The Beneficial Effect of Resveratrol on the Quality of Frozen-Thawed Boar Sperm
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Semen Collection
2.3. Semen Freezing and Thawing Protocol
2.4. Assessment of Sperm Motility
2.5. Assessment of Sperm Viability
2.6. Assessment of Acrosome Integrity
2.7. Assessment of Mitochondrial Membrane Potential
2.8. Measurement of Malondialdehye (MDA) Levels
2.9. Statistical Analysis
3. Results
3.1. Effect of Resveratrol on the Frozen-Thawed Boar Sperm Parameters
3.2. Effect of Resveratrol on the Lipid Peroxidation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medeiros, C.M.; Forell, F.; Oliveira, A.T.; Rodrigues, J.L. Current status of sperm cryopreservation: Why isn’t it better? Theriogenology 2002, 57, 327–344. [Google Scholar] [CrossRef]
- Agarwal, A.; Saleh, R.A.; Bedaiwy, M.A. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil. Steril. 2003, 79, 829–843. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Y.; Wu, C.; Qiu, S.; Chen, X.; Cai, B.; Xie, H. Freeze-thawing impairs the motility, plasma membrane integrity and mitochondria function of boar spermatozoa through generating excessive ROS. BMC Vet. Res. 2021, 17, 127. [Google Scholar] [CrossRef]
- O’Flaherty, C.; Scarlata, E. Oxidative stress and reproductive function: The protection of mammalian spermatozoa against oxidative stress. Reproduction 2022, 164, F67–F78. [Google Scholar] [CrossRef]
- Breininger, E.; Beorlegui, N.B.; O’Flaherty, C.M.; Beconi, M.T. Alpha-tocopherol improves biochemical and dynamic parameters in cryopreserved boar semen. Theriogenology 2005, 63, 2126–2135. [Google Scholar] [CrossRef]
- Satorre, M.; Breininger, E.; Beconi, M.; Beorlegui, N. α-Tocopherol modifies tyrosine phosphorylation and capacitation-like state of cryopreserved porcine sperm. Theriogenology 2007, 68, 958–965. [Google Scholar] [CrossRef]
- Gadea, J.; Sellés, E.; Marco, M.A.; Coy, P.; Matás, C.; Romar, R.; Ruiz, S. Decrease in glutathione content in boar sperm after cryopreservation: Effect of the addition of reduced glutathione to the freezing and thawing extenders. Theriogenology 2004, 62, 690–701. [Google Scholar] [CrossRef]
- Estrada, E.; Rodríguez-Gil, J.; Rocha, L.; Balasch, S.; Bonet, S.; Yeste, M. Supplementing cryopreservation media with reduced glutathione increases fertility and prolificacy of sows inseminated with frozen-thawed boar semen. Andrology 2014, 2, 88–99. [Google Scholar] [CrossRef]
- Giaretta, E.; Estrada, E.; Bucci, D.; Spinaci, M.; Rodríguez-Gil, J.E.; Yeste, M. Combining reduced glutathione and ascorbic acid has supplementary beneficial effects on boar sperm cryotolerance. Theriogenology 2015, 83, 399–407. [Google Scholar] [CrossRef]
- Chanapiwat, P.; Kaeoket, K.; Tummaruk, P. Effects of DHA-enriched hen egg yolk and L-cysteine supplementation on quality of cryopreserved boar semen. Asian J. Androl. 2009, 11, 600–608. [Google Scholar] [CrossRef]
- Kaeoket, K.; Chanapiwat, P.; Tummaruk, P.; Techakumphu, M. Supplemental effect of varying L-cysteine concentrations on the quality of cryopreserved boar semen. Asian J. Androl. 2010, 12, 760–765. [Google Scholar] [CrossRef]
- Whitaker, B.; Casey, S.; Taupier, R. N-acetyl-l-cysteine Supplementation improves boar spermatozoa characteristics and subsequent fertilization and embryonic development. Reprod. Domest. Anim. 2012, 47, 263–268. [Google Scholar] [CrossRef]
- Chanapiwat, P.; Kaeoket, K. Breed of boar influences the optimal concentration of gamma-oryzanol needed for semen cryopreservation. Reprod. Domest. Anim. 2015, 50, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Kaeoket, K.; Donto, S.; Nualnoy, P.; Noiphinit, J.; Chanapiwat, P. Effect of gamma-oryzanol-enriched rice bran oil on quality of cryopreserved boar semen. J. Vet. Med. Sci. 2012, 74, 1149–1153. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.; Tanga, B.M.; Fang, X.; Seong, G.; Saadeldin, I.M.; Qamar, A.Y.; Lee, S.; Kim, K.J.; Park, Y.J.; Nabeel, A.H.T.; et al. Cryopreservation of pig semen using a quercetin-supplemented freezing extender. Life 2022, 12, 1155. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Li, R.; Fan, X.; Lv, Y.; Zheng, Y.; Hoque, S.; Wu, D.; Zeng, W. Resveratrol improves Boar sperm quality via 5AMP-activated protein kinase activation during cryopreservation. Oxid. Med. Cell Longev. 2019, 2019, 5921503. [Google Scholar] [CrossRef]
- Chanapiwat, P.; Kaeoket, K. The effect of Curcuma longa extracted (curcumin) on the quality of cryopreserved boar semen. Anim. Sci. J. 2015, 86, 863–868. [Google Scholar]
- De La Lastra, C.A.; Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem. Soc. Trans. 2007, 35, 1156–1160. [Google Scholar] [CrossRef]
- Mojica-Villegas, M.A.; Izquierdo-Vega, J.A.; Chamorro-Cevallos, G.; Sánchez-Gutiérrez, M. Protective effect of resveratrol on biomarkers of oxidative stress induced by iron/ascorbate in mouse spermatozoa. Nutrients 2014, 6, 489–503. [Google Scholar] [CrossRef]
- Falchi, L.; Pau, S.; Pivato, I.; Bogliolo, L.; Zedda, M.T. Resveratrol supplementation and cryopreservation of buck semen. Cryobiology 2020, 95, 60–67. [Google Scholar] [CrossRef]
- Garcez, M.E.; dos Santos Branco, C.; Lara, L.V.; Pasqualotto, F.F.; Salvador, M. Effects of resveratrol supplementation on cryopreservation medium of human semen. Fertil. Steril. 2010, 94, 2118–2121. [Google Scholar] [CrossRef]
- Collodel, G.; Federico, M.G.; Geminiani, M.; Martini, S.; Bonechi, C.; Rossi, C.; Figura, N.; Moretti, E. Effect of trans-resveratrol on induced oxidative stress in human sperm and in rat germinal cells. Reprod. Toxicol. 2011, 31, 239–246. [Google Scholar] [CrossRef]
- Silva, E.C.; Cajueiro, J.F.; Silva, S.V.; Soares, P.C.; Guerra, M.M. Effect of antioxidants resveratrol and quercetin on in vitro evaluation of frozen ram sperm. Theriogenology 2012, 77, 1722–1726. [Google Scholar] [CrossRef]
- Tvrdá, E.; Kováčik, A.; Tušimová, E.; Massányi, P.; Lukáč, N. Resveratrol offers protection to oxidative stress induced by ferrous ascorbate in bovine spermatozoa. J. Environ. Sci. Health Part A Tox./Hazard. Subst. Environ. Eng. 2015, 50, 1440–1451. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Zhao, Y.H.; Hao, H.S.; Wang, H.Y.; Huang, J.M.; Yan, C.L.; Du, W.H.; Pang, Y.W.; Zhang, P.P.; Liu, Y.; et al. Resveratrol significantly improves the fertilisation capacity of bovine sex-sorted semen by inhibiting apoptosis and lipid peroxidation. Sci. Rep. 2018, 8, 7603. [Google Scholar] [CrossRef]
- Bucak, M.N.; Ataman, M.B.; Başpınar, N.; Uysal, O.; Taşpınar, M.; Bilgili, A.; Öztürk, C.; Güngör, Ş.; İnanç, M.E.; Akal, E. Lycopene and resveratrol improve post-thaw bull sperm parameters: Sperm motility, mitochondrial activity and DNA integrity. Andrologia 2015, 47, 545–552. [Google Scholar] [CrossRef]
- Ahmed, H.; Jahan, S.; Ullah, H.; Ullah, F.; Salman, M.M. The addition of resveratrol in tris citric acid extender ameliorates post-thaw quality parameters, antioxidant enzymes levels, and fertilizing capability of buffalo (Bubalus bubalis) bull spermatozoa. Theriogenology 2020, 152, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Fan, X.; Zeng, Y.; Wang, L.; Zhu, Z.; Li, R.; Tian, X.; Wang, Y.; Lin, Y.; Wu, D.; et al. Resveratrol protects boar sperm in vitro via its antioxidant capacity. Zygote 2020, 28, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, F.S.; Hezavehei, M.; Sharafi, M.; Shahverdi, A. Improving the post-thaw quality of rooster semen using the extender supplemented with resveratrol. Poult. Sci. 2021, 100, 101290. [Google Scholar] [CrossRef]
- King, G.J.; Macpherson, J.W. A Comparison of Two Methods for Boar Semen Collection. J. Anim. Sci. 1973, 36, 563–565. [Google Scholar] [CrossRef]
- Vilagran, I.; Yeste, M.; Sancho, S.; Castillo, J.; Oliva, R.; Bonet, S. Comparative analysis of boar seminal plasma proteome from different freezability ejaculates and identification of Fibronectin 1 as sperm freezability marker. Andrology 2015, 3, 345–356. [Google Scholar] [CrossRef]
- Henning, H.; Luther, A.-M.; Höfner-Schmiing, L.; Waberski, D. Compensability of an enhanced incidence of spermatozoa with cytoplasmic droplets in boar semen for use in artificial insemination: A single cell approach. Sci. Rep. 2022, 12, 21833. [Google Scholar] [CrossRef]
- Garner, D.L.; Thomas, C.A.; Joerg, H.W.; DeJarnette, J.M.; Marshall, C.E. Fluorometric assessments of mitochondrial function and viability in cryopreserved bovine spermatozoa. Biol. Reprod. 1997, 57, 1401–1406. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.J.; Ma, X.H.; Yang, Z.M. Assessment of sperm viability, mitochondrial activity, capacitation and acrosome intactness in extended boar semen during long-term storage. Theriogenology 2002, 58, 1349–1360. [Google Scholar] [CrossRef] [PubMed]
- Ratchamak, R.; Ratsiri, T.; Kheawkanha, T.; Vongpralub, T.; Boonkum, W.; Chankitisakul, V. Evaluation of cryopreserved boar semen after supplementation sericin form silkworm (Bombyx mori) in semen extender. Anim. Sci. J. 2020, 91, e13428. [Google Scholar] [CrossRef] [PubMed]
- Willcox, J.K.; Ash, S.L.; Catignani, G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004, 44, 275–295. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.; Qamar, A.Y.; Tanga, B.M.; Fang, X.; Cho, J. Resveratrol supplementation into extender protects against cryodamage in dog post-thaw sperm. J. Vet. Med. Sci. 2021, 83, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, M.J.; Herickhoff, L.A. A novel experimental design for boar sperm cryopreservation. J. Anim. Sci. 2022, 100, skac169. [Google Scholar] [CrossRef]
- Chanapiwat, P.; Kaeoket, K. Cryopreservation of boar semen: Where we are. Thai J. Vet. Med. 2020, 50, 283–295. [Google Scholar] [CrossRef]
- Roca, J.; Hernandez, M.; Cremades, T.; Vazquez, J.; Martinez, E. Sugar concentration of the freezing extender modulates the motility pattern of frozen-thawed boar spermatozoa. Biol. Reprod. 2008, 78, 225. [Google Scholar] [CrossRef]
- Martin-Hidalgo, D.; Hurtado de Llera, A.; Calle-Guisado, V.; Gonzalez-Fernandez, L.; Garcia-Marin, L.; Bragado, M.J. AMPK Function in Mammalian Spermatozoa. Int. J. Mol. Sci. 2018, 19, 3293. [Google Scholar] [CrossRef] [PubMed]
- Hurtado de Llera, A.; Martin-Hidalgo, D.; Gil, M.C.; Garcia-Marin, L.J.; Bragado, M.J. AMPK up-activation reduces motility and regulates other functions of boar spermatozoa. Mol. Hum. Reprod. 2015, 21, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Pasquariello, R.; Verdile, N.; Brevini, T.A.; Gandolfi, F.; Boiti, C.; Zerani, M.; Maranesi, M. The role of resveratrol in mammalian reproduction. Molecules 2020, 25, 4554. [Google Scholar] [CrossRef] [PubMed]
- Martins, L.A.M.; Coelho, B.P.; Behr, G.; Pettenuzzo, L.F.; Souza, I.C.; Moreira, J.C.F.; Borojevic, R.; Gottfried, C.; Guma, F.C.R. Resveratrol induces pro-oxidant effects and time-dependent resistance to cytotoxicity in activated hepatic stellate cells. Cell Biochem. Biophys. 2014, 68, 247–257. [Google Scholar] [CrossRef]
- Shaito, A.; Posadino, A.M.; Younes, N.; Hasan, H.; Halabi, S.; Alhababi, D.; Al-Mohannadi, A.; Abdel-Rahman, W.M.; Eid, A.H.; Nasrallah, G.K.; et al. Potential adverse effects of resveratrol: A literature review. Int. J. Mol. Sci. 2020, 21, 2084. [Google Scholar] [CrossRef]
- Bucci, D.; Spinaci, M.; Yeste, M.; Mislei, B.; Gadani, B.; Martinez, N.P.; Love, C.; Mari, G.; Tamanini, C.; Galeati, G. Combined effects of resveratrol and epigallocatechin-3-gallate on post thaw boar sperm and IVF parameters. Theriogenology 2018, 117, 16–25. [Google Scholar] [CrossRef] [PubMed]
Parameters | Mean ± SD | Range |
---|---|---|
Concentration (×106 sperm/mL) | 539.8 ± 155.4 | 451–825 |
Total motility (%) | 83.0 ± 7.6 | 75–95 |
Sperm viability (%) | 79.8 ± 8.1 | 75–90 |
Acrosome integrity (%) | 91.6 ± 5.6 | 78–96 |
Sperm morphology (%) | 88.3 ± 4.7 | 84–94 |
Parameters | Resveratrol Concentrations | ||||||
---|---|---|---|---|---|---|---|
Control | 25 μM | 50 μM | 75 μM | 100 μM | 125 μM | 250 μM | |
MOT | 33.5 ± 3.3 b | 45.7 ± 2.5 ab | 49.2 ± 3.2 a | 48.9 ± 3.7 a | 48.7± 3.4 a | 47.6 ± 3.6 a | 36.4 ± 3.9 ab |
PMOT | 23.8 ± 3.2 b | 37.3 ± 2.9 ab | 41.3 ± 3.0 a | 40.3 ± 3.8 a | 41.1± 3.6 a | 37.2 ± 3.9 ab | 25.9 ± 4.0 b |
VCL | 31.8 ± 1.9 b | 38.1 ± 3.2 ab | 48.8 ± 2.6 a | 43.9 ± 2.9 a | 39.5 ± 2.9 ab | 38.3 ± 3.9 ab | 34.5 ± 2.5 b |
VSL | 11.9 ± 0.9 b | 14.1 ± 1.3 ab | 16.5 ± 0.8 a | 15.7 ± 1.5 ab | 14.3 ± 1.4 ab | 11.9 ± 0.9 b | 13.4 ± 1.5 ab |
VAP | 15.5 ± 1.1 b | 18.5 ± 1.6 ab | 24.5 ± 1.2 a | 22.1 ± 1.7 a | 18.1 ± 1.7 ab | 18.5 ± 1.6 ab | 17.6 ± 1.7 ab |
ALH | 0.34 ± 0.03 b | 0.43 ± 0.04 ab | 0.46 ± 0.03 a | 0.41 ± 0.02 ab | 0.42 ± 0.03 ab | 0.43 ± 0.04 ab | 0.37 ± 0.04 ab |
STR | 76.8 ± 1.7 | 76.1 ± 1.9 | 75.2 ± 1.2 | 77.7 ± 2.0 | 78.1 ± 1.5 | 76.8 ± 1.7 | 76.5 ± 1.4 |
LIN | 37.5 ± 2.1 | 38.4 ± 1.9 | 36.8 ± 0.8 | 40.3 ± 2.0 | 38.7 ± 1.9 | 37.5 ± 2.1 | 39.0 ± 2.8 |
Group | Sperm Parameters | ||
---|---|---|---|
Viability | Intact Acrosome | MMP | |
Control | 38.8 ± 4.0 b | 40.6 ± 2.5 b | 47.9 ± 1.5 c |
Resveratrol 25 μM | 47.3 ± 1.9 ab | 50.0± 2.9 a | 55.9 ± 1.7 ab |
Resveratrol 50 μM | 52.2 ± 2.4 a | 49.5 ± 1.8 a | 60.7 ± 2.0 a |
Resveratrol 75 μM | 51.1 ± 3.4 a | 44.9 ± 3.4 ab | 58.0 ± 2.0 ab |
Resveratrol 100 μM | 49.5 ± 2.4 a | 42.1± 2.9 ab | 57.7 ± 2.8 ab |
Resveratrol 125 μM | 46.6 ± 2.7 ab | 43.7 ± 2.5 ab | 59.2 ± 2.5 ab |
Resveratrol 250 μM | 44.5 ± 3.6 ab | 40.1 ± 2.1 b | 53.9 ± 2.5 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaeoket, K.; Chanapiwat, P. The Beneficial Effect of Resveratrol on the Quality of Frozen-Thawed Boar Sperm. Animals 2023, 13, 2829. https://doi.org/10.3390/ani13182829
Kaeoket K, Chanapiwat P. The Beneficial Effect of Resveratrol on the Quality of Frozen-Thawed Boar Sperm. Animals. 2023; 13(18):2829. https://doi.org/10.3390/ani13182829
Chicago/Turabian StyleKaeoket, Kampon, and Panida Chanapiwat. 2023. "The Beneficial Effect of Resveratrol on the Quality of Frozen-Thawed Boar Sperm" Animals 13, no. 18: 2829. https://doi.org/10.3390/ani13182829
APA StyleKaeoket, K., & Chanapiwat, P. (2023). The Beneficial Effect of Resveratrol on the Quality of Frozen-Thawed Boar Sperm. Animals, 13(18), 2829. https://doi.org/10.3390/ani13182829