel insights into fat deposition in chicken. Sci. Rep. 2018, 8, 16222. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Deng, X.; Li, J.; Li, N.; Yang, N. A potential molecular marker for selection against abdominal fatness in chickens. Poult. Sci. 2006, 85, 1896–1899. [Google Scholar]
- Hermier, D. Lipoprotein Metabolism and Fattening in Poultry. J. Nutr. 1997, 127, 805S–808S. [Google Scholar] [CrossRef] [PubMed]
- Leveille, G.A.; Romsos, D.R.; Yeh, Y.; O’Hea, E.K. Lipid biosynthesis in the chick. A consideration of site of synthesis, influence of diet and possible regulatory mechanisms. Poult. Sci. 1975, 54, 1075–1093. [Google Scholar] [CrossRef] [PubMed]
- Graf, D.; Di Cagno, R.; Fåk, F.; Flint, H.J.; Nyman, M.; Saarela, M.; Watzl, B. Contribution of diet to the composition of the human gut microbiota. Microb. Ecol. Health Dis. 2015, 26, 26164. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.S.; Koller, K.R.; Ramaboli, M.C.; Nesengani, L.T.; O’Keefe, S. Diet and the Human Gut Microbiome: An International Review. Dig. Dis. Sci. 2020, 65, 723–740. [Google Scholar] [CrossRef]
- Asghar, M.U.; Rahman, A.; Hayat, Z.; Rafique, M.K.; Badar, I.H.; Yar, M.K.; Ijaz, M. Exploration of Zingiber officinale effects on growth performance, immunity and gut morphology in broilers. Braz. J Biol. 2021, 1, e250296. [Google Scholar] [CrossRef]
- Asghar, M.U.; Doğan, S.C.; Wilk, M.; Korczyński, M. Effect of Dietary Supplementation of Black Cumin Seeds (Nigella sativa) on Performance, Carcass Traits, and Meat Quality of Japanese Quails (Coturnix coturnix japonica). Animals 2022, 12, 1298. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, X.; Du, P.; Wang, Z.; Luo, P.; Huang, Y.; Liu, Z.; Zhang, H.; Chen, W. Dietary herbaceous mixture supplementation reduced hepatic lipid deposition and improved hepatic health status in post-peak laying hens. Poult. Sci. 2022, 101, 101870. [Google Scholar] [CrossRef]
- Liu, L.; Ding, Z.; Yang, Y.; Zhang, Z.; Lu, Q.; Kaplan, D.L. Asiaticoside-laden silk nanofiber hydrogels to regulate inflammation and angiogenesis for scarless skin regeneration. Biomater. Sci. 2021, 9, 5227–5236. [Google Scholar] [CrossRef]
- Michael, S.; Zakaria, N.M.; Abbas, M.A.; Abdullah, H.; Suppian, R. Immunomodulatory Effects of Asiaticoside Against Shigella flexneri-Infected Macrophages. Trop. Life Sci. Res. 2021, 32, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Yu, J.; Liu, P.; Liu, Y.; Zeng, T.; Li, B. Asiaticoside alleviates cardiomyocyte apoptosis and oxidative stress in myocardial ischemia/reperfusion injury via activating the PI3K-AKT-GSK3beta pathway in vivo and in vitro. Ann. Transl. Med. 2022, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, A.E.; Lindawati, N.Y.; Herlyanti, K.; Widyastuti, L.; Pramono, S. Anti-diabetic effect of a combination of andrographolide-enriched extract of Andrographis paniculata (Burm f.) Nees and asiaticoside-enriched extract of Centella asiatica L. in high fructose-fat fed rats. Indian J. Exp. Biol. 2013, 51, 1101–1108. [Google Scholar] [PubMed]
- Guo, M.; Xu, J.; Wang, S.; Dong, B. Asiaticoside reduces autophagy and improves memory in a rat model of dementia through mTOR signaling pathway regulation. Mol. Med. Rep. 2021, 24, 645. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wang, P.; Fu, Q.; Xiao, H.; Zhao, Y.; Li, Y.; Song, X.; Xie, H.; Song, Z. Effects of dietary supplementation of Anoectochilus roxburghii extract (ARE) on growth performance, abdominal fat deposition, meat quality and gut microbiota in broilers. Poult. Sci. 2023, 102, 102842. [Google Scholar] [CrossRef]
- Liao, Q.; Wu, T.; Fu, Q.; Wang, P.; Zhao, Y.; Li, Y.; Xiao, H.; Zhou, L.; Song, Z. Effects of Dietary Inclusion of β-Hydroxy-β-Methylbutyrate on Growth Performance, Fat Deposition, Bile Acid Metabolism, and Gut Microbiota Function in High-Fat and High-Cholesterol Diet-Challenged Layer Chickens. Curr. Issues Mol. Biol. 2022, 44, 3413–3427. [Google Scholar] [CrossRef]
- Fu, Q.; Liu, X.; Li, Y.; Wang, P.; Wu, T.; Xiao, H.; Zhao, Y.; Liao, Q.; Song, Z. Discovery of New Inhibitors of eEF2K from Traditional Chinese Medicine Based on In Silico Screening and In Vitro Experimental Validation. Molecules 2022, 27, 4886. [Google Scholar] [CrossRef]
- Meslamani, J.; Li, J.; Sutter, J.; Stevens, A.; Bertrand, H.O.; Rognan, D. Protein-ligand-based pharmacophores: Generation and utility assessment in computational ligand profiling. J. Chem. Inf. Model. 2012, 4, 943–955. [Google Scholar] [CrossRef]
- Krycer, J.R.; Sharpe, L.J.; Luu, W.; Brown, A.J. The Akt-SREBP nexus: Cell signaling meets lipid metabolism. Trends Endocrinol. Metab. 2010, 21, 268–276. [Google Scholar] [CrossRef]
- Patterson, E.; Ryan, P.M.; Cryan, J.F.; Dinan, T.G.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Gut microbiota, obesity and diabetes. Postgrad. Med. J. 2016, 92, 286–300. [Google Scholar] [CrossRef] [PubMed]
- Rong, B.; Wu, Q.; Saeed, M.; Sun, C. Gut microbiota-a positive contributor in the process of intermittent fasting-mediated obesity control. Anim. Nutr. 2021, 7, 1283–1295. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, M.; Knight, R.; Leibel, R.L. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol. Metab. 2015, 26, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; An, Y.; Tang, H.; Wang, Y. Alterations of Bile Acids and Gut Microbiota in Obesity Induced by High Fat Diet in Rat Model. J. Agric. Food. Chem. 2019, 67, 3624–3632. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Peng, X.; Guo, K.; Tan, Z. Bacterial diversity in intestinal mucosa of mice fed with Dendrobium officinale and high-fat diet. 3 Biotech 2021, 11, 22. [Google Scholar] [CrossRef]
- Liu, R.; Hong, J.; Xu, X.; Feng, Q.; Zhang, D.; Gu, Y.; Shi, J.; Zhao, S.; Liu, W.; Wang, X.; et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 2017, 23, 859–868. [Google Scholar] [CrossRef]
- Song, W.; Song, C.; Li, L.; Wang, T.; Hu, J.; Zhu, L.; Yue, T. Lactobacillus alleviated obesity induced by high-fat diet in mice. J. Food Sci. 2021, 86, 5439–5451. [Google Scholar] [CrossRef]
- Tumová, E.; Teimouri, A. Fat deposition in the broiler chicken: A review. Sci. Agric. Bohemica 2010, 41, 121–128. [Google Scholar]
- Li, Y.; Wang, X.; Shen, Z. Traditional Chinese medicine for lipid metabolism disorders. Am. J. Transl. Res. 2017, 9, 2038–2049. [Google Scholar]
- Bylka, W.; Znajdek-Awizen, P.; Studzinska-Sroka, E.; Brzezinska, M. Centella asiatica in cosmetology. Postep. Dermatol. Alergol. 2013, 30, 46–49. [Google Scholar] [CrossRef]
- Bylka, W.; Znajdek-Awizen, P.; Studzinska-Sroka, E.; Danczak-Pazdrowska, A.; Brzezinska, M. Centella asiatica in dermatology: An overview. Phytother. Res. 2014, 28, 1117–1124. [Google Scholar] [CrossRef]
- Sun, B.; Hayashi, M.; Kudo, M.; Wu, L.; Qin, L.; Gao, M.; Liu, T. Madecassoside Inhibits Body Weight Gain via Modulating SIRT1-AMPK Signaling Pathway and Activating Genes Related to Thermogenesis. Front. Endocrinol. 2021, 12, 627950. [Google Scholar] [CrossRef]
- Schultze, S.M.; Hemmings, B.A.; Niessen, M.; Tschopp, O. PI3K/AKT, MAPK and AMPK signalling: Protein kinases in glucose homeostasis. Expert Rev. Mol. Med. 2012, 14, e1. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Yu, H.; Chen, S.; Ma, C.; Ma, X.; Xu, L.; Ma, Z.; Qu, R.; Ma, S. Asiaticoside attenuates diabetes-induced cognition deficits by regulating PI3K/Akt/NF-kappaB pathway. Behav. Brain Res. 2015, 292, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. 2019, 76, 473–493. [Google Scholar] [CrossRef]
- Chen, F.; Jiang, J.; Tian, D.D.; Wen, Q.; Li, Y.H.; Zhang, J.Q.; Cheng, C.; Wang, T. Targeting Obesity for the Prevention of Chronic Cardiovascular Disease Through Gut Microbiota-Herb Interactions: An Opportunity for Traditional Herbs. Curr. Pharm. Des. 2017, 23, 1142–1152. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, D.; Leng, D.; Kui, H.; Bai, X.; Wang, T. Gut microbiota and meat quality. Front. Microbiol. 2022, 13, 951726. [Google Scholar] [CrossRef]
- Qiao, C.M.; Sun, M.F.; Jia, X.B.; Shi, Y.; Zhang, B.P.; Zhou, Z.L.; Zhao, L.P.; Cui, C.; Shen, Y.Q. Sodium butyrate causes alpha-synuclein degradation by an Atg5-dependent and PI3K/Akt/mTOR-related autophagy pathway. Exp. Cell Res. 2020, 387, 111772. [Google Scholar] [CrossRef]
Ingredients | Percentage (%) |
---|---|
Corn | 67.546 |
Soybean protein | 1.804 |
Soybean meal | 9.500 |
Wheat bran | 4.500 |
Rice bran | 4.500 |
CaCO3 | 2.255 |
CaHPO4 | 1.804 |
Pig tallow | 5.402 |
NaCl | 0.363 |
DL-Methionine | 0.363 |
Premix 1 | 0.005 |
Cholesterol | 1.961 |
Nutrient composition 2 | |
ME (MJ/kg) | 13.052 |
Crude protein | 12.976 |
Lys | 0.600 |
Met | 0.590 |
Gene Name | Gene ID | Primer (5′-3′) | Product Size, bp |
---|---|---|---|
β-actin | NM_205518.1 | F: TGCGTGACATCAAGGAGAAG | 300 |
R: TGCCAGGGTACATTGTGGTA | |||
Igf1r | NM_205032 | F: CTGTGTCCGACAAATGGGGA | 169 |
R: TGACGGTCAGTTTCGGGAAG | |||
Pi3k | XM_049803139 | F: GCATCAGTGGCTCAAGGACA | 80 |
R: AGCCAGCACAAGAACGTGTA | |||
Akt | XM_015274151 | F: GAAGTGCTGGAGGACAACGA | 103 |
R: CCTGGTTGTAGAAGGGCAGG | |||
Mtor | XM_417614 | F: GGTGATGACCTTGCCAAACT | 220 |
R: CTCTTGTCATCGCAACCTCA | |||
Srebp | XM_015294109 | F: GCCCTCTGTGCCTTTGTCTTC | 130 |
R: ACTCAGCCATGATGCTTCTTC | |||
Fasn | NM_205155.4 | F: TGAAGGACCTTATCGCATTGC | 96 |
R: GCATGGGAAGCATTTTGTTGT | |||
Scd | NM_204890 | F: GTTTCCACAACTACCACCATACATT | 175 |
R: CCATCTCCAGTCCGCATTTT | |||
Acc | J03541 | F: GCTTCCCATTTGCCGTCCTA | 185 |
R: GCCATTCTCACCACCTGATTACTG | |||
Elov6 | NM_001031539 | F: GGTGGTCGGCACCTAATGAA | 169 |
R: TCTGGTCACACACTGACTGC | |||
Foxo1 | NM_204328 | F: AAGAGCGTGCCCTACTTCAA | 125 |
R: TTCCCTGTTCCCTCATTCTG | |||
Atgl | NM_001113291 | F: TCCTAGGGGCCTACCACATC | 195 |
R: CCAGGAACCTCTTTCGTGCT | |||
Pparα | NM_001001464.1 | F: TGCTGTGGAGATCGTCCTGGTC | 166 |
R: CTGTGACAAGTTGCCGGAGGTC | |||
Cpt1 | DQ314726.1 | F: GCCAAGTCGCTCGCTGATGAC | 166 |
R: ACGCCTCGTAGGTCAGACAGAAC |
Item | Treatment | SEM 1 | Statistics | ||||
---|---|---|---|---|---|---|---|
0% Asi | 0.01% Asi | 0.05% Asi | Panova | Plinear | Pquadratic | ||
BW 0 d, g | 241.52 | 238.06 | 240.03 | 2.98 | 0.720 | 0.929 | 0.430 |
BW 14 d, g | 388.31 a | 373.84 a | 366.11 b | 5.11 | 0.028 | 0.018 | 0.155 |
BW 28 d, g | 589.38 a | 539.05 b | 512.68 b | 8.67 | <0.001 | <0.001 | 0.009 |
BW 42 d, g | 895.88 a | 856.15 b | 832.52 c | 4.73 | <0.001 | <0.001 | 0.001 |
ADFI, g/day | 61.38 ab | 58.20 b | 62.83 a | 1.06 | 0.026 | 0.080 | 0.026 |
Slaughtering rate, % | 94.85 | 96.95 | 95.99 | 0.73 | 0.146 | 0.631 | 0.059 |
Eviscerated rate, % | 56.08 | 57.37 | 55.85 | 0.72 | 0.288 | 0.468 | 0.162 |
Chest muscle, g | 40.63 | 40.16 | 42.08 | 1.18 | 0.715 | 0.459 | 0.737 |
Chest muscle, % | 8.04 b | 9.51 a | 10.08 a | 0.43 | <0.001 | 0.001 | 0.016 |
Thigh muscle, g | 62.40 | 62.57 | 62.92 | 1.95 | 0.982 | 0.851 | 0.980 |
Thigh muscle, % | 13.49 b | 13.31 b | 14.42 a | 0.23 | 0.005 | 0.002 | 0.230 |
Item | Treatment | SEM 1 | Statistics | ||||
---|---|---|---|---|---|---|---|
0% Asi | 0.01% Asi | 0.05% Asi | Panova | Plinear | Pquadratic | ||
AFW, g | 35.13 a | 17.60 b | 13.51 b | 2.71 | <0.001 | <0.001 | 0.001 |
AFR, % | 6.80 a | 3.65 b | 3.06 b | 0.51 | <0.001 | <0.001 | 0.001 |
SFT, mm | 6.80 a | 4.56 b | 3.75 b | 0.39 | 0.001 | 0.001 | 0.049 |
IFW, mm | 9.40 | 8.62 | 8.19 | 0.94 | 0.404 | 0.249 | 0.492 |
Adipocyte area 2, μm2 | 3573.93 a | 2433.61 b | 1736.00 b | 227.7 | 0.004 | 0.002 | 0.040 |
Item | Treatment | SEM 1 | Statistics | ||||
---|---|---|---|---|---|---|---|
0% Asi | 0.01% Asi | 0.05% Asi | Panova | Plinear | Pquadratic | ||
Liver | |||||||
Liver weight/BW, % | 2.26 a | 2.07 b | 1.99 b | 0.06 | 0.009 | 0.008 | 0.083 |
TG, mmol/mg | 15.87 a | 14.70 a | 12.07 b | 0.68 | 0.001 | <0.001 | 0.625 |
Serum | |||||||
TG, mmol/L | 0.37 a | 0.28 b | 0.25 b | 0.02 | <0.001 | 0.001 | 0.017 |
TC, mmol/L | 5.02 | 5.30 | 4.90 | 0.26 | 0.561 | 0.525 | 0.390 |
HDL-C, mmol/L | 2.20 | 2.27 | 2.45 | 0.39 | 0.439 | 0.207 | 0.899 |
LDL-C, mmol/L | 2.24 a | 1.54 b | 1.07 b | 0.94 | <0.001 | <0.001 | 0.054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.; Wang, P.; Zhang, Y.; Wu, T.; Huang, J.; Song, Z. Effects of Dietary Inclusion of Asiaticoside on Growth Performance, Lipid Metabolism, and Gut Microbiota in Yellow-Feathered Chickens. Animals 2023, 13, 2653. https://doi.org/10.3390/ani13162653
Fu Q, Wang P, Zhang Y, Wu T, Huang J, Song Z. Effects of Dietary Inclusion of Asiaticoside on Growth Performance, Lipid Metabolism, and Gut Microbiota in Yellow-Feathered Chickens. Animals. 2023; 13(16):2653. https://doi.org/10.3390/ani13162653
Chicago/Turabian StyleFu, Qinghua, Peng Wang, Yurou Zhang, Tian Wu, Jieping Huang, and Ziyi Song. 2023. "Effects of Dietary Inclusion of Asiaticoside on Growth Performance, Lipid Metabolism, and Gut Microbiota in Yellow-Feathered Chickens" Animals 13, no. 16: 2653. https://doi.org/10.3390/ani13162653
APA StyleFu, Q., Wang, P., Zhang, Y., Wu, T., Huang, J., & Song, Z. (2023). Effects of Dietary Inclusion of Asiaticoside on Growth Performance, Lipid Metabolism, and Gut Microbiota in Yellow-Feathered Chickens. Animals, 13(16), 2653. https://doi.org/10.3390/ani13162653