Concepts on Accumulation of Pesticides and Veterinary Drugs in Fish: A Review with Emphasis in Tilapia
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Accumulation Processes of Chemicals in Fish Tissues
3. Testing Guidelines
4. Determination of the Bioconcentration
4.1. Equilibrium Model
4.2. Kinetic Model
- = concentration of pesticide or veterinary drugs in fish;
- = concentration of pesticide or veterinary drugs in water;
- = rate constant of uptake;
- = rate constant of elimination;
- t = time of exposure to water containing the xenobiotic.
5. Analytical Methods
5.1. Extraction Methods
5.2. Clean-Up Procedures
5.3. Instrumental Analysis
6. The Tilapia Fish as a Test Organism to Evaluate the Accumulation of Pesticides and Veterinary Drugs
7. The Bioconcentration Factor in the Determination of the Maximum Food Ingestion Quantity
8. Bioaccumulation Studies in the Calculation of the Withdrawal Time (WT)
9. Bioaccumulation Studies in the Evaluation of the Trophic Transfer Effect
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization. 2017. Food and Agriculture Organization of the United Nations. Water Pollution from Agriculture: A Global Review—Executive Summary. Available online: https://www.fao.org/3/i7754e/i7754e.pdf (accessed on 8 August 2023).
- Mojiri, A.; Zhou, J.L.; Ronbinson, B.; Ohashi, A.; Ozaki, N.; Kindaichi, T.; Farraji, H.; Vakili, M. Pesticides in aquatic envi-ronments and their removal by adsorption. Chemosphere 2020, 253, 126646. [Google Scholar] [CrossRef] [PubMed]
- Srain, H.S.; Beazley, K.F.; Walker, T.R. Pharmaceuticals and personal care products and their sublethal and lethal effects in aquatic organisms. Environ. Rev. 2021, 29, 142–181. [Google Scholar] [CrossRef]
- Garcia, S.N.; Foster, M.; Constantine, L.A.; Huggett, D.B. Field and laboratory fish tissue accumulation of the anti-convulsant drug carbamazepine. Ecotoxicol. Environ. Saf. 2012, 84, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Gobas, F.A.P.C.; Burkhard, L.P.; Doucette, W.J.; Sappington, K.G.; Verbruggen, E.M.; Hope, B.K.; Bonnell, M.A.; Arnot, J.A.; Tarazona, J.V. Review of existing terrestrial bioaccumulation models and terrestrial bioaccumulation modeling needs for organic chemicals. Integr. Environ. Assess. Manag. 2015, 12, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Péan, S.; Daouk, T.; Vignet, C.; Lyphout, L.; Leguay, D.; Loizeau, V.; Bégout, M.-L.; Cousin, X. Long-term dietary-exposure to non-coplanar PCBs induces behavioral disruptions in adult zebrafish and their offspring. Neurotoxicol. Teratol. 2013, 39, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.E. Bioaccumulation, Bioconcentration, Biomagnification; Springer: Dordrecht, The Netherlands, 1999; pp. 43–44. [Google Scholar]
- Arnot, J.A.; Gobas, A.P.C. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ. Rev. 2006, 14, 257–297. [Google Scholar] [CrossRef]
- Nunes, K.S.D.; Vallim, J.H.; Assalin, M.R.; Queiroz, S.C.N.; Paraíba, L.C.; Jonsson, C.M.; Reyes, F.G.R. Depletion study, with-drawal period calculation and bioaccumulation of sulfamethazine in tilapia (Oreochromis niloticus) treated with medicated feed. Chemosphere 2018, 197, 89–95. [Google Scholar] [CrossRef] [PubMed]
- ECETOC. Persistent Organic Pollutants (POPs), Response to UNEP/INC/CEG-I. Annex 1, Document N° 41. European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels. 2000. Available online: https://www.ecetoc.org/wp-content/uploads/2014/08/DOC-0412.pdf (accessed on 14 October 2022).
- EPA. Sustainable Futures/P2 Framework Manual. Section 5: Estimating Physical/Chemical and Environmental Fate Properties with EPI Suite (pdf) (645.78 KB, 2012, EPA-748-B12-001). 2022. Available online: https://www.epa.gov/sustainable-futures/sustainable-futures-p2-framework-manual (accessed on 27 June 2023).
- OECD. Guidelines for Testing of Chemicals: Bioaccumulation in Fish. Aqueous and Dietary Exposure. Proc. 305. Organization for the Economic Cooperation and Development, Paris. 2012. Available online: https://www.oecd.org/env/test-no-305-bioaccumulation-in-fish-aqueous-and-dietary-exposure-9789264185296-en.htm (accessed on 27 June 2023).
- ASTM. Standard Guide for Conducting Bioconcentration Tests with Fishes and Saltwater Bivalve Mollusks. ASTM American Society for Testing and Materials E1022-22. 2022. Available online: https://compass.astm.org/document/?contentCode=ASTM%7CE1022-22%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm.org&fromLogin=true (accessed on 27 June 2023).
- EPA. Ecological Effects Test Guidelines. OPPTS 850.1730. Fish BCF. EPA 712-C-96-129. United States Environmental Protection Agency. 1996. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/P100HZAA.PDF?Dockey=P100HZAA.PDF (accessed on 29 June 2023).
- Yang, Y.; Li, S.; Wang, Z.; Ren, Y.; Mu, Y.; Zhang, X.; Van den Brink, P.J.; Sun, H.; Song, Y.; Cheng, B. Acute toxicity, bioaccu-mulation and elimination of prometryn in tilapia (Oreochromis niloticus). Chemosphere 2022, 300, 134565. [Google Scholar] [CrossRef]
- Hashizume, N.; Inoue, Y.; Murakami, H.; Ozaki, H.; Tanabe, A.; Suzuki, Y.; Yoshida, T.; Kikushima, E.; Tsuji, T. Resampling the bioconcentration factors data from Japan’s chemical substances control law database to simulate and evaluate the bioconcentration factors derived from minimized aqueous exposure tests. Environ. Toxicol. Chem. 2013, 32, 406–409. [Google Scholar] [CrossRef]
- Lu, H.Y.; Wang, Y.J.; Hou, W.C. Bioaccumulation and depuration of TiO2 nanoparticles by zebrafish through dietary exposure: Size- and number concentration-resolved analysis using single-particle ICP-MS. J. Hazard. Mater. 2022, 426, 127801. [Google Scholar] [CrossRef]
- Petoumenou, M.I.; Pizzo, F.; Cester, J.; Fernández, A.; Benfenati, E. Comparison between bioconcentration factor (BCF) data provided by industry to the European Chemicals Agency (ECHA) and data derived from QSAR models. Environ. Res. 2015, 142, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Qin, S.; Shen, L.; Li, S.; Cui, J.; Liu, Y. Bioaccumulation, trophic transfer, and human health risk of quinolones antibiotics in the benthic food web from a macrophyte-dominated shallow lake, North China. Sci. Total Environ. 2020, 712, 136557. [Google Scholar] [CrossRef] [PubMed]
- Shiroma, L.S.; Bottoli, C.B.G.; Jonsson, C.M.; Queiroz, S.C.N. Exposure of tilapia (Oreochromis niloticus) to the antibiotic florfenicol in water: Determination of the bioconcentration factor and the withdrawal period. Environ. Sci. Pollut. Res. 2021, 28, 39026–39034. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, C.; Paraiba, L.; Mendoza, M.; Sabater, C.; Carrasco, J. Bioconcentration of the insecticide pyridaphenthion by the green algae Chlorella saccharophila. Chemosphere 2001, 43, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Stehlyl, G.R.; Barron, G.M.; Hayton, W.L. Bioconcentration and Bioavailability. In Xenobiotics in Fish; Smith, D.J., Gingerich, W.H., Beconi-Barker, M.G., Eds.; Springer Science+Business Media: New York, NY, USA, 1999; pp. 73–86. [Google Scholar]
- Oliver, B.G.; Niimi, A.J. Bioconcentration factors of some halogenated organics for rainbow trout: Limitations in their use for prediction of environmental residues. Environ. Sci. Technol. 1985, 19, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, C.M. Estudos de Toxicidade e Acúmulo de Endolsulfan nos Peixes Brachydanio Rerio e Hyphessobrycon bifasciatus. Master’s Thesis, Faculdade de Engenharia de Alimentos/Unicamp, Campinas, Brazil, 1991; 162 p. [Google Scholar]
- Jonsson, C.M.; Moura, M.A.M.; Ferracini, V.L.; Paraíba, L.C.; Assalin, M.R.; Queiroz, S.C.N. Bioconcentrations of herbicides used in sugarcane crops in tilapia (Oreochromis niloticus) and the risk for human consumption. Heliyon 2019, 5, e02237. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Sánchez, O.; Paraíba, L.C.; Jonsson, C.M.; Carrasco, J.M. Acute toxicity and bioconcentration of fungicide tebucona-zole in zebrafish (Danio rerio). Environ. Toxicol. 2012, 27, 109–116. [Google Scholar] [CrossRef]
- Ojemaye, C.Y.; Onwordi, C.T.; Petrik, L. Herbicides in the tissues and organs of different fish species (Kalk Bay harbour, South Africa): Occurrence, levels and risk assessment. Int. J. Environ. Sci. Technol. 2020, 17, 1637–1648. [Google Scholar] [CrossRef]
- Aufartova, J.; Brabcova, I.; Torres-Padron, M.E.; Solich, P.; Sosa-Ferrera, Z.; Santana-Rodriguez, J.J. Determination of fluo-roquinolones in fishes using microwave-assisted extraction combined with ultra-high performance liquid chromatography and fluorescence detection. J. Food Compos. Anal. 2017, 56, 140–146. [Google Scholar] [CrossRef]
- Huerta, B.; Jakimska, A.; Gros, M.; Rodríguez-Mozaz, S.; Barceló, D. Analysis of multi-class pharmaceuticals in fish tissues by ultra-high-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2013, 1288, 63–72. [Google Scholar] [CrossRef]
- Qu, Z.; Bai, X.; Zhang, T.; Yang, Z. Ultrasound-assisted extraction and solid-phase extraction for the simultaneous determi-nation of five amide herbicides in fish samples by gas chromatography with electron capture detection. J. Separ. Sci. 2017, 40, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Caldas, S.S.; Bolzan, C.M.; de Menezes, E.J.; Escarrone, A.L.V.; Martins, C.d.M.G.; Bianchini, A.; Primel, E.G. A vortex-assisted MSPD method for the extraction of pesticide residues from fish liver and crab hepatopancreas with determination by GC–MS. Talanta 2013, 112, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Musatadi, M.; González-Gaya, B.; Irazola, M.; Prieto, A.; Etxebarria, N.; Olivares, M.; Zuloaga, O. Focused ultrasound-based extraction for target analysis and suspect screening of organic xenobiotics in fish muscle. Sci. Total Environ. 2020, 740, 139894. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Fedrizzi, D.; Kosfeld, V.; Schlechtriem, C.; Ganz, V.; Derrer, S.; Rentsch, D.; Hollender, J. Biotransformation Changes Bioaccumulation and Toxicity of Diclofenac in Aquatic Organisms. Environ. Sci. Technol. 2020, 54, 4400–4408. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Assoc. Off. Anal. Chem. Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Wang, A.; Hu, X.; Wan, Y.; Mahai, G.; Jiang, Y.; Huo, W.; Zhao, X.; Liang, G.; He, Z.; Xia, W.; et al. A nationwide study of the occurrence and distribution of atrazine and its degradates in tap water and groundwater in China: Assessment of human exposure potential. Chemosphere 2020, 252, 126533. [Google Scholar] [CrossRef] [PubMed]
- Shiroma, L.S.; Queiroz, S.C.N.; Jonsson, C.M.; Bottoli, C.B.G. Extraction Strategies for Simultaneous Determination of Florfenicol and Florfenicol Amine in Tilapia (Oreochromis niloticus) Muscle: Quantification by LC-MS/MS. Food Anal. Methods 2020, 13, 291–302. [Google Scholar] [CrossRef]
- Rezaee, M.; Assadi, Y.; Hosseini, M.-R.M.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid–liquid microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef]
- Monteiro, S.H.; Lehotay, S.J.; Sapozhnikova, Y.; Ninga, E.; Lightfield, A.R. High-throughput mega-method for the analysis of pesticides, veterinary drugs, and environmental contaminants by ultra-high-performance liquid chromatography-tandem mass spectrometry and robotic mini-solid-phase extraction cleanup plus low-pressure gas chromatography-tandem mass spectrometry, part 1: Beef. J. Agric. Food Chem. 2021, 69, 1159–1168. [Google Scholar]
- Monteiro, S.H.; Lehotay, S.J.; Sapozhnikova, Y.; Ninga, E.; Andrade, G.C.M.; Lightfield, A.R. Validation of the QuEChERSER mega-method for the analysis of pesticides, veterinary drugs, and environmental contaminants in tilapia (Oreochromis Niloticus). Food Addit. Contam. Part A 2022, 39, 699–709. [Google Scholar] [CrossRef]
- Barbieri, M.V.; Postigo, C.; Guillem-Argiles, N.; Monllor-Alcaraz, L.S.; Simionato, J.I.; Stella, E.; Barceló, D.; de Alda, M.L. Analysis of 52 pesticides in fresh fish muscle by QuEChERS extraction followed by LC-MS/MS determination. Sci. Total Environ. 2019, 653, 958–967. [Google Scholar] [CrossRef]
- Guidi, L.R.; Santos, F.A.; Ribeiro, A.C.S.R.; Fernandes, C.; Silva, L.H.M.; Gloria, M.B.A. Quinolones and tetracyclines in aq-uaculture fish by a simple and rapid LC-MS/MS method. Food Chem. 2018, 245, 1232–1238. [Google Scholar] [CrossRef]
- Bayat, M.; Tehrani, M.S.; Kobarfard, F.; Husain, S.W.; Yazdanpanah, H. Validation of an Analytical Method for Simultaneous Determination of 18 Persistent Organic Pollutants in Trout Using LLE Extraction and GC-MS/MS. Iran J. Pharm. Res. 2019, 18, 1224–1238. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture. Sustainability in Action; Food and Agriculture Organization: Rome, Italy, 2020; Available online: https://www.fao.org/3/ca9229en/ca9229en.pdf (accessed on 22 August 2023).
- Vicente, I.S.T.; Elias, F.; Fonseca-Alves, C.E. Perspectivas da produção de tilapia do Nilo (Oreochromis niloticus) no Brasil. Rev. Ciencias Agrar. 2014, 37, 392–398. [Google Scholar]
- Associação Brasileira da Piscicultura, 2018. Anuário Peixe BR da Piscicultura. Associação Brasileira da Piscicultura, Pinheiros, pp. 1–138. Available online: https://www.peixebr.com.br/Anuario2018/AnuarioPeixeBR2018.pdf (accessed on 30 June 2023).
- Li, L.; Liu, S.; Yin, Y.; Zheng, G.; Zhao, C.; Ma, L.; Shan, Q.; Dai, X.; Wei, L.; Lin, J.; et al. The toxicokinetics and risk as-sessment of pyrethroids pesticide in tilapia (Oreochromis mossambicus) upon short-term water exposure. Ecotox. Environ. Saf. 2022, 241, 113751. [Google Scholar] [CrossRef] [PubMed]
- Abd-Alrahman, S.; Kotb, G.A.M.; Farag, A.A.G.; Elhalwagy, M.E.A. Bioconcentration and Metabolism of Diclofop-Methyl in Freshwater Fish (Oreochromis niloticus). Asian J. Chem. 2014, 26, 3101–3104. [Google Scholar] [CrossRef]
- Guedegba, N.L.; Toko, I.I.; Ammar, I.B.; François, L.; Oreins, N.; Palluel, O.; Mandiki, S.N.M.; Jauniaux, T.; Porcher, J.M.; Scippo, M.L.; et al. Chronic effects of binary insectide Acer 35 EC on nile tilapia Oreochromis niloticus through a multi-biomarker approach. Chemosphere 2021, 273, 128530. [Google Scholar] [CrossRef] [PubMed]
- UNEP/IPCS. Chemical Risk Assessment, Training Module No. 3. World Health Organization, Geneva. 1999. Available online: https://apps.who.int/iris/bitstream/handle/10665/66398/WHO_PCS_99.2_eng.pdf;jsessionid¼37A71C68BB2117009E068CC1F51B22D4?sequence¼1 (accessed on 27 June 2023).
- WHO. Uncertainty and Data Quality in Exposure Assessment. IPCS Harmonization Project Document, no.6. World Health Organization, Geneva. 2008. Available online: http://www.inchem.org/documents/harmproj/harmproj/harmproj6.pdf/ (accessed on 27 June 2023).
- Benford, D. The Acceptable Daily Intake: A Tool for Ensuring Food Safety. International Life Sciences Institute (ILSI), Brussels. 2000. Available online: https://ilsi.eu/wp-content/uploads/sites/3/2016/06/C2000Acc_Dai.pdf (accessed on 27 June 2023).
- Australian Government; Department of Health and Ageing Office of Chemical Safety. ADI List—Acceptable Daily Intakes for Agricultural and Veterinary Chemicals; The Office of Chemical Safety: Canberra, Australia, 2005; pp. 1–114.
- Peterson, R.K.D.; Hulting, A.G. A comparative ecological risk assessment for herbicides used on spring wheat: The effect of glyphosate when used within a glyphosate-tolerant wheat system. Weed Sci. 2004, 52, 834–844. [Google Scholar] [CrossRef]
- Zagatto, P.A. Avaliação de Risco e do Potencial de Periculosidade Ambiental de Agentes Químicos para o Ambiente Aquático. In Ecotoxicologia Aquatica: Principios e Aplicações; Zagatto, P.A., Bertoletti, E., Eds.; Editora Rima: São Carlos, Brazil, 2006; pp. 382–411. [Google Scholar]
- Dionisio, R.M.F.; Castanha, R.F.; Vallim, J.H.; de Castro, V.L.S.S.; Jonsson, C.M. Effect of nanoatrazine on the growth of aquatic bioindicators through trophic transfer. Int. J. Biol. Nat. Sci. 2023, 3, 2–9. [Google Scholar] [CrossRef]
- Cordeiro, R.P.; Braga, P.A.C.; Rochab, M.J.S.; Chagas, E.C.; Reyes, F.G.R. Depletion study and estimation of the withdrawal period for albendazole in tambaqui (Colossoma macropomum) parasitised by acanthocephalan (Neoechinorhynchus buttnerae) treated with albendazole-containing feed. Food Add. Contam. A 2021, 38, 1883–1896. [Google Scholar] [CrossRef]
- Romero-González, R.; Frenich, A.G.; Vidal, J.M. Veterinary Drugs Residues: Anthelmintics. In Encyclopedia of Food Safety; Motarjemi, Y., Moy, G., Todd, E., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 45–54. [Google Scholar]
- Reyes, F.G.R.; Nunes, K.S.D. Ensuring Food Safety in Developing and Developed Countries: Aspects Associated with the Use of Veterinary Drugs in Fish Farming in Brazil. In Global Food Security and Wellness; Barbosa-Cánovas, G.V., Pastore, G.M., Candoğan, K., Meza, I.G.M., da Silva Lannes, S.C., Buckle, K., Yada, R.Y., Rosenthal, A., et al., Eds.; Springer: New York, NY, USA, 2017; pp. 49–66. [Google Scholar]
- Bagumire1, A.; Todd, E.C.D.; Nasinyama, G.W.; Muyanja, C. Food safety regulatory requirements with potential effect on exports of aquaculture products from developing countries to the EU and US. Afr. J. Food Sci. Technol. 2010, 1, 31–50. [Google Scholar]
- Lunestad, B.T.; Hannisda, R.; Samuelsen, O. Safety of medical feed additives in the food chain. In Feed and Feeding Practices in Aquaculture. Woodhead Publishing Series in Food Science, Technology and Nutrition; Davis, D.A., Ed.; Woodhead Publishing Ltd.: Sawston, UK, 2015; pp. 251–268. [Google Scholar]
- Codex. Codex Alimentarius. 2021. Maximum Residue Limits (MRLS) and Risk Management Recommendations (RMRS) for Residues of Veterinary Drugs in Foods CX/MRL 2-2021. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXM%2B2%252FMRL2e.pdf (accessed on 28 June 2023).
- Marques, T.V.; Paschoal, J.A.R.; Barone, R.S.C.; Cyrino, J.E.P.; Rath, S. Depletion study and estimation of withdrawal periods for florfenicol and florfenicol amine in pacu (Piaractus mesopotamicus). Aquac. Res. 2018, 49, 111–119. [Google Scholar] [CrossRef]
- Holbrook, R.D.; Murphy, K.E.; Morrow, J.B.; Cole, K.D. Trophic transfer of nanoparticles in a simplified invertebrate food web. Nat. Nanotechnol. 2008, 3, 352–355. [Google Scholar] [CrossRef]
- Lekamge, S.; Miranda, A.F.; Ball, A.S.; Shukla, R.; Nugegoda, D. The toxicity of coated silver nanoparticles to Daphnia carinata and trophic transfer from alga Raphidocelis subcapitata. PLoS ONE 2019, 14, e0214398. [Google Scholar] [CrossRef]
Compound | Water Concentration | Time of Exposure | k1 | k2 | t1/2 | (L·kg−1) | Reference |
---|---|---|---|---|---|---|---|
Prometryn | 0.055; 0.55 mg L−1 | 28 d | - | - | - | 5.76 | [15] |
Fenpropathrin | 2.0 µg L−1 | 48 h | 57.73 L·kg−1·d−1 | 0.194 d−1 | 3.54 d | 295.3 | [46] |
Cypermethrin | 1.5 µg L−1 | 48 h | 27.94 L·kg−1·d−1 | 0.132 d−1 | 5.24 d | 211.2 | [46] |
Fenvalerate | 1.0 µg L−1 | 48 h | 54.13 L·kg−1·d−1 | 0.168 d−1 | 4.12 d | 321.6 | [46] |
Deltamethrin | 1.5 µg L−1 | 48 h | 22.31 L·kg−1·d−1 | 0.110 d−1 | 6.26 d | 201.5 | [46] |
Ametryn | 0.055; 0.296 mg L−1 | 14 d | - | - | - | 1.730 | [25] |
Hexazinone | 0.045; 0.473 mg L−1 | 14 d | 0.268 L·kg−1·d−1 | 0.698 d−1 | - | 0.322 | [25] |
Diuron | 0.109; 1.001 mg L−1 | 14 d | 3.742; 6.031 L·kg−1·d−1 | 0.840; 1.180 d−1 | - | 4.783 | [25] |
Tebuthiuron | 0.116; 0.955 mg L−1 | 14 d | - | - | - | 0.876 | [25] |
Diclofop-methyl | 0.6 µg L−1 | 28 d | - | - | - | 2.15 | [47] |
Lambda-cyhalothrin + acetamiprid | 0.066 + 0.0374 µg L−1 | 28 d | - | - | - | 29.45–35.41 | [48] |
Florfenicol | 10.00 µg mL−1 | 48 h | 0.008 h−1 | 0.15 h−1 | 5 h | 0.05 | [36] |
Mixture | Herbicide | AR (kg ha−1) | EMCwater (mg L−1) | Exp Cfish (mg kg−1) | ADI * | MDI ** | |
---|---|---|---|---|---|---|---|
AMT + TBUT | AMT | 3.27 | 2 | 0.10 | 0.327 | 0.02 | 4.28 |
TBUT | 1.37 | 1.2 | 0.06 | 0.082 | 0.07 | 59.61 | |
(DIU + HEX) +TBUT | HEX | 0.51 | 0.26 | 0.013 | 0.007 | 0.1 | 1055.81 |
DIU | 7.10 | 0.93 | 0.047 | 0.334 | 0.007 | 1.47 | |
TBUT | 1.44 | 1.2 | 0.06 | 0.086 | 0.07 | 56.71 | |
(DIU + HEX) +TBUT + AMT | AMT | 1.93 | 1.5 | 0.075 | 0.145 | 0.02 | 9.67 |
TBUT | 1.27 | 1.2 | 0.06 | 0.076 | 0.07 | 64.30 | |
HEX | 0.21 | 0.26 | 0.013 | 0.003 | 0.1 | 2564.10 | |
DIU | 3.45 | 0.93 | 0.047 | 0.161 | 0.007 | 3.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jonsson, C.M.; de Queiroz, S.C.d.N. Concepts on Accumulation of Pesticides and Veterinary Drugs in Fish: A Review with Emphasis in Tilapia. Animals 2023, 13, 2748. https://doi.org/10.3390/ani13172748
Jonsson CM, de Queiroz SCdN. Concepts on Accumulation of Pesticides and Veterinary Drugs in Fish: A Review with Emphasis in Tilapia. Animals. 2023; 13(17):2748. https://doi.org/10.3390/ani13172748
Chicago/Turabian StyleJonsson, Claudio Martín, and Sonia Claudia do Nascimento de Queiroz. 2023. "Concepts on Accumulation of Pesticides and Veterinary Drugs in Fish: A Review with Emphasis in Tilapia" Animals 13, no. 17: 2748. https://doi.org/10.3390/ani13172748
APA StyleJonsson, C. M., & de Queiroz, S. C. d. N. (2023). Concepts on Accumulation of Pesticides and Veterinary Drugs in Fish: A Review with Emphasis in Tilapia. Animals, 13(17), 2748. https://doi.org/10.3390/ani13172748