Enrichment of a Plant Feedstuff Mixture’s Nutritional Value through Solid-State Fermentation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Feedstuff Mixture and Microorganisms
2.2. Solid-State Fermentation
2.3. In Vitro Digestibility
2.4. Enzymatic Activity
2.5. Total Phenols and Antioxidant Activities
2.6. Proximate Composition
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morales, E.M.; Domingos, R.N.; Angelis, D.F. Improvement of Protein Bioavailability by Solid-State Fermentation of Babassu Mesocarp Flour and Cassava Leaves. Waste Biomass Valoriz. 2018, 9, 581–590. [Google Scholar] [CrossRef]
- Leite, P.; Silva, C.; Salgado, J.M.; Belo, I. Simultaneous Production of Lignocellulolytic Enzymes and Extraction of Antioxidant Compounds by Solid-State Fermentation of Agro-Industrial Wastes. Ind. Crops Prod. Prod. 2019, 137, 315–322. [Google Scholar] [CrossRef]
- Leite, P.; Salgado, J.M.; Venâncio, A.; Domínguez, J.M.; Belo, I. Ultrasounds Pretreatment of Olive Pomace to Improve Xylanase and Cellulase Production by Solid-State Fermentation. Bioresour. Technol. 2016, 214, 737–746. [Google Scholar] [CrossRef]
- Sousa, D.; Salgado, J.M.; Cambra-López, M.; Dias, A.C.P.; Belo, I. Degradation of Lignocellulosic Matrix of Oilseed Cakes by Solid-State Fermentation: Fungi Screening for Enzymes Production and Antioxidants Release. J. Sci. Food Agric. 2022, 102, 1550–1560. [Google Scholar] [CrossRef]
- Gomes, N.; Gonçalves, C.; García-Román, M.; Teixeira, J.A.; Belo, I. Optimization of a Colorimetric Assay for Yeast Lipase Activity in Complex Systems. Anal. Methods 2011, 3, 1008–1013. [Google Scholar] [CrossRef]
- Gouveia, S.; Castilho, P.C. Antioxidant Potential of Artemisia argentea L’Hér Alcoholic Extract and Its Relation with the Phenolic Composition. Food Res. Int. 2011, 44, 1620–1631. [Google Scholar] [CrossRef]
- Domínguez-Perles, R.; Teixeira, A.I.; Rosa, E.; Barros, A.I. Assessment of (Poly)Phenols in Grape (Vitis vinifera L.) Stems by Using Food/Pharma Industry Compatible Solvents and Response Surface Methodology. Food Chem. 2014, 164, 339–346. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Dulf, E.-H.; Toşa, M.I. Total Phenolic Contents, Antioxidant Activities, and Lipid Fractions from Berry Pomaces Obtained by Solid-State Fermentation of Two Sambucus Species with Aspergillus niger. J. Agric. Food Chem. 2015, 63, 3489–3500. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J. A New Method for Measuring Antioxidant Activity. Biochem. Soc. Trans. 1993, 21, 95S. [Google Scholar] [CrossRef]
- Oliveira, A.I.; Pinho, C.; Fonte, P.; Sarmento, B.; Dias, A.C.P. Development, Characterization, Antioxidant and Hepatoprotective Properties of Poly(Ɛ-Caprolactone) Nanoparticles Loaded with a Neuroprotective Fraction of Hypericum perforatum. Int. J. Biol. Macromol. 2018, 110, 185–196. [Google Scholar] [CrossRef]
- Bradford, M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Terefe, Z.K.; Omwamba, M.N.; Nduko, J.M. Effect of Solid State Fermentation on Proximate Composition, Antinutritional Factors and In Vitro Protein Digestibility of Maize Flour. Food Sci. Nutr. 2021, 9, 6343–6352. [Google Scholar] [CrossRef]
- Shi, C.; He, J.; Yu, J.; Yu, B.; Huang, Z.; Mao, X.; Zheng, P.; Chen, D. Solid State Fermentation of Rapeseed Cake with Aspergillus niger for Degrading Glucosinolates and Upgrading Nutritional Value. J. Anim. Sci. Biotechnol. 2015, 6, 13. [Google Scholar] [CrossRef]
- Rudravaram, R.; Chandel, A.K.; Linga, V.R.; Pogaku, R. Optimization of Protein Enrichment of Deoiled Rice Bran by Solid State Fermentation Using Aspergillus oryzae MTCC 1846. Int. J. Food Eng. 2006, 2. [Google Scholar] [CrossRef]
- Dai, C.; Ma, H.; He, R.; Huang, L.; Zhu, S.; Ding, Q.; Luo, L. Improvement of Nutritional Value and Bioactivity of Soybean Meal by Solid-State Fermentation with Bacillus Subtilis. LWT 2017, 86, 1–7. [Google Scholar] [CrossRef]
- Hassaan, M.S.; Soltan, M.A.; Abdel-Moez, A.M. Nutritive Value of Soybean Meal after Solid State Fermentation with Saccharomyces cerevisiae for Nile Tilapia, Oreochromis niloticus. Anim. Feed. Sci. Technol. 2015, 201, 89–98. [Google Scholar] [CrossRef]
- Fernandes, H.; Salgado, J.M.; Martins, N.; Peres, H.; Oliva-Teles, A.; Belo, I. Sequential Bioprocessing of Ulva rigida to Produce Lignocellulolytic Enzymes and to Improve Its Nutritional Value as Aquaculture Feed. Bioresour. Technol. 2019, 281, 277–285. [Google Scholar] [CrossRef]
- Shi, H.; Su, B.; Chen, X.; Pian, R. Solid State Fermentation of Moringa oleifera Leaf Meal by Mixed Strains for the Protein Enrichment and the Improvement of Nutritional Value. PeerJ 2020, 8, e10358. [Google Scholar] [CrossRef]
- Sousa, D.; Venâncio, A.; Belo, I.; Salgado, J.M. Mediterranean Agro-Industrial Wastes as Valuable Substrates for Lignocellulolytic Enzymes and Protein Production by Solid-State Fermentation. J. Sci. Food Agric. 2018, 98, 5248–5256. [Google Scholar] [CrossRef]
- Sousa, D.; Salgado, J.M.; Cambra-López, M.; Dias, A.; Belo, I. Biotechnological Valorization of Oilseed Cakes: Substrate Optimization by Simplex Centroid Mixture Design and Scale-up to Tray Bioreactor. Biofuels Bioprod. Biorefin. 2022, 17, 121–134. [Google Scholar] [CrossRef]
- De Mello Ayres, T.S.; Christ-Ribeiro, A.; Furlong, E.B.; Monserrat, J.M.; Tesser, M.B. Use of Defatted Fermented Rice Bran in the Diet of Juvenile Mullets Mugil liza. Aquaculture 2022, 554, 738108. [Google Scholar] [CrossRef]
- Chi, C.H.; Cho, S.J. Improvement of Bioactivity of Soybean Meal by Solid-State Fermentation with Bacillus amyloliquefaciens versus Lactobacillus Spp. and Saccharomyces cerevisiae. LWT 2016, 68, 619–625. [Google Scholar] [CrossRef]
- Mukhtar, H. Production of Acid Protease by Aspergillus niger Using Solid State Fermentation. Pak. J. Zool. 2009, 41, 253–260. [Google Scholar]
- Boratyński, F.; Szczepańska, E.; Grudniewska, A.; Gniłka, R.; Olejniczak, T. Improving of Hydrolases Biosythesis by Solid-State Fermentation of Penicillium camemberti on Rapeseed Cake. Sci. Rep. 2018, 8, 10157. [Google Scholar] [CrossRef]
- Olukomaiya, O.; Fernando, C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Solid-State Fermented Plant Protein Sources in the Diets of Broiler Chickens: A Review. Anim. Nutr. 2019, 5, 319–330. [Google Scholar] [CrossRef]
- Kumitch, H.M.; Stone, A.; Nosworthy, M.G.; Nickerson, M.T.; House, J.D.; Korber, D.R.; Tanaka, T. Effect of Fermentation Time on the Nutritional Properties of Pea Protein-Enriched Flour Fermented by Aspergillus oryzae and Aspergillus niger. Cereal Chem. 2020, 97, 104–113. [Google Scholar] [CrossRef]
- Wang, C.; Su, W.; Zhang, Y.; Hao, L.; Wang, F.; Lu, Z.; Zhao, J.; Liu, X.; Wang, Y. Solid-State Fermentation of Distilled Dried Grain with Solubles with Probiotics for Degrading Lignocellulose and Upgrading Nutrient Utilization. AMB Express 2018, 8, 188. [Google Scholar] [CrossRef]
- Stodolak, B.; Starzyńska-Janiszewska, A.; Bączkowicz, M. Aspergillus oryzae (Koji Mold) and Neurospora Intermedia (Oncom Mold) Application for Flaxseed Oil Cake Processing. LWT 2020, 131, 109651. [Google Scholar] [CrossRef]
- Su, W.; Jiang, Z.; Hao, L.; Li, W.; Gong, T.; Zhang, Y.; Du, S.; Wang, C.; Lu, Z.; Jin, M. Variations of Soybean Meal and Corn Mixed Substrates in Physicochemical Characteristics and Microbiota during Two-Stage Solid-State Fermentation. Front. Microbiol. 2021, 12, 688839. [Google Scholar] [CrossRef]
- Zahir, M.; Fogliano, V.; Capuano, E. Effect of Soybean Processing on Cell Wall Porosity and Protein Digestibility. Food Funct. 2020, 11, 285–296. [Google Scholar] [CrossRef]
- Ranjan, A.; Sahu, N.P.; Deo, A.D.; Kumar, H.S.; Kumar, S.; Jain, K.K. Comparative Evaluation of Fermented and Non-Fermented deoiled Rice Bran with or without Exogenous Enzymes Supplementation in the Diet of Labeo rohita (Hamilton, 1822). Fish Physiol. Biochem. 2018, 44, 1037–1049. [Google Scholar] [CrossRef]
- El-Gendi, H.; Saleh, A.K.; Badierah, R.; Redwan, E.M.; El-Maradny, Y.A.; El-Fakharany, E.M. A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind’s Challenges. J. Fungi 2021, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Motta, F.L.; Andrade, C.C.P.; Santana, M.H.A. A Review of Xylanase Production by the Fermentation of Xylan: Classification, Characterization and Applications. Sustain. Degrad. Lignocellul. Biomass-Tech. Appl. Commer. 2013, 1, 251–276. [Google Scholar]
- Leite, P.; Sousa, D.; Fernandes, H.; Ferreira, M.; Costa, A.R.; Filipe, D.; Gonçalves, M.; Peres, H.; Belo, I.; Salgado, J.M. Recent Advances in Production of Lignocellulolytic Enzymes by Solid-State Fermentation of Agro-Industrial Wastes. Curr. Opin. Green Sustain. Chem. 2021, 27, 100407. [Google Scholar] [CrossRef]
- Soccol, C.R.; da Costa, E.S.F.; Letti, L.A.J.; Karp, S.G.; Woiciechowski, A.L.; de Souza Vandenberghe, L.P. Recent Developments and Innovations in Solid State Fermentation. Biotechnol. Res. Innov. 2017, 1, 52–71. [Google Scholar] [CrossRef]
- Kaur, A.; Rishi, V.; Soni, S.K.; Rishi, P. A Novel Multi-Enzyme Preparation Produced from Aspergillus Niger Using Biodegradable Waste: A Possible Option to Combat Heterogeneous Biofilms. AMB Express 2020, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, H.; Salgado, J.M.; Ferreira, M.; Vršanská, M.; Fernandes, N.; Castro, C.; Oliva-Teles, A.; Peres, H.; Belo, I. Valorization of Brewer’s Spent Grain Using Biological Treatments and Its Application in Feeds for European Seabass (Dicentrarchus labrax). Front. Bioeng. Biotechnol. 2022, 10, 732948. [Google Scholar] [CrossRef]
- Garcia, N.F.L.; da Silva Santos, F.R.; Gonçalves, F.A.; da Paz, M.F.; Fonseca, G.G.; Leite, R.S.R. Production of β-Glucosidase on Solid-State Fermentation by Lichtheimia ramosa in Agroindustrial Residues: Characterization and Catalytic Properties of the Enzymatic Extract. Electron. J. Biotechnol. 2015, 18, 314–319. [Google Scholar] [CrossRef]
- Castillo, S.; Gatlin, D.M. Dietary Supplementation of Exogenous Carbohydrase Enzymes in Fish Nutrition: A Review. Aquaculture 2015, 435, 286–292. [Google Scholar] [CrossRef]
- Velázquez-De Lucio, B.S.; Hernández-Domínguez, E.M.; Villa-García, M.; Díaz-Godínez, G.; Mandujano-Gonzalez, V.; Mendoza-Mendoza, B.; Álvarez-Cervantes, J. Exogenous Enzymes as Zootechnical Additives in Animal Feed: A Review. Catalysts 2021, 11, 851. [Google Scholar] [CrossRef]
- Wickramasuriya, S.; Kim, E.; Shin, T.K.; Cho, H.M.; Kim, B.; Patterson, R.; Yi, Y.-J.; Park, S.; Balasubramanian, B.; Heo, J.M. Multi-Carbohydrase Addition Into a Corn-Soybean Meal Diet Containing Wheat and Wheat By Products to Improve Growth Performance and Nutrient Digestibility of Broiler Chickens. J. Appl. Poult. Res. 2019, 28, 399–409. [Google Scholar] [CrossRef]
- De Brito, J.M.; Urbich, A.V.; da Cruz, T.P.; Panczevicz, P.A.P.; Miranda, J.A.G.; Wernick, B.; Furuya, V.R.B.; Furuya, W.M. Xylanase and β-Glucanase Improve Growth Performance, Gut Barrier, and Microbiota of Pre-Growout Nile Tilapia, Oreochromis niloticus Fed a Vegetable-Based Diet. Aquaculture 2022, 561, 738653. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Martín, C. Pretreatment of Lignocellulose: Formation of Inhibitory by-Products and Strategies for Minimizing Their Effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Hosseinpour, M.N.; Najafpour, G.D.; Younesi, H.; Khorrami, M.; Vaseghi, Z. Lipase Production in Solid State Fermentation Using Aspergillus niger: Response Surface Methodology. Int. J. Eng. 2012, 25, 151–159. [Google Scholar] [CrossRef]
- Kumar, D.S.; Ray, S. Fungal Lipase Production by Solid State Fermentation—An Overview. J. Anal. Bioanal. Tech. 2014, 6, 1–10. [Google Scholar]
- Kleinert, M.; Barth, T. Phenols from Lignin. Chem. Eng. Technol. Ind. Chem.-Plant Equip.-Process Eng.-Biotechnol. 2008, 31, 736–745. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Socaciu, C. Effects of Solid-State Fermentation with Two Filamentous Fungi on the Total Phenolic Contents, Flavonoids, Antioxidant Activities and Lipid Fractions of Plum Fruit (Prunus domestica L.) by-Products. Food Chem. 2016, 209, 27–36. [Google Scholar] [CrossRef]
- Hur, S.J.; Lee, S.Y.; Kim, Y.-C.; Choi, I.; Kim, G.-B. Effect of Fermentation on the Antioxidant Activity in Plant-Based Foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef]
- Filipe, D.; Fernandes, H.; Castro, C.; Peres, H.; Oliva-Teles, A.; Belo, I.; Salgado, J.M. Improved Lignocellulolytic Enzyme Production and Antioxidant Extraction Using Solid-State Fermentation of Olive Pomace Mixed with Winery Waste. Biofuels Bioprod. Biorefin. 2020, 14, 78–91. [Google Scholar] [CrossRef]
- Călinoiu, L.F.; Cătoi, A.-F.; Vodnar, D.C. Solid-State Yeast Fermented Wheat and Oat Bran as a Route for Delivery of Antioxidants. Antioxidants 2019, 8, 372. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Punia, S.; Kaur, M. Effect of Duration of Solid State Fermentation by Aspergillus awamorinakazawa on Antioxidant Properties of Wheat Cultivars. LWT-Food Sci. Technol. 2016, 71, 323–328. [Google Scholar] [CrossRef]
- Xu, L.-N.; Guo, S.; Zhang, S. Effects of Solid-State Fermentation with Three Higher Fungi on the Total Phenol Contents and Antioxidant Properties of Diverse Cereal Grains. FEMS Microbiol. Lett. 2018, 365, fny163. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, S.; Nagarajan, R.; Kumar, J.; Salemme, A.; Togna, A.R.; Saso, L.; Bruno, F. Antioxidant Activity of Synthetic Polymers of Phenolic Compounds. Polymers 2020, 12, 1646. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Duhalt, R.; Westlake, D.W.S.; Fedorak, P.M. Lignin Peroxidase Oxidation of Aromatic Compounds in Systems Containing Organic Solvents. Appl. Environ. Microbiol. 1994, 60, 459–466. [Google Scholar] [CrossRef] [PubMed]
Rapeseed Meal | Soybean Meal | Rice Bran | Sunflower Meal | |
---|---|---|---|---|
Crude protein | 35.2 | 40.1 | 13.5 | 31.0 |
Crude lipids | 5.8 | 3.7 | 13.2 | 2.9 |
Cellulose | 15.5 | 8.8 | 19.8 | 14.3 |
Hemicellulose | 15.1 | 4.5 | 10.5 | 11.1 |
Aspergillus niger CECT 2088 | Aspergillus niger CECT 2915 | Aspergillus ibericus MUM 03.49 | Unfermented | |||||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | M | SD | |
Proximate composition | ||||||||
Total protein (%) | 32.56 a | 0.48 | 32.40 a | 0.57 | 32.85 a | 0.95 | 29.04 b | 0.27 |
Soluble protein (mg/g) | 0.66 b | 0.08 | 0.61 b | 0.09 | 0.58 b | 0.08 | 0.92 a | 0.05 |
Energy (kJ/g) | 18.1 | 0.3 | 18.0 | 0.3 | 17.2 | 0.3 | 20.5 | 2.5 |
Cellulose (%) | 17.69 b | 0.62 | 18.28 a | 1.01 | 17.25 b | 1.38 | 19.48 a | 1.12 |
Hemicellulose (%) | 11.76 b | 3.31 | 12.96 b | 1.77 | 14.06 b | 1.14 | 17.71 a | 1.03 |
Xylose (mg/g) | 8.51 | 0.77 | 8.41 | 1.72 | 9.49 | 1.50 | 10.67 | 2.25 |
Glucose (mg/g) | 6.54 | 0.59 | 6.47 | 1.32 | 7.29 | 1.15 | 8.20 | 1.73 |
Antioxidant activity | ||||||||
Total phenols (mg GAE/g) | 4.76 ab | 0.45 | 4.55 ab | 0.62 | 4.14 b | 0.68 | 5.49 a | 1.21 |
Ortho-diphenols (mg GAE/g) | 0.83 c | 0.41 | nd | nd | 7.11 b | 2.10 | 12.95 a | 3.45 |
Flavonoids (mg QE/g) | 0.72 b | 0.12 | 0.60 b | 0.13 | 0.45 b | 0.15 | 1.16 a | 0.37 |
DPPH (µmol TE/g) | 18.65 a | 1.50 | 14.24 b | 1.03 | 13.88 b | 2.85 | 17.22 ab | 5.37 |
ABTS (µmol TE/g) | 22.60 | 5.93 | 19.63 | 5.23 | 20.96 | 5.00 | 19.89 | 4.88 |
SOD (µmol ACE/g) | 1.35 | 0.05 | 1.34 | 0.03 | 1.41 | 0.16 | nd | nd |
Aspergillus niger CECT 2088 | Aspergillus niger CECT 2915 | Aspergillus ibericus MUM 03.49 | ||||
---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | |
Cellulase | 123.71 a | 16.78 | 115.42 ab | 7.58 | 102.18 b | 17.29 |
Xylanase | 431.79 a | 26.42 | 314.38 b | 42.72 | 76.067 c | 8.83 |
β-glucosidase | 117.85 a | 15.36 | 60.94 c | 3.41 | 90.56 b | 18.67 |
Protease | 20.47 b | 1.94 | 25.46 a | 1.62 | 19.50 b | 2.58 |
Lipase | 0.73 b | 0.62 | 1.56 b | 0.32 | 2.81 a | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filipe, D.; Vieira, L.; Ferreira, M.; Oliva-Teles, A.; Salgado, J.; Belo, I.; Peres, H. Enrichment of a Plant Feedstuff Mixture’s Nutritional Value through Solid-State Fermentation. Animals 2023, 13, 2883. https://doi.org/10.3390/ani13182883
Filipe D, Vieira L, Ferreira M, Oliva-Teles A, Salgado J, Belo I, Peres H. Enrichment of a Plant Feedstuff Mixture’s Nutritional Value through Solid-State Fermentation. Animals. 2023; 13(18):2883. https://doi.org/10.3390/ani13182883
Chicago/Turabian StyleFilipe, Diogo, Lúcia Vieira, Marta Ferreira, Aires Oliva-Teles, José Salgado, Isabel Belo, and Helena Peres. 2023. "Enrichment of a Plant Feedstuff Mixture’s Nutritional Value through Solid-State Fermentation" Animals 13, no. 18: 2883. https://doi.org/10.3390/ani13182883
APA StyleFilipe, D., Vieira, L., Ferreira, M., Oliva-Teles, A., Salgado, J., Belo, I., & Peres, H. (2023). Enrichment of a Plant Feedstuff Mixture’s Nutritional Value through Solid-State Fermentation. Animals, 13(18), 2883. https://doi.org/10.3390/ani13182883