Effects of Phlorotannins from Sargassum on In Vitro Rumen Fermentation, Microbiota and Fatty Acid Profile
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Phlorotannin Extraction
2.2. In Vitro Ruminal Fermentation
2.3. Chemical Analysis
2.4. Bacterial DNA Extraction and 16S rRNA Amplicon Sequencing
2.5. Statistical Analysis
3. Results
3.1. Effect of PT Extract on In Vitro Rumen Fermentation Parameters
3.2. Effect of PT Extract on FA Composition of Fermented Ruminal Fluid
3.3. Effects of PT Extract on Rumen Bacterial Community
3.4. Correlations between Microbes and FAs in Rumen
4. Discussion
4.1. Effects of PT Extract on In Vitro Rumen Fermentation
4.2. Effects of PT Extract on Rumen FA Composition
4.3. Effects of PT Extract on Rumen Bacterial Community
4.4. Correlation between Rumen Bacterial Community and FAs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jenkins, T.C.; Wallace, R.J.; Moate, P.J.; Mosley, E.E. Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 2008, 86, 397–412. [Google Scholar] [CrossRef]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E.R. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef] [PubMed]
- Bessa, R.J.B.; Santos-Silva, J.; Ribeiro, J.M.R.; Portugal, A.V. Reticulo-rumen biohydrogenation and the enrichment of ruminant edible products with linoleic acid conjugated isomers. Livest. Prod. Sci. 2000, 63, 201–211. [Google Scholar] [CrossRef]
- Vasta, V.; Bessa, R.J.B. Manipulating ruminal biohydrogenation by the use of plants bioactive compounds. In Dietary Phytochemicals and Microbes; Patra, A.K., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 263–284. [Google Scholar]
- Frutos, P.; Hervás, G.; Natalello, A.; Luciano, G.; Fondevila, M.; Priolo, A.; Toral, P.G. Ability of tannins to modulate ruminal lipid metabolism and milk and meat fatty acid profiles. Anim. Feed Sci. Technol. 2020, 269, 114623. [Google Scholar] [CrossRef]
- Morales, R.; Ungerfeld, E.M. Use of tannins to improve fatty acids profile of meat and milk quality in ruminants: A review. Chil. J. Agric. Res. 2015, 75, 239–248. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, R.; Saravanan, M.; Baruah, L.; Prasad, C.S. Effects of graded levels of tannin-containing tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production. J. Appl. Microbiol. 2015, 118, 557–564. [Google Scholar] [CrossRef]
- Jayanegara, A.; Goel, G.; Makkar, H.P.S.; Becker, K. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 2015, 209, 60–68. [Google Scholar] [CrossRef]
- Huyen, N.T.; Fryganas, C.; Uittenbogaard, G.; Mueller-Harvey, I.; Verstegen, M.; Hendriks, W.H.; Pellikaan, W. Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics. J. Agric. Sci. 2016, 154, 1474–1487. [Google Scholar] [CrossRef]
- Mueller-Harvey, I. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 2006, 86, 2010–2037. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. Exploration of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2011, 91, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Al-Dobaib, S.N. Effect of different levels of quebracho tannin on nitrogen utilization and growth performance of Najdi sheep fed alfalfa (Medicago sativa) hay as a sole diet. Anim. Sci. J. 2009, 80, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.Y.; Sieo, C.C.; Abdullah, N.; Liang, J.B.; Huang, X.D.; Ho, Y.W. Effects of condensed tannins from Leucaena on methane production: Rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol. 2011, 169, 185–193. [Google Scholar] [CrossRef]
- Vasta, V.; Makkar, H.P.S.; Mele, M.; Priolo, A. Ruminal biohydrogenation as affected by tannins in vitro. Brit. J. Nutr. 2009, 102, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Z.; Bach, S.J.; McAllister, T.A. Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Anim. Feed Sci. Technol. 2008, 145, 375–395. [Google Scholar] [CrossRef]
- Vissers, A.M.; Pellikaan, W.F.; Bouwhuis, A.; Vincken, J.P.; Gruppen, H.; Hendriks, W.H. Laminaria digitata phlorotannins decrease protein degradation and methanogenesis during in vitro ruminal fermentation. J. Sci. Food Agric. 2018, 98, 3644–3650. [Google Scholar] [CrossRef]
- Carreño, D.; Hervás, G.; Toral, P.G.; Belenguer, A.; Frutos, P. Ability of different types and doses of tannin extracts to modulate in vitro ruminal biohydrogenation in sheep. Anim. Feed Sci. Technol. 2015, 202, 45–51. [Google Scholar] [CrossRef]
- Jerónimo, E.; Alves, S.P.; Dentinho, M.T.P.; Martins, S.V.; Prates, J.A.M.; Vasta, V.; Santos-Silva, J.; Bessa, R.J.B. Effect of grape seed extract, Cistus ladanifer L. and vegetable oil supplementation on fatty acid composition of abomasal digesta and intramuscular fat of lambs. J. Agric. Food Chem. 2010, 58, 10710–10721. [Google Scholar] [CrossRef]
- Natalello, A.; Luciano, G.; Morbidini, L.; Valenti, B.; Pauselli, M.; Frutos, P.; Biondi, L.; Rufino-Moya, P.J.; Lanza, M.; Priolo, A. Effect of Feeding Pomegranate Byproduct on Fatty Acid Composition of Ruminal Digesta, Liver, and Muscle in Lambs. J. Agric. Food Chem. 2019, 67, 4472–4482. [Google Scholar] [CrossRef]
- Mannelli, F.; Daghio, M.; Alves, S.P.; Bessa, R.J.B.; Minieri, S.; Giovannetti, L.; Conte, G.; Mele, M.; Messini, A.; Rapaccini, S.; et al. Effects of chestnut tannin extract, vescalagin and gallic acid on the dimethyl acetals profile and microbial community composition in rumen liquor: An in vitro study. Microorganisms 2019, 7, 202. [Google Scholar] [CrossRef]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef]
- Buccioni, A.; Pallara, G.; Pastorelli, R.; Bellini, L.; Cappucci, A.; Mannelli, F.; Minieri, S.; Roscini, V.; Rapaccini, S.; Mele, M.; et al. Effect of dietary chestnut or quebracho tannin supplementation on microbial community and fatty acid profile in the rumen of dairy ewes. BioMed Res. Int. 2017, 2017, 4969076. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Alves, S.; Cappucci, A.; Cook, S.R.; Duarte, A.; Caldeira, R.; McAllister, T.A.; Bessa, R.J.B. Effects of condensed and hydrolysable tannins on rumen metabolism with emphasis on the biohydrogenation of unsaturated fatty acids. J. Agric. Food Chem. 2018, 66, 3367–3377. [Google Scholar] [CrossRef] [PubMed]
- Ragan, M.A.; Glombitza, K.W. Phlorotannins, brown algal polyphenols. Prog. Phycol. Res. 1986, 4, 129–241. [Google Scholar]
- Min, B.R.; Pinchak, W.E.; Anderson, R.C.; Callaway, T.R. Effect of tannins on the in vitro growth of Escherichia coli O157:H7 and in vivo growth of generic Escherichia coli excreted from steers. J. Food. Prot. 2007, 70, 543–550. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Bach, S.J.; McAllister, T.A. Sensitivity of Escherichia coli O157:H7 to seaweed (Ascophyllum nodosum) phlorotannins and terrestrial tannins. Asian-Aust. J. Anim. Sci. 2009, 22, 238–245. [Google Scholar] [CrossRef]
- Wang, Y.; Alexander, T.W.; Mcallister, T.A. In vitro effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on rumen bacterial populations and fermentation. J. Sci. Food Agric. 2010, 89, 2252–2260. [Google Scholar] [CrossRef]
- Ford, L.; Stratakos, A.C.; Theodoridou, K.; Dick, J.T.A.; Sheldrake, G.N.; Linton, M.; Corcionivoschi, N.; Walsh, P.J. Polyphenols from Brown Seaweeds as a Potential Antimicrobial Agent in Animal Feeds. ACS Omega 2020, 5, 9093–9103. [Google Scholar] [CrossRef]
- Onodera, R.; Henderson, C. Growth factors of bacterial origin for the culture of the rumen oligotrich protozoa Entodinium caudatum. J. Appl. Bacteriol. 1980, 48, 125–134. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, v.2, 17th ed.; AOAC: Gaithersburg, VA, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Wang, Y.; McAllister, T.A.; Newbold, C.J.; Rode, L.M.; Cheeke, P.R.; Cheng, K.-J. Effects of Yucca schidigera extract on fermentation and degradation of steroidal saponins in the rumen simulation technique (RUSITEC). Anim. Feed Sci. Technol. 1998, 74, 143–153. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol–hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Saleem, A.M.; Nyachiro, J.; Gomaa, W.M.S.; Yang, W.Z.; Oatway, L.; McAllister, T.A. Effects of barley type and processing method on rumen fermentation, dry matter disappearance and fermentation characteristics in batch cultures. Anim. Feed Sci. Technol. 2020, 269, 114625. [Google Scholar] [CrossRef]
- Christie, W.W. Lipid Analysis. Isolation, Separation, Identification and Structural Analysis of Lipids; The Oily Press: Bridgwater, UK, 2003. [Google Scholar]
- Nossa, C.W.; Oberdorf, W.E.; Yang, L.; Aas, J.A.; Paster, B.J.; Desantis, T.Z.; Brodie, E.L.; Malamud, D.; Poles, M.A.; Pei, Z. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J. Gastroenterol. 2010, 16, 4135–4144. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Reyon, D.; Tsai, S.Q.; Khayter, C.; Foden, J.A.; Sander, J.D.; Joung, J.K. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 2012, 30, 460–465. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Bach, S.J.; Wang, Y.; McAllister, T.A. Effect of feeding sun-dried seaweed (Ascophyllum nodosum) on fecal shedding of Escherichia coli O157:H7 by feedlot cattle and on growth performance of lambs. Anim. Feed Sci. Technol. 2008, 142, 17–32. [Google Scholar] [CrossRef]
- Martinez, T.; McAllister, T.A.; Wang, Y.; Reuter, T. Effects of tannic acid and quebracho tannins on in vitro ruminal fermentation of wheat and corn grain. J. Sci. Food Agric. 2006, 86, 1244–1256. [Google Scholar] [CrossRef]
- Wang, Y.; Barbieri, L.R.; Berg, B.P.; McAllister, T.A. Effects of mixing sainfoin with alfalfa on ensiling, ruminal fermentation and total tract digestion of silage. Anim. Feed Sci. Technol. 2007, 135, 296–314. [Google Scholar] [CrossRef]
- Elghandour, M.M.Y.; Kholif, A.E.; Hernández, J.; Mariezcurrena, M.D.; Salem, A.Z.M. Influence of the addition of exogenous xylanase with or without pre-incubation on the in vitro ruminal fermentation of three fibrous feeds. Czech J. Anim. Sci. 2016, 61, 262–272. [Google Scholar] [CrossRef]
- Khiaosa-ard, R.; Bryner, S.F.; Scheeder, M.R.L.; Wettstein, H.R.; Leiber, F.; Kreuzer, M.; Soliva, C.R. Evidence for the inhibition of the terminal step of ruminal alpha-linolenic acid biohydrogenation by condensed tannins. J. Dairy Sci. 2009, 92, 177–188. [Google Scholar] [CrossRef]
- Buccioni, A.; Minieri, S.; Rapaccini, S.; Antongiovanni, M.; Mele, M. Effect of chestnut and quebracho tannins on fatty acid profile in rumen liquid- and solid-associated bacteria: An in vitro study. Animal 2011, 5, 1521–1530. [Google Scholar] [CrossRef]
- Costa, M.; Alves, S.P.; Cabo, Â.; Guerreiro, O.; Stilwell, G.; Dentinho, M.T.; Bessa, R.J.B. Modulation of in vitro rumen biohydrogenation by Cistus ladanifer tannins compared with other tannin sources. J. Sci. Food Agric. 2017, 97, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Campidonico, L.; Toral, P.G.; Priolo, A.; Luciano, G.; Valenti, B.; Hervás, G.; Frutos, P.; Copani, G.; Ginane, C.; Niderkorn, V. Fatty acid composition of ruminal digesta and longissimus muscle from lambs fed silage mixtures including red clover, sainfoin, and timothy. J. Anim. Sci. 2016, 94, 1550–1560. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Saxena, J. Dietary phytochemicals as rumen modifiers: A review of the effects on microbial populations. Antonie Van Leeuwenhoek 2009, 96, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Frutos, P.; Hervas, G.; Giráldez, F.J.; Mantecón, A. Review. Tannins and ruminant nutrition. Span. J. Agric. Res. 2004, 2, 191–202. [Google Scholar] [CrossRef]
- Li, R.W.; Wu, S.; Ransom, V.I.; Li, W.; Li, C. Perturbation Dynamics of the Rumen Microbiota in Response to Exogenous Butyrate. PLoS ONE 2012, 7, e29392. [Google Scholar] [CrossRef]
- Mao, S.; Zhang, M.; Liu, J.; Zhu, W. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: Membership and potential function. Sci. Rep. 2015, 5, 16116. [Google Scholar] [CrossRef]
- Zou, H.; Hu, R.; Wang, Z.; Shah, A.M.; Zeng, S.; Peng, Q.; Xue, B.; Wang, L.; Zhang, X.; Wang, X.; et al. Effects of nutritional deprivation and re-alimentation on the feed efficiency, blood biochemistry, and rumen microflora in yaks (Bos grunniens). Animals 2019, 9, 807. [Google Scholar] [CrossRef] [PubMed]
- Myer, P.R.; Smith, T.P.L.; Wells, J.E.; Kuehn, L.A.; Freetly, H.C. Rumen microbiome from steers differing in feed efficiency. PLoS ONE 2015, 10, e0129174. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, M.; Xue, C.; Zhu, W.; Mao, S. Characterization and comparison of the temporal dynamics of ruminal bacterial microbiota colonizing rice straw and alfalfa hay within ruminants. J Dairy Sci. 2016, 99, 9668–9681. [Google Scholar] [CrossRef] [PubMed]
- Saminathan, M.; Sieo, C.C.; Gan, H.M.; Ravi, S.; Venkatachalam, K.; Abdullah, N.; Wong, C.M.V.L.; Ho, Y.W. Modulatory effects of condensed tannin fractions of different molecular weights from a Leucaena leucocephala hybrid on the bovine rumen bacterial community in vitro. J. Sci. Food Agric. 2016, 96, 4565–4574. [Google Scholar] [CrossRef]
- Qiu, X.; Qin, X.; Chen, L.; Chen, Z.; Hao, R.; Zhang, S.; Yang, S.; Wang, L.; Cui, Y.; Li, Y.; et al. Serum Biochemical Parameters, Rumen Fermentation, and Rumen Bacterial Communities Are Partly Driven by the Breed and Sex of Cattle When Fed High-Grain Diet. Microorganisms 2022, 10, 323. [Google Scholar] [CrossRef]
- Song, X.; Zhong, L.; Lyu, N.; Liu, F.; Li, B.; Hao, Y.; Xue, Y.; Li, J.; Feng, Y.; Ma, Y.; et al. Inulin can alleviate metabolism disorders in ob/ob mice by partially restoring leptin-related pathways mediated by gut microbiota. Genom. Proteom. Bioinform. 2019, 17, 64–75. [Google Scholar] [CrossRef]
- Yi, S.; Dai, D.; Wu, H.; Chai, S.; Liu, S.; Meng, Q.; Zhou, Z. Dietary Concentrate-to-Forage Ratio Affects Rumen Bacterial Community Composition and Metabolome of Yaks. Front. Nutr. 2022, 9, 927206. [Google Scholar] [CrossRef]
- Gharechahi, J.; Vahidi, M.F.; Ding, X.; Han, J.; Salekdeh, G.H. Temporal changes in microbial communities attached to forages with different lignocellulosic compositions in cattle rumen. FEMS Microbiol Ecol. 2020, 96, iaa069. [Google Scholar] [CrossRef]
- Li, F.; Hitch, T.C.A.; Chen, Y.; Creevey, C.J.; Guan, L.L. Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed effciency in beef cattle. Microbiome 2019, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Hespell, R.B.; Paster, B.J.; Dewhirst, F.E. The Genus Selenomonas. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Perea, K.; Perz, K.; Olivo, S.K.; Williams, A.; Lachman, M.; Ishaq, S.L.; Thomson, J.; Yeoman, C.J. Feed effciency phenotypes involve changes in ruminal, colonic, and small intestine-located microbiota. J. Anim. Sci. 2017, 95, 2585–2592. [Google Scholar] [PubMed]
- Belanche, A.; Jones, E.; Parveen, I.; Newbold, C.J. A Metagenomics Approach to Evaluate the Impact of Dietary Supplementation with Ascophyllum nodosum or Laminaria digitata on Rumen Function in Rusitec Fermenters. Front. Microbiol. 2016, 7, 299. [Google Scholar] [CrossRef] [PubMed]
- Hua, D.; Zhao, Y.; Nan, X.; Xue, F.; Wang, Y.; Jiang, L.; Xiong, B. Effect of different glucogenic to lipogenic nutrient ratios on rumen fermentation and bacterial community in vitro. J. Appl. Microbiol. 2020, 130, 1868–1882. [Google Scholar] [CrossRef] [PubMed]
- Ransom-Jones, E.; Jones, D.L.; McCarthy, A.J.; McDonald, J.E. The Fibrobacteres: An important phylum of cellulose-degrading bacteria. Microb. Ecol. 2012, 63, 267–281. [Google Scholar] [CrossRef]
- Guerreiro, O.; Francisco, A.E.; Alves, S.P.; Soldado, D.; Cachucho, L.; Chimenos, A.U.; Duarte, F.; Santos-Silva, J.; Bessa, R.J.B.; Jerónimo, E. Inclusion of the aerial part and condensed tannin extract from Cistus ladanifer L. in lamb diets—Effects on rumen microbial community and fatty acid profile. Anim. Feed Sci. Technol. 2022, 291, 115398. [Google Scholar] [CrossRef]
- Salami, S.A.; Valenti, B.; Bella, M.; O’Grady, M.N.; Luciano, G.; Kerry, J.P.; Jones, E.; Priolo, A.; Newbold, C.J. Characterisation of the ruminal fermentation and microbiome in lambs supplemented with hydrolysable and condensed tannins. FEMS Microbiol Ecol. 2018, 94, fiy061. [Google Scholar]
- Rabee, A.E.; Rahman, T.A.E.; Lamara, M. Changes in the bacterial community colonizing extracted and non-extracted tannin-rich plants in the rumen of dromedary camels. PLoS ONE 2023, 18, e0282889. [Google Scholar] [CrossRef]
- McSweeney, C.S.; Palmer, B.; Bunch, R.; Krause, D.O. Microbial interactions with tannins: Nutritional consequences for ruminants. Anim. Feed Sci. Technol. 2001, 91, 83–93. [Google Scholar] [CrossRef]
- Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875–3883. [Google Scholar] [CrossRef]
- Smith, A.H.; Zoetendal, E.; Mackie, R.I. Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microb. Ecol. 2005, 50, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Kepler, C.R.; Hirons, K.P.; McNeill, J.J.; Tove, S.B. Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. J. Biol. Chem. 1966, 241, 1350–1354. [Google Scholar] [CrossRef]
- Paillard, D.; McKain, N.; Chaudhary, L.C.; Walker, N.D.; Pizette, F.; Koppova, I.; McEwan, N.R.; Kopecny, J.; Vercoe, P.E.; Louis, P.; et al. Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie Van Leeuwenhoek 2007, 91, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Boeckaert, C.; Vlaeminck, B.; Fievez, V.; Maignien, L.; Dijkstra, J.; Boon, N. Accumulation of trans C-18:1 fatty acids in the rumen after dietary algal supplementation is associated with changes in the Butyrivibrio community. Appl. Environ. Microbiol. 2008, 74, 6923–6930. [Google Scholar] [CrossRef] [PubMed]
- Huws, S.A.; Kim, E.J.; Lee, M.R.F.; Scott, M.B.; Tweed, J.K.S.; Pinloche, E.; Wallace, R.J.; Scollan, N.D. As yet uncultured bacteria phylogenetically classified as Prevotella, Lachnospiraceae incertae sedis and unclassified Bacteroidales, Clostridiales and Ruminococcaceae may play a predominant role in ruminal biohydrogenation. Environ. Microbiol. 2011, 13, 1500–1512. [Google Scholar] [CrossRef]
- Castro-Carrera, T.; Toral, P.G.; Frutos, P.; McEwan, N.R.; Hervás, G.; Abecia, L.; Pinloche, E.; Girdwood, S.E.; Belenguer, A. Rumen bacterial community evaluated by 454 pyrosequencing and terminal restriction fragment length polymorphism analyses in dairy sheep fed marine algae. J. Dairy Sci. 2014, 97, 1661–1669. [Google Scholar] [CrossRef]
- Cremonesi, P.; Conte, G.; Severgnini, M.; Turri, F.; Monni, A.; Capra, E.; Rapetti, L.; Colombini, S.; Chessa, S.; Battelli, G. Evaluation of the effects of different diets on microbiome diversity and fatty acid composition of rumen liquor in dairy goat. Animal 2018, 12, 1856–1866. [Google Scholar] [CrossRef] [PubMed]
- Vasta, V.; Yáñez-Ruiz, D.R.; Mele, M.; Serra, A.; Luciano, G.; Lanza, M.; Biondi, L.; Priolo, A. Bacterial and protozoal communities and fatty acid profile in the rumens of sheep fed a diet containing added tannins. Appl. Environ. Microbiol. 2010, 76, 2549–2555. [Google Scholar] [CrossRef]
- Toral, P.G.; Belenguer, A.; Shingfield, K.J.; Hervás, G.; Toivonen, V.; Frutos, P. Fatty acid composition and bacterial community changes in the rumen fluid of lactating sheep fed sunflower oil plus incremental levels of marine algae. J. Dairy Sci. 2012, 95, 794–806. [Google Scholar] [CrossRef]
Items | Content |
---|---|
Ingredients | |
Corn | 15.96 |
Barley | 4.71 |
Soybean meal | 5.27 |
Cottonseed meal | 4.34 |
DDGS | 8.02 |
NaCl | 0.40 |
Limestone | 0.23 |
CaHPO4 | 0.34 |
NaHCO3 | 0.41 |
Premix 1 | 1.15 |
Oat hay | 6.31 |
Alfalfa hay | 24.62 |
Corn silage | 28.24 |
Nutrient levels 2 | |
NEL/(MJ/kg) | 6.26 |
CP | 13.35 |
EE | 3.97 |
NDF | 40.07 |
ADF | 23.19 |
Items | Content |
---|---|
Nutrient composition, % | |
DM | 93.21 |
CP | 16.78 |
EE | 32.71 |
NDF | 46.18 |
ADF | 41.51 |
Ash | 7.61 |
Fatty acid content, mg/g | |
C4:0 | 0.03 |
C6:0 | 0.02 |
C8:0 | 0.04 |
C11:0 | 0.47 |
C12:0 | 0.01 |
C15:0 | 0.09 |
cis-10 C15:1 | 0.97 |
cis-9 C16:1 | 0.01 |
cis-10 C17:1 | 0.72 |
trans-9 C18:1 | 1.82 |
cis-9 C18:1 | 0.06 |
trans-9,trans-12 C18:2 | 0.01 |
cis-9,cis-12 C18:2 | 1.62 |
cis-6,cis-9,cis-12 C18:3 | 0.06 |
cis-11 C20:1 | 5.00 |
C21:0 | 0.02 |
cis-11,cis-14 C20:2 | 0.04 |
cis-13 C22:1 | 0.01 |
C23:0 | 0.01 |
cis-13,cis-16 C22:2 | 0.02 |
Items | CON | TREAT | SEM | p-Value |
---|---|---|---|---|
DMD (%) | 69.81 | 83.81 | 0.81 | <0.01 |
Gas production rate (ml/h) | 38.95 | 56.18 | 1.37 | <0.01 |
MCP (mg/mL) | 0.07 | 0.06 | 0.00 | 0.60 |
Ammonia-N (mg/dL) | 29.73 | 12.42 | 0.73 | <0.01 |
pH | 6.56 | 6.30 | 0.03 | <0.01 |
Total VFA (mmol/L) | 76.73 | 73.66 | 2.58 | 0.25 |
Acetate (mmol/L) | 50.61 | 45.41 | 2.04 | 0.02 |
Propionate(mmol/L) | 14.19 | 15.46 | 0.76 | 0.11 |
Butyrate (mmol/L) | 8.28 | 9.85 | 0.25 | <0.01 |
Acetate/Propionate | 3.57 | 3.03 | 0.23 | 0.03 |
Fatty Acids | CON | TREAT | SEM | p-Value |
---|---|---|---|---|
C4:0 | 1.43 | 0.26 | 0.08 | <0.01 |
C6:0 | 0.87 | 0.31 | 0.07 | <0.01 |
C14:0 | 0.98 | 0.83 | 0.03 | 0.01 |
C15:0 | 0.23 | 0.27 | 0.05 | 0.55 |
C16:0 | 1.48 | 0.96 | 0.10 | 0.01 |
cis-10 C17:1 | 0.26 | 0.81 | 0.23 | 0.14 |
C18:0 | 5.48 | 1.86 | 0.23 | <0.01 |
trans-9 C18:1 | 0.35 | 0.98 | 0.17 | 0.06 |
cis-9 C18:1 | 0.34 | 3.98 | 0.08 | <0.01 |
trans-9,trans-12 C18:2 | 0.14 | 0.43 | 0.05 | <0.01 |
C22:0 | 0.00 | 0.17 | 0.01 | <0.01 |
cis-13 C22:1 | 0.00 | 0.23 | 0.08 | 0.10 |
SFA | 10.47 | 4.65 | 0.40 | 0.046 |
MUFA | 0.94 | 6.00 | 0.45 | 0.01 |
PUFA | 0.14 | 0.43 | 0.05 | 0.047 |
Items | CON | TREAT | SEM | p-Value |
---|---|---|---|---|
Chao1 | 1319 | 1359 | 88 | 0.67 |
Shannon-Weiner | 9.46 | 9.49 | 0.11 | 0.74 |
Simpson | 1.00 | 1.00 | 0.00 | 0.92 |
Taxon | CON | TREAT | SEM | p-Value |
---|---|---|---|---|
Bacteroidetes | 72.76 | 63.37 | 0.96 | <0.01 |
Firmicutes | 23.59 | 28.61 | 0.98 | <0.01 |
Proteobacteria | 1.85 | 2.95 | 0.14 | <0.01 |
Fibrobacterota | 0.44 | 3.26 | 0.28 | <0.01 |
Spirochaetota | 0.71 | 1.07 | 0.07 | <0.01 |
Desulfobacterota | 0.39 | 0.31 | 0.02 | <0.01 |
Actinobacteriota | 0.07 | 0.16 | 0.02 | <0.01 |
Patescibacteria | 0.04 | 0.12 | 0.01 | <0.01 |
Elusimicrobiota | 0.04 | 0.09 | 0.01 | <0.01 |
Campilobacterota | 0.05 | 0.02 | 0.01 | 0.04 |
Phylum | Genera | CON | TREAT | SEM | p-Value |
---|---|---|---|---|---|
Bacteroidetes | Prevotella | 23.62 | 22.64 | 0.49 | 0.06 |
F082 | 14.55 | 8.72 | 0.67 | <0.01 | |
Rikenellaceae_RC9_gut_group | 11.68 | 11.78 | 0.39 | 0.79 | |
Muribaculaceae | 9.96 | 4.84 | 0.36 | <0.01 | |
Prevotellaceae_UCG-001 | 2.74 | 3.42 | 0.84 | <0.01 | |
Prevotellaceae_UCG-003 | 2.48 | 2.74 | 0.09 | 0.01 | |
p-251-o5 | 1.54 | 2.70 | 0.10 | <0.01 | |
Bacteroidales_BS11_gut_group | 1.34 | 1.27 | 0.10 | 0.49 | |
Prevotellaceae_UCG-004 | 0.54 | 0.47 | 0.03 | 0.02 | |
U29-B03 | 0.82 | 0.47 | 0.05 | <0.01 | |
Prevotellaceae_NK3B31_group | 0.73 | 0.66 | 0.06 | 0.26 | |
Firmicutes | Anaerovibrio | 4.78 | 4.60 | 0.25 | 0.47 |
NK4A214_group | 1.48 | 1.53 | 0.09 | 0.54 | |
Clostridia_UCG-014 | 1.21 | 3.48 | 0.29 | <0.01 | |
Christensenellaceae_R-7_group | 1.42 | 0.93 | 0.06 | <0.01 | |
UCG-005 | 1.20 | 0.81 | 0.06 | <0.01 | |
Saccharofermentans | 1.07 | 0.81 | 0.05 | <0.01 | |
UCG-010 | 0.95 | 1.51 | 0.06 | <0.01 | |
Ruminococcus | 0.95 | 1.49 | 0.08 | <0.01 | |
Anaerovorax | 0.85 | 0.57 | 0.03 | <0.01 | |
[Eubacterium]_coprostanoligenes_group | 0.79 | 0.78 | 0.06 | 0.90 | |
Lachnospiraceae_AC2044_group | 0.62 | 0.88 | 0.05 | <0.01 | |
Lachnospiraceae_UCG-008 | 0.58 | 0.43 | 0.03 | <0.01 | |
Lachnospiraceae_NK4A136_group | 0.54 | 0.52 | 0.03 | 0.55 | |
Papillibacter | 0.50 | 0.55 | 0.04 | 0.25 | |
UCG-002 | 0.39 | 0.83 | 0.05 | <0.01 | |
Selenomonas | 0.20 | 1.92 | 0.28 | <0.01 | |
Proteobacteria | Ruminobacter | 0.66 | 1.21 | 0.06 | <0.01 |
Succinivibrionaceae_UCG-002 | 0.58 | 1.04 | 0.07 | <0.01 | |
Fibrobacterota | Fibrobacter | 0.44 | 3.25 | 0.28 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Chen, Y.; Wang, X.; Wei, Y.; Pan, M.; Zhao, G. Effects of Phlorotannins from Sargassum on In Vitro Rumen Fermentation, Microbiota and Fatty Acid Profile. Animals 2023, 13, 2854. https://doi.org/10.3390/ani13182854
Huang Q, Chen Y, Wang X, Wei Y, Pan M, Zhao G. Effects of Phlorotannins from Sargassum on In Vitro Rumen Fermentation, Microbiota and Fatty Acid Profile. Animals. 2023; 13(18):2854. https://doi.org/10.3390/ani13182854
Chicago/Turabian StyleHuang, Qianqian, Yuhua Chen, Xingxing Wang, Yuanhao Wei, Min Pan, and Guoqi Zhao. 2023. "Effects of Phlorotannins from Sargassum on In Vitro Rumen Fermentation, Microbiota and Fatty Acid Profile" Animals 13, no. 18: 2854. https://doi.org/10.3390/ani13182854
APA StyleHuang, Q., Chen, Y., Wang, X., Wei, Y., Pan, M., & Zhao, G. (2023). Effects of Phlorotannins from Sargassum on In Vitro Rumen Fermentation, Microbiota and Fatty Acid Profile. Animals, 13(18), 2854. https://doi.org/10.3390/ani13182854