Seasonal Effect of Grass Nutritional Value on Enteric Methane Emission in Islands Pasture Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Characterisation of Bovine Farms
2.2. Determination of Nutritional Parameters
Chemical Analyses
2.3. Determination of Biological Parameters
2.4. Development of Tier 2 Enteric Methane Emission Factors for Cattle in the Azores
2.5. Statistical Analyses
3. Results
3.1. Determination of Nutritional Parameters
3.2. Diet Composition
3.3. Enteric Methane Emission Factors for Cattle in the Azores
Coefficients Used
3.4. Estimation of Enteric Methane Emission Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dubeux, J.C.B.; Sollenberger, L.E.; Mathews, B.W.; Scholberg, J.M.; Santos, H.Q. Nutrient cycling in warm-climate grasslands. Crop Sci. 2007, 47, 915–928. [Google Scholar] [CrossRef]
- Vargas, J.; Ungerfeld, E.; Muñoz, C.; DiLorenzo, N. Feeding Strategies to Mitigate Enteric Methane Emission from Ruminants in Grassland Systems. Animals 2022, 12, 1132. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, S.; Painter, J.; Shea, M. Animal Agriculture and Climate Change in the US and UK, Elite Media: Volume, Responsibilities, Causes and Solutions. Environ. Commun. 2021, 15, 153–172. [Google Scholar] [CrossRef] [PubMed]
- Slayi, M.; Kayima, D.; Jaja, I.F. Enteric methane output and weight accumulation of Nguni and Bonsmara cows raised under different grazing conditions. Pastoralism 2023, 13, 12. [Google Scholar] [CrossRef]
- Løvendahl, P.; Difford, G.F.; Li, B.; Chagunda, M.G.G.; Huhtanen, P.; Lidauer, M.H.; Lassen, J.; Lund, P. Review: Selecting for improved feed efficiency and reduced methane emissions in dairy cattle. Animal 2018, 12, s336–s349. [Google Scholar] [CrossRef]
- Guyader, J.; Janzen, H.H.; Kroebel, R.; Beauchemin, K.A. Forage use to improve environmental sustainability of ruminant production. J. Anim. Sci. 2016, 94, 3147–3158. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. Mitigation of methane and nitrous oxide from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef]
- Kaewpila, C.; Sommart, K. Development of methane conversion factor models for Zebu beef cattle fed low-quality crop residues and by-products in tropical regions. Ecol. Evol. 2016, 6, 7422–7432. [Google Scholar] [CrossRef]
- Islam, M.; Kim, S.-H.; Son, A.-R.; Lee, S.-S.; Lee, S.-S. Breed and Season-Specific Methane Conversion Factors Influence Methane Emission Factor for Enteric Methane of Dairy Steers. Sustainability 2022, 14, 7030. [Google Scholar] [CrossRef]
- Nunes, H.P.B.; Borba, A.E.S.; da Silva, J.F.M. Impacts of trace element supplementation on productive/reproductive postpartum performances of grazing dairy heifers from volcanic soils. J. Anim. Behav. Biometeorol. 2022, 10, 2236. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. IPCC Guidelines for National Greenhouse Inventories, 4. In Agriculture, Forestry and Other Land Use; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006. [Google Scholar]
- Intergovernmental Panel on Climate Change. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change: Kanagawa, Japan, 2019. [Google Scholar]
- SREA. Serviço Regional de Estatística Dos Açores—Séries Longas Agricultura Pecuária Pescas; Angra do Heroísmo: Terceira Island, Portugal, 2021. [Google Scholar]
- Maduro Dias, C.; Nunes, H.; Borba, A. Near-Infrared Spectroscopy Integration in the Regular Monitorization of Pasture Nutritional Properties and Gas Production. Agriculture 2023, 13, 1398. [Google Scholar] [CrossRef]
- Instituto Nacional de Estatística—Recenseamento Agrícola. Análise dos Principais Resultados: 2019; INE: Lisboa, Portugal, 2021; Available online: https://www.ine.pt/xurl/pub/437178558 (accessed on 26 July 2023).
- Massot, A. The Agriculture of the Azores Islands, Submitted to European Parliament’s Committee on Agriculture and Rural Development on the Occasion of the Delegation to Azores Islands; European Parliament: Strasbourg, France, 2015. [Google Scholar]
- Van Gastelen, S.; Dijkstra, J.; Bannink, A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep? J. Dairy Sci. 2019, 102, 6109–6130. [Google Scholar] [CrossRef] [PubMed]
- A.O.A.C. (Association of Official Analytical Chemists). Official Methods of Analysis, 12th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1999. [Google Scholar]
- Goering, H.K.; van Soest, P.J. Forage Fiber Analysis (Apparatus, Reagents, Procedures, and Some Applications). In Agriculture Handbook 379; ARS USDA: Washington, DC, USA, 1970. [Google Scholar]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Alexander, R.H.; McGowan, M. The routine determination of in vitro digestibility of organic matter in forages. An investigation of the problems associated with continuous large-scale operation. Grass Forage Sci. 1966, 21, 140–147. [Google Scholar] [CrossRef]
- Nunes, H.P.B.; Maduro Dias, C.S.A.M.; Borba, A.E.S. Bioprospecting essential oils of exotic species as potential mitigations of ruminant enteric methanogenesis. Heliyon 2023, 9, e12786. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle; National Research Council of the National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- IRERPA 2021—Inventário Regional de Emissões Por Fontes E Remoção Por Sumidouros de Poluentes Atmosféricos: Emissões de Gases Com Efeito de Estufa Na Região Autónoma dos Açores de 1990 A 2019; Direção Regional do Ambiente e Alterações Climáticas: Horta, Açores, Portugal, 2021.
- Caicedo, Y.C.; Garrido Galindo, A.P.; Fuentes, I.M. Association of the chemical composition and nutritional value of forage resources in Colombia with methane emissions by enteric fermentation. Trop. Anim. Health Prod. 2023, 55, 84. [Google Scholar] [CrossRef]
- Eugène, M.; Klumpp, K.; Sauvant, D. Methane mitigating options with forages fed to ruminants. Grass Forage Sci. 2021, 76, 196–204. [Google Scholar] [CrossRef]
- Nunes, H.; Faheem, M.; Dinis, M.; Borba, A.; Moreira da Silva, F. Effect of feed with Pittosporum undulatum in vivo on bovine progesterone levels and embryos produced in vitro. Can. J. Anim. Sci. 2016, 97, 14–18. [Google Scholar] [CrossRef]
- Leahy, S.; Journeaux, P.; Kearney, L. Greenhouse Gas Emissions on New Zealand Farms: A Companion Guide to the Climate Change Seminars for Rural Professionals; New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC): Palmerston North, New Zealand, 2022. [Google Scholar]
- Chebli, Y.; El Otmani, S.; Chentouf, M.; Hornick, J.-L.; Cabaraux, J.-F. Temporal Variations in Chemical Composition, In Vitro Digestibility, and Metabolizable Energy of Plant Species Browsed by Goats in Southern Mediterranean Forest Rangeland. Animals 2021, 11, 1441. [Google Scholar] [CrossRef]
- Lowe, K.F.; Hume, D.E.; Fulkerson, W.J. Forages and Pastures: Perennial Forage and Pasture Crops—Species and Varieties. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Getiso, A.; Mijena, D. Feeding and Nutritional Strategies to Reduce Methane Emission from Large Ruminants: Review. J. Aquac. Livest. Production 2021. [Google Scholar] [CrossRef]
- Silva, E.; Mendes, A.B.; Rosa, H.J. Dairy Farming Systems’ Adaptation to Climate Change. Agric. Sci. 2016, 7, 137–145. [Google Scholar] [CrossRef]
- Pereira, A.M.; Peixoto, P.; Rosa, H.J.D.; Vouzela, C.; Madruga, J.S.; Borba, A.E.S. A Longitudinal Study with a Laser Methane Detector (LMD) Highlighting Lactation Cycle-Related Differences in Methane Emissions from Dairy Cows. Animals 2023, 13, 974. [Google Scholar] [CrossRef] [PubMed]
- van Wyngaard, J.D.V.; Meeske, R.; Erasmus, L.J. Effect of concentrate feeding level on methane emissions, production performance and rumen fermentation of Jersey cows grazing ryegrass pasture during spring Anim. Feed Sci. Technol. 2018, 24, 121–132. [Google Scholar] [CrossRef]
- Soder, K.J.; Brito, A. Enteric methane emissions in grazing dairy systems. JDS Commun. 2023, 4, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Fernández, C.; Hernández, A.; Gomis-Tena, J.; Loor, J.J. Changes in nutrient balance, methane emissions, physiologic biomarkers, and production performance in goats fed different forage-to-concentrate ratios during lactation. J. Anim. Sci. 2023, 99, skab114. [Google Scholar] [CrossRef]
Winter | Spring | Summer | Autumn | Mean | SEM | p Value | |
---|---|---|---|---|---|---|---|
DM (%) | 12.44 a,b | 16.89 b | 24.89 c | 9.42 a | 15.91 | 2.91 | <0.01 |
CP (%DM) | 21.58 a | 14.62 b | 11.63 b | 22.91 a | 17.69 | 2.35 | 0.03 |
NDF (%DM) | 63.92 a | 66.22 a | 76.71 b | 65.90 a | 68.19 | 2.49 | 0.02 |
ADF (%DM) | 28.01 a | 33.42 b | 37.22 c | 34.23 b | 33.22 | 1.66 | <0.01 |
ADL (%DM) | 2.25 a | 4.64 b | 4.95 b | 5.52 b | 4.34 | 0.62 | <0.05 |
EE (%DM) | 3.20 a | 2.20 b | 1.73 b | 1.81 b | 2.24 | 0.30 | 0.04 |
Ash (%DM) | 12.94 a | 7.90 b | 7.36 b | 12.75 a | 10.24 | 1.31 | <0.01 |
DMD (%) | 64.02 a | 54.98 b | 46.71 c | 65.16 a | 57.72 | 3.74 | <0.05 |
OMD (%) | 57.73 a | 51.83 a | 44.30 b | 61.16 a | 53.76 | 3.20 | <0.05 |
Feeds | DM (%) | Per 100 g of DM | DMD (%) | |||||
---|---|---|---|---|---|---|---|---|
CP | NDF | ADF | ADL | EE | Ash | |||
Grass Silage | 31.97 | 12.72 | 60.12 | 39.73 | 5.64 | 3.10 | 11.07 | 61.78 |
Corn Silage | 31.24 | 7.64 | 49.40 | 31.50 | 5.41 | 3.20 | 5.98 | 70.02 |
Calves concentrate | 86.89 | 18.70 | 25.27 | 7.22 | 2.03 | 3.91 | 6.79 | 81.98 |
Finishing concentrate | 87.05 | 18.81 | 27.99 | 8.30 | 2.77 | 3.18 | 6.34 | 81.56 |
Heifers concentrate | 87.85 | 18.93 | 26.78 | 11.69 | 2.35 | 3.57 | 6.38 | 80.84 |
Dairy cattle concentrate | 91.24 | 18.78 | 26.97 | 14.19 | 2.24 | 3.21 | 6.57 | 85.01 |
Category | Coefficients | |||
---|---|---|---|---|
Maintenance (Cfi) | Activity (Ca) | Growth * (Cg) | Pregnancy (Cp) | |
Beef Calves | 0.322 | 0.17 | 1 | n.a |
Dairy Calves—Male | 0.322 | 0.17 | 1.2 | n.a |
Dairy Calves—Female | 0.322 | 0.17 | 0.8 | n.a |
Dairy cattle—Pregnant | 0.386 | 0.17 | n.a | 0.1 |
Dairy cattle—non-pregnant | 0.386 | 0.17 | n.a | n.a |
Beef cattle—Pregnant | 0.386 | 0.17 | n.a | 0.1 |
Beef cattle—non-pregnant | 0.386 | 0.17 | n.a | n.a |
Replacement heifers | 0.322 | 0.17 | 0.8 | n.a |
Other bovines | 0.322 | Na | 1 | n.a |
Breeding bulls | 0.37 | 0.17 | n.a | n.a |
Parameter | Calves | Dairy Cattle | Beef Cattle | Replacement Heifers | Other Bovines | Breeding Bulls | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Beef Calves | Dairy Calves | Pregnant | Non-Pregnant | Pregnant | Non-Pregnant | ||||||
Male | Female | ||||||||||
NEm (MJ/day) | 17.12 | 15.49 | 15.49 | 43.84 | 37.71 | 45.62 | 43.24 | 28.80 | 36.57 | 50.35 | |
NEa (MJ/day) | 2.91 | 2.63 | 2.63 | 7.45 | 6.41 | 7.76 | 7.35 | 4.90 | 0.00 | 8.56 | |
NEg (MJ/day) | 8.07 | 4.65 | 6.30 | n.a | n.a | n.a | n.a | 11.71 | 26.90 | n.a | |
NEl (MJ/day) | n.a | n.a | n.a | 69.84 | 52.38 | 17.34 | 13.46 | n.a | n.a | n.a | |
NEp (MJ/day) | n.a | n.a | n.a | 6.98 | 5.24 | 1.73 | 1.35 | n.a | n.a | n.a | |
DE (as %GE) | Spring | 65.12 | 62.42 | 60.40 | 63.17 | 63.17 | 56.34 | 56.34 | 55.66 | 67.38 | 55.66 |
Summer | 63.32 | 59.79 | 56.27 | 61.22 | 61.22 | 51.23 | 51.23 | 49.72 | 67.91 | 49.72 | |
Autumn | 69.19 | 67.51 | 65.49 | 68.27 | 68.27 | 64.15 | 64.15 | 64.82 | 70.92 | 64.82 | |
Winter | 69.56 | 67.75 | 64.92 | 69.194 | 69.19 | 63.35 | 63.35 | 63.57 | 70.47 | 63.80 | |
REG (%) | Spring | 1.35 | 1.39 | 1.42 | 1.37 | 1.37 | 1.50 | 1.50 | 1.51 | 1.31 | 1.51 |
Summer | 1.38 | 1.43 | 1.50 | 1.41 | 1.41 | 1.60 | 1.60 | 1.63 | 1.30 | 1.63 | |
Autumn | 1.28 | 1.31 | 1.34 | 1.30 | 1.30 | 1.36 | 1.36 | 1.35 | 1.26 | 1.35 | |
Winter | 1.22 | 1.27 | 1.31 | 1.25 | 1.25 | 1.38 | 1.38 | 1.37 | 1.27 | 1.37 | |
REM (%) | Spring | 1.20 | 1.24 | 1.26 | 1.23 | 1.23 | 1.31 | 1.31 | 1.32 | 1.18 | 1.32 |
Summer | 1.22 | 1.27 | 1.31 | 1.25 | 1.25 | 1.38 | 1.38 | 1.41 | 1.17 | 1.41 | |
Autumn | 1.16 | 1.18 | 1.20 | 1.17 | 1.17 | 1.21 | 1.21 | 1.21 | 1.14 | 1.21 | |
Winter | 1.15 | 1.17 | 1.21 | 1.16 | 1.16 | 1.22 | 1.22 | 1.22 | 1.14 | 1.22 | |
GEI (MJ/day) | Spring | 39.97 | 34.39 | 37.33 | 200.77 | 152.77 | 127.86 | 113.67 | 74.48 | 84.70 | 105.84 |
Summer | 40.91 | 35.73 | 39.69 | 207.16 | 157.63 | 140.62 | 125.01 | 82.23 | 84.22 | 118.48 | |
Autumn | 38.04 | 32.10 | 34.85 | 185.79 | 141.37 | 112.31 | 99.4 | 65.34 | 1.67 | 90.88 | |
Winter | 37.87 | 31.99 | 35.11 | 183.29 | 139.47 | 113.72 | 101.10 | 66.43 | 82.04 | 92.35 | |
Ym (%) | Spring | 6.30 | 6.30 | 6.30 | 6.30 | 6.30 | 7.00 | 7.00 | 7.00 | 6.30 | 7.00 |
Summer | 6.30 | 7.00 | 7.00 | 6.50 | 6.50 | 7.00 | 7.00 | 7.00 | 6.30 | 7.00 | |
Autumn | 6.30 | 6.30 | 6.30 | 6.30 | 6.30 | 6.30 | 6.30 | 6.30 | 4.00 | 6.50 | |
Winter | 6.30 | 6.30 | 6.30 | 6.30 | 6.30 | 6.30 | 6.30 | 6.30 | 4.00 | 6.50 |
Emission Factor (Kg CH4/Head/Season) | Total per Year (kg CH4/Head) | ||||
---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | ||
Beef Calves | 16.52 | 17.25 | 15.72 | 15.80 | 65.29 |
Dairy Calves—Male | 17.11 | 20.14 | 16.04 | 16.15 | 69.44 |
Dairy Calves—Female | 17.59 | 20.75 | 16.44 | 16.56 | 71.34 |
Dairy cattle—Pregnant | 16.79 | 18.32 | 15.76 | 15.87 | 66.75 |
Dairy cattle—non-pregnant | 16.25 | 17.93 | 15.26 | 15.57 | 65.01 |
Beef cattle—Pregnant | 20.52 | 22.49 | 16.72 | 16.90 | 76.64 |
Beef cattle—non-pregnant | 19.28 | 22.00 | 16.33 | 16.19 | 73.80 |
Replacement heifers | 20.15 | 22.34 | 16.26 | 16.44 | 75.19 |
Other bovines | 9.94 | 15.80 | 9.82 | 9.83 | 45.39 |
Breeding bulls | 20.94 | 23.71 | 17.11 | 17.33 | 79.09 |
Emission Total CH4 (t CH4) | |||||
---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | Total/Category/Year | |
Beef Calves | 449 | 469 | 428 | 430 | 1776 |
Dairy Calves—Male | 428 | 503 | 401 | 404 | 1736 |
Dairy Calves—Female | 651 | 768 | 608 | 613 | 2639 |
Dairy cattle—Pregnant | 1326 | 1446 | 1245 | 1253 | 5270 |
Dairy cattle—non-pregnant | 252 | 276 | 237 | 239 | 1004 |
Beef cattle—Pregnant | 698 | 765 | 569 | 575 | 2605 |
Beef cattle—non-pregnant | 140 | 153 | 114 | 115 | 521 |
Replacement heifers | 1007 | 1117 | 813 | 822 | 3759 |
Other bovines | 139 | 221 | 137 | 138 | 635 |
Breeding bulls | 105 | 119 | 86 | 87 | 395 |
Total/season | 5194 | 5837 | 4637 | 4674 | 20,341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, H.P.B.; Maduro Dias, C.S.A.M.; Vouzela, C.M.; Borba, A.E.S. Seasonal Effect of Grass Nutritional Value on Enteric Methane Emission in Islands Pasture Systems. Animals 2023, 13, 2766. https://doi.org/10.3390/ani13172766
Nunes HPB, Maduro Dias CSAM, Vouzela CM, Borba AES. Seasonal Effect of Grass Nutritional Value on Enteric Methane Emission in Islands Pasture Systems. Animals. 2023; 13(17):2766. https://doi.org/10.3390/ani13172766
Chicago/Turabian StyleNunes, Helder P. B., Cristiana S. A. M. Maduro Dias, Carlos M. Vouzela, and Alfredo E. S. Borba. 2023. "Seasonal Effect of Grass Nutritional Value on Enteric Methane Emission in Islands Pasture Systems" Animals 13, no. 17: 2766. https://doi.org/10.3390/ani13172766
APA StyleNunes, H. P. B., Maduro Dias, C. S. A. M., Vouzela, C. M., & Borba, A. E. S. (2023). Seasonal Effect of Grass Nutritional Value on Enteric Methane Emission in Islands Pasture Systems. Animals, 13(17), 2766. https://doi.org/10.3390/ani13172766