Effect of a Bacillus-Based Probiotic on Performance and Nutrient Digestibility When Substituting Soybean Meal with Rapeseed Meal in Grower–Finisher Diets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets and Housing
2.2. Sample Preparation and Measurements
2.3. Laboratory Analysis
2.4. Statistical Analysis
3. Results
3.1. Growth Performance and Carcass Evaluation
3.2. Apparent Nutrient Digestibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scheuermann, S.E. Effect of the probiotic Paciflor® (CIP 5832) on energy and protein metabolism in growing pigs. Anim. Feed Sci. Technol. 1993, 41, 181–189. [Google Scholar] [CrossRef]
- Chen, Y.J.; Son, K.S.; Min, B.J.; Cho, J.H.; Kwon, O.S.; Kim, I.H. Effects of Dietary Probiotic on Growth Performance, Nutrients Digestibility, Blood Characteristics and Fecal Noxious Gas Content in Growing Pigs. Asian Australas. J. Anim. Sci. 2005, 18, 1464–1468. [Google Scholar] [CrossRef]
- Wang, Y.; Cho, J.H.; Chen, Y.J.; Yoo, J.S.; Huang, Y.; Kim, H.J.; Kim, I.H. The effect of probiotic BioPlus 2B® on growth performance, dry matter and nitrogen digestibility and slurry noxious gas emission in growing pigs. Livest. Sci. 2009, 120, 35–42. [Google Scholar] [CrossRef]
- Kim, Y.W.; Ingale, S.L.; Kim, J.S.; Lee, S.H.; Lee, J.H.; Kwon, I.K.; Chae, B.J. Bacteriophage and probiotics both enhance the performance of growing pigs but bacteriophage are more effective. Anim. Feed Sci. Technol. 2014, 196, 88–95. [Google Scholar] [CrossRef]
- Chen, Y.J.; Min, B.J.; Cho, J.H.; Kwon, O.S.; Son, K.S.; Kim, H.J.; Kim, I.H. Effects of Dietary Bacillus-based Probiotic on Growth Performance, Nutrients Digestibility, Blood Characteristics and Fecal Noxious Gas Content in Finishing Pigs. Asian Australas. J. Anim. Sci. 2006, 19, 587–592. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Kim, S.C.; Valientes, R.A.; Kim, I.H. The effect of Bacillus-based feed additive on growth performance, nutrient digestibility, fecal gas emission, and pen cleanup characteristics of growing-finishing pigs. Asian Australas. J. Anim. Sci. 2015, 28, 999–1005. [Google Scholar] [CrossRef]
- Davis, M.E.; Parrott, T.; Brown, D.C.; de Rodas, B.Z.; Johnson, Z.B.; Maxwell, C.V.; Rehberger, T. Effect of a Bacillus-based direct-fed microbial feed supplement on growth performance and pen cleaning characteristics of growing-finishing pigs. J. Anim. Sci. 2008, 86, 1459–1467. [Google Scholar] [CrossRef]
- Alexopoulos, C.; Georgoulakis, I.E.; Tzivara, A.; Kyriakis, C.S.; Govaris, A.; Kyriakis, S.C. Field evaluation of the effect of a probiotic-containing Bacillus licheniformis and Bacillus subtilis spores on the health status, performance, and carcass quality of grower and finisher pigs. J. Vet. Med. A. 2004, 51, 306–312. [Google Scholar] [CrossRef]
- Jørgensen, J.N.; Sánchez-Laguna, J.; Millán, C.; Casabuena, O.; Gracia, M.I. Effects of a Bacillus-based probiotic and dietary energy content on the performance and nutrient digestibility of wean to finish pigs. Anim. Feed Sci. Technol. 2016, 221, 54–61. [Google Scholar] [CrossRef]
- Meng, Q.W.; Yan, L.; Ao, X.; Zhou, T.X.; Wang, J.P.; Lee, J.H.; Kim, I.H. Influence of probiotics in different energy and nutrient density diets on growth performance, nutrient digestibility, meat quality, and blood characteristics in growing-finishing pigs. J. Anim. Sci. 2010, 88, 3320–3326. [Google Scholar] [CrossRef]
- Balasubramanian, B.; Li, T.; Kim, I.H. Effect of supplementing growing-finishing pig diets with Bacillus spp. probiotic on growth performance and meat-carcass grade quality traits. Rev. Bras. Zootec. 2016, 45, 93–100. [Google Scholar] [CrossRef]
- Bouwhuis, M.; Jørgensen, J.N.; Jørgensen, L.; Van der Aar, P.; Molist, F. The use of 284 probiotics containing spores of Bacillus licheniformis and Bacillus subtilis or Bacillus amyloliquefaciens improves the growth performance of grower-finisher pigs. In Proceedings of IPC2017, Budapest, Hungary, 20–22 June 2017; p. 20. [Google Scholar]
- Rybarczyk, A.; Bogusławska-Was, E.; Dłubała, A. Effect of BioPlus YC Probiotic Supplementation on Gut Microbiota, Production Performance, Carcass and Meat Quality of Pigs. Animals 2021, 11, 1581. [Google Scholar] [CrossRef]
- Mosenthin, R.; Hambrecht, E.; Sauer, W.C. Utilisation of different fibres in piglet feeds. In Recent Advances in Animal Nutrition; Garnsworthy, P.C., Wiseman, J., Eds.; Nottingham University Press: Nottingham, UK, 1999; pp. 227–256. [Google Scholar]
- Wellock, I.J.; Fortomaris, P.D.; Houdijk, J.G.M.; Kyriazakis, I. The effect of dietary protein supply on the performance and risk of post-weaning enteric disorders in newly weaned pigs. Anim. Sci. 2006, 82, 327–335. [Google Scholar] [CrossRef]
- Libao-Mercado, A.J.O.; Zhu, C.L.; Cant, J.P.; Lapierre, H.; Thibault, J.N.; Sève, B. Dietary and endogenous amino acids are the main contributors to microbial protein in the upper gut of normally nourished pigs. J. Nutr. 2009, 139, 1088–1094. [Google Scholar] [CrossRef]
- Black, S.; Fahrenholz, A.C.; Grimes, J.L. The effect of a direct-fed microbial and dietary fat inclusion on performance and energy metabolism in broiler chicks and turkey poults. Ger. J. Vet. Res. 2021, 1, 1–10. [Google Scholar] [CrossRef]
- Kim, Y.J.; Cho, S.B.; Song, M.H.; Lee, S.I.; Hong, S.M.; Yun, W.; Lee, J.H.; Oh, H.J.; Chang, S.Y.; An, J.W.; et al. Effects of different Bacillus licheniformis and Bacillus subtilis ratios on nutrient digestibility, fecal microflora, and gas emissions of growing pigs. J. Anim. Sci. Technol. 2022, 64, 291–301. [Google Scholar] [CrossRef]
- Blavi, L.; Jørgensen, J.N.; Stein, H.H. Effects of Bacillus amyloliquefaciens and Bacillus subtilis on ileal digestibility of AA and total tract digestibility of CP and gross energy in diets fed to growing pigs. J. Anim. Sci. 2019, 97, 727–734. [Google Scholar] [CrossRef]
- Van Zanten, H.; Bikker, P.; Mollenhorst, H.; Meerburg, B.; De Boer, I. Environmental impact of replacing soybean meal with rapeseed meal in diets of finishing pigs. Animal 2015, 9, 1866–1874. [Google Scholar] [CrossRef]
- Wilke, V.; Gickel, J.; Visscher, C. Monitoring of Performance-Based Environmental Impacts of Substituting Soybean Meal with Rapeseed Meal in the Rye-Based Diet of Weaned Pigs. Sustainability 2023, 15, 2210. [Google Scholar] [CrossRef]
- Yun, H.M.; Lei, X.J.; Lee, S.I.; Kim, I.H. Rapeseed Meal and Canola Meal Can Partially Replace Soybean Meal as a Protein Source in Finishing Pigs. J. Appl. Anim. Res. 2017, 46, 195–199. [Google Scholar] [CrossRef]
- Grabež, V.; Egelandsdal, B.; Kjos, N.P.; Håkenåsen, I.M.; Mydland, L.T.; Vik, J.O.; Hallenstvedt, E.; Devle, H.; Øverland, M. Replacing Soybean Meal with Rapeseed Meal and Faba Beans in a Growing-Finishing Pig Diet: Effect on Growth Performance, Meat Quality and Metabolite Changes. Meat Sci. 2020, 166, 108–134. [Google Scholar] [CrossRef]
- Hanczakowska, E.; Świątkiewicz, M. Legume Seeds and Rapeseed Press Cake as Replaces of Soybean Meal in Feed for Fattening Pigs. Annals Anim. Sci. 2014, 14, 921–934. [Google Scholar] [CrossRef]
- Priest, F.G. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev. 1977, 41, 711–753. [Google Scholar] [CrossRef]
- Carlisle, G.E.; Falkinham III, J.O. Enzyme activities and antibiotic susceptibility of colonial variants of Bacillus subtilis and Bacillus licheniformis. Appl. Environ. Microbiol. 1989, 55, 3026–3028. [Google Scholar] [CrossRef]
- Kim, D.H.; Heo, P.S.; Jang, J.C.; Jin, S.S.; Hong, J.S.; Kim, Y.Y. Effect of different soybean meal type on ileal digestibility of amino acid in weaning pigs. J. Anim. Sci. Technol. 2015, 57, 11. [Google Scholar] [CrossRef]
- FEDNA. Necesidades Nutricionales Para Ganado Porcino Normas FEDNA, 2nd ed.; de Blas, C., Gasa, J., Mateos, G.G., Eds.; Fundación Española para el Desarrollo de la Nutrición Animal, E.T.S.I.A. Madrid Polytechnical University: Madrid, Spain, 2013. [Google Scholar]
- AOAC. Official Method of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- McCarthy, J.F.; Aherne, F.X.; Okai, D.B. Use of HCl insoluble ash as an index material for determining apparent digestibility with pigs. Can. J. Anim. Sci. 1974, 54, 107–109. [Google Scholar] [CrossRef]
- Albar, J.; Chauvel, J.; Granier, R. Effects of the Level of Rapeseed Meal on Performance in the Post-Weaning and the Growing/Finishing Periods. J. Rech. Porc. Fr. 2001, 33, 197–203. [Google Scholar]
- Ellner, C.; Martínez-Vallespín, B.; Saliu, E.M.; Zentek, J.; Röhe, I. Effects of Cereal and Protein Source on Performance, Apparent Ileal Protein Digestibility and Intestinal Characteristics in Weaner Piglets. Arch. Anim. Nutr. 2021, 75, 263–277. [Google Scholar] [CrossRef]
- Cui, C.; Shen, C.J.; Jia, G.; Wang, K.N. Effect of dietary Bacillus subtilis on proportion of Bacteroidetes and Firmicutes in swine intestine and lipid metabolism. Genet. Mol. Res. 2013, 12, 1766–1776. [Google Scholar] [CrossRef]
- Kaewtapee, C.; Burbach, K.; Tomforde, G.; Hartinger, T.; Camarinha-Silva, A.; Heinritz, S.; Seifert, J.; Wiltafsky, M.; Mosenthin, R.; Rosenfelder-Kuon, P. Effect of Bacillus subtilis and Bacillus licheniformis supplementation in diets with low- and high-protein content on ileal crude protein and amino acid digestibility and intestinal microbiota composition of growing pigs. J. Anim. Sci. Biotechnol. 2017, 8, 37. [Google Scholar] [CrossRef]
- Lee, S.H.; Ingale, S.L.; Kim, J.S.; Kim, K.H.; Lokhande, A.; Kim, E.K.; Kwon, I.K.; Kim, Y.H.; Chae, B.J. Effects of dietary supplementation with Bacillus subtilis LS 1-2 fermentation biomass on growth performance, nutrient digestibility, cecal microbiota and intestinal morphology of weanling pig. Anim. Feed Sci. Technol. 2014, 188, 102–110. [Google Scholar] [CrossRef]
- Bell, J.M.; Shires, A. Composition and Digestibility by Pigs of Hull Fraction from Rapeseed Cultivars with Yellow or Brown Seed Coats. Can. J. Anim. Sci. 2011, 62, 557–565. [Google Scholar] [CrossRef]
- Wiltafsky, M.; Fickler, J.; Hess, V.; Reimann, I.; Zimmer, U.; Reising, H.W.; Heimbeck, W. AminoDat®5.0, Animal Nutritionist’s Information Edge. Evonik Nutr. Care 2010, 3, 370. [Google Scholar]
- Lindberg, J.E. Fiber Effects in Nutrition and Gut Health in Pigs. J. Anim. Sci. Biotechnol. 2014, 5, 15. [Google Scholar] [CrossRef]
- Schulze, H.; van Leeuwen, P.; Verstegen, M.W.; Huisman, J.; Souffrant, W.B.; Ahrens, F. Effect of Level of Dietary Neutral Detergent Fiber on Ileal Apparent Digestibility and Ileal Nitrogen Losses in Pigs. J. Anim. Sci. 1994, 72, 2362–2368. [Google Scholar] [CrossRef]
- Gould, A.R.; May, B.K.; Elliott, W.H. Release of extracellular enzymes from Bacillus amyloliquefaciens. J. Bacteriol. 1975, 122, 34–40. [Google Scholar] [CrossRef]
- Gangadharan, D.; Sivaramakrishnan, S.; Nampoothiri, K.M.; Sukumaran, R.K.; Pandey, A. Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresour. Technol. 2008, 99, 4597–4602. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, B.K.; Lee, B.H.; Jo, K.I.; Lee, N.K.; Chung, C.H.; Lee, Y.C.; Lee, J.W. Purification and characterization of cellulose produced by Bacillus amyloliquefaciens DL-3 utilizing rice hull. Bioresour. Technol. 2008, 99, 378–386. [Google Scholar] [CrossRef]
- Bajagai, Y.S.; Klieve, A.V.; Dart, P.J.; Bryden, W.L. Probiotics in animal nutrition e production, impact and regulation. In FAO Animal Production and Health Paper No. 179; Makkar, H.P.S., Ed.; Food and Agriculture Organization of the United Nation: Rome, Italy, 2016. [Google Scholar]
- Duran-Paramo, E.; Garcia-Kirchner, O.; Hervagault, J.F.; Thomas, D.; Barbotin, J.N. Alpha-amylase production by free and immobilized Bacillus subtilis. Appl. Biochem. Biotechnol. 2000, 84–86, 479–485. [Google Scholar] [CrossRef]
- Abed, A.H.; Radwan, I.A.; Orabi, A.; Abdelaziz, K. The combined effects of probiotic CLOSTAT® and Aviboost® supplement on growth performance, intestinal morphology, and immune response of broiler chickens. Ger. J. Vet. Res. 2023, 3, 7–18. [Google Scholar] [CrossRef]
- Kim, J.H. Effects of dietary Bacillus spp. inoculated feather meal on the performance and carcass characteristics in finishing pigs. J. Anim. Sci. Technol. 2005, 47, 525–536. [Google Scholar]
- Ceslovas, J.; Vigilijus, J.; Almantas, S. The effect of probiotics and phytobiotics on meat properties and quality in pigs. Vet. Zootech. 2005, 29, 80–84. [Google Scholar]
- Ganeshkumar, S.; Tensingh Gnanaraj, P.; Sivakumar, T.; Karthickeyan, S.M.K.; Murugan, M. Effect of probiotic supplementation on the carcass traits and sensory qualities of swill fed pork. Tamilnadu J. Vet. Anim. Sci. 2009, 5, 157–160. [Google Scholar]
Ingredients, g/100 g | Grower, 29–55 kg | Finisher, 55–110 kg | ||
---|---|---|---|---|
Control (C) | Negative Control (NC) | Control (C) | Negative Control (NC) | |
Barley | 46.995 | 46.595 | 50.991 | 50.622 |
Corn | 15.000 | 15.000 | 15.000 | 15.000 |
Wheat | 12.000 | 12.000 | 12.000 | 12.000 |
Rapeseed meal | -- | 5.000 | -- | 5.000 |
Soybean meal | 19.578 | 14.578 | 16.038 | 11.038 |
Animal fat | 2.956 | 3.311 | 2.651 | 3.006 |
Calcium carbonate 1 | 0.943 | 0.902 | 0.876 | 0.835 |
Monocalcium phosphate | 0.912 | 0.898 | 0.885 | 0.871 |
Salt | 0.446 | 0.443 | 0.420 | 0.416 |
Methionine-OH | 0.132 | 0.116 | 0.099 | 0.086 |
L-lysine (50) | 0.538 | 0.602 | 0.518 | 0.587 |
L-threonine (98) | 0.131 | 0.140 | 0.117 | 0.128 |
L-tryptophan | 0.009 | 0.015 | 0.005 | 0.012 |
Acid Insoluble Ash 2 | 0.500 | 0.500 | -- | -- |
Vitamin and mineral Premix 3 | 0.400 | 0.400 | 0.400 | 0.400 |
Calculated analysis, g/100 g | ||||
Net energy, kcal/kg | 2440 | 2440 | 2440 | 2440 |
Crude protein | 16.40 | 15.71 (−4.21%) | 15.10 | 14.41 (−4.55%) |
Ether extract | 4.75 | 5.14 | 4.45 | 4.85 |
Crude fibre | 3.71 | 4.09 | 3.74 | 4.12 |
Calcium | 0.72 | 0.72 | 0.68 | 0.68 |
Total phosphorus | 0.56 | 0.58 | 0.54 | 0.56 |
Digestible phosphorus | 0.29 | 0.29 | 0.28 | 0.28 |
Total Lys | 1.06 | 1.04 | 0.97 | 0.95 |
SID Lys | 0.96 | 0.9312 (−3.0%) | 0.87 | 0.8439 (−3.0%) |
SID Met | 0.33 | 0.32 | 0.29 | 0.27 |
SID Met + Cys | 0.58 | 0.5626 (−3.0%) | 0.52 | 0.5044 (−3.0%) |
SID Thr | 0.62 | 0.6014 (−3.0%) | 0.56 | 0.5432 (−3.0%) |
SID Trp | 0.18 | 0.1746 (−3.0%) | 0.16 | 0.1552 (−3.0%) |
Analysed Composition, g/100 g | Grower, 29–55 kg | Finisher, 55–110 kg | |||||
---|---|---|---|---|---|---|---|
Control (C) | Negative Control (NC) | NC + Probiotic | Control (C) | Negative Control (NC) | NC + Probiotic | ||
Moisture | 9.04 | 8.63 | 8.27 | 9.39 | 9.10 | 8.92 | |
Ash | 4.57 | 4.40 | 4.47 | 4.58 | 4.46 | 4.40 | |
Crude protein | 16.34 | 15.86 | 15.75 | 15.21 | 14.15 | 14.25 | |
Crude fat | 4.37 | 5.07 | 5.24 | 4.33 | 4.92 | 4.99 | |
Crude fibre | 4.14 | 4.49 | 4.47 | 4.08 | 4.24 | 4.33 | |
Starch | 42.36 | 42.23 | 42.65 | 43.30 | 44.30 | 44.01 | |
Probiotic, CFU/g | Expected | <1.00 × 105 | <1.00 × 105 | 1.30 × 106 | <1.00 × 105 | <1.00 × 105 | 1.30 × 106 |
Analysed | <1.00 × 105 | <1.00 × 105 | 1.16 × 106 | <1.00 × 105 | <1.00 × 105 | 1.09 × 106 |
Parameter | Control (C) | Negative Control (NC) | NC + Probiotic | SEM | p-Value | Single Contrasts | 95% CI of the Difference NC-Probiotic | |||
---|---|---|---|---|---|---|---|---|---|---|
C vs. Probiotic | NC vs. Probiotic | C vs. NC | ||||||||
Body weight, kg | ||||||||||
Trial start | 29.7 | 29.7 | 29.8 | 0.38 | 0.9723 | 0.8225 | 0.8585 | 0.9633 | −1.16 | 0.97 |
After 40 days on trial | 53.8 | 51.8 | 55.2 | 0.66 | 0.0016 | 0.1412 | 0.0004 | 0.0340 | −5.21 | −1.52 |
Trial end | 113.9 | 111.5 | 114.7 | 1.08 | 0.1007 | 0.5831 | 0.0390 | 0.1273 | −6.26 | −0.16 |
Average daily gain (ADG), g | ||||||||||
Grower phase | 601 | 552 | 636 | 16.4 | 0.0016 | 0.1412 | 0.0004 | 0.0340 | −130.37 | −38.11 |
Finisher phase | 969 | 963 | 961 | 12.4 | 0.8922 | 0.6475 | 0.9106 | 0.7290 | −32.83 | 36.81 |
Global trial | 825 | 801 | 833 | 10.6 | 0.1007 | 0.5831 | 0.0390 | 0.1273 | −61.35 | −1.59 |
Average daily feed intake (ADFI), g | ||||||||||
Grower phase | 1332 | 1274 | 1345 | 33.2 | 0.2883 | 0.7808 | 0.1398 | 0.2274 | −165.18 | 24.06 |
Finisher phase | 2380 | 2336 | 2333 | 37.6 | 0.6203 | 0.3867 | 0.9608 | 0.4138 | −104.81 | 110.08 |
Global trial | 1966 | 1916 | 1940 | 30.6 | 0.5182 | 0.5400 | 0.5942 | 0.2547 | −110.68 | 64.17 |
Feed:gain (F:G) ratio | ||||||||||
Grower phase | 2.30 | 2.41 | 2.17 | 0.073 | 0.0798 | 0.2365 | 0.0254 | 0.2706 | 0.031 | 0.450 |
Finisher phase | 2.46 | 2.44 | 2.43 | 0.032 | 0.7143 | 0.4436 | 0.8881 | 0.5309 | −0.084 | 0.096 |
Global trial | 2.40 | 2.41 | 2.34 | 0.022 | 0.0704 | 0.0899 | 0.0280 | 0.5920 | 0.008 | 0.133 |
Parameter | Control (C) | Negative Control (NC) | NC + Probiotic | SEM | p-Value | Single Contrasts | 95% CI of the Difference NC-Probiotic | |||
---|---|---|---|---|---|---|---|---|---|---|
C vs. Probiotic | NC vs. Probiotic | C vs. NC | ||||||||
n | 114 | 110 | 113 | |||||||
BW at end trial, kg | 117.1 | 115.0 | 117.4 | 1.10 | 0.2618 | 0.8509 | 0.1327 | 0.1859 | −5.44 | 0.72 |
Carcass weight, kg | 92.7 | 90.6 | 92.3 | 0.93 | 0.2301 | 0.7570 | 0.1905 | 0.1055 | −4.31 | 0.86 |
Dressing percentage, % | 79.1 | 78.9 | 79.0 | 0.25 | 0.8602 | 0.7696 | 0.8023 | 0.5840 | −0.81 | 0.63 |
Lean meat *, % | 62.0 | 62.3 | 62.3 | 0.19 | 0.4411 | 0.2480 | 0.9184 | 0.2957 | −0.56 | 0.50 |
Loin thickness *, mm | 63.0 | 63.5 | 62.2 | 0.55 | 0.2477 | 0.3187 | 0.0975 | 0.5019 | −0.24 | 2.85 |
Back fat carcass *, mm | 15.3 | 15.2 | 15.1 | 0.24 | 0.8421 | 0.5771 | 0.6647 | 0.9059 | −0.52 | 0.82 |
Min. ham fat *, mm | 10.0 | 9.7 | 9.8 | 0.19 | 0.5470 | 0.4953 | 0.6837 | 0.2782 | −0.63 | 0.42 |
Subcutaneous ham fat *, mm | 20.4 | 19.6 | 20.1 | 0.30 | 0.1719 | 0.5769 | 0.2008 | 0.0670 | −1.38 | 0.29 |
Parameter | Control (C) | Negative Control (NC) | NC + Probiotic | SEM (n = 16) | p-Value |
---|---|---|---|---|---|
ATTD of DM | 82.5 ab | 82.0 b | 83.3 a | 0.25 | 0.0018 |
ATTD of CP | 81.5 a | 79.9 b | 81.4 a | 0.41 | 0.0137 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gracia, M.I.; Cano, G.; Vázquez, P.; Hansen, L.H.B. Effect of a Bacillus-Based Probiotic on Performance and Nutrient Digestibility When Substituting Soybean Meal with Rapeseed Meal in Grower–Finisher Diets. Animals 2023, 13, 3067. https://doi.org/10.3390/ani13193067
Gracia MI, Cano G, Vázquez P, Hansen LHB. Effect of a Bacillus-Based Probiotic on Performance and Nutrient Digestibility When Substituting Soybean Meal with Rapeseed Meal in Grower–Finisher Diets. Animals. 2023; 13(19):3067. https://doi.org/10.3390/ani13193067
Chicago/Turabian StyleGracia, Marta I., Guillermo Cano, Patricia Vázquez, and Lea H. B. Hansen. 2023. "Effect of a Bacillus-Based Probiotic on Performance and Nutrient Digestibility When Substituting Soybean Meal with Rapeseed Meal in Grower–Finisher Diets" Animals 13, no. 19: 3067. https://doi.org/10.3390/ani13193067
APA StyleGracia, M. I., Cano, G., Vázquez, P., & Hansen, L. H. B. (2023). Effect of a Bacillus-Based Probiotic on Performance and Nutrient Digestibility When Substituting Soybean Meal with Rapeseed Meal in Grower–Finisher Diets. Animals, 13(19), 3067. https://doi.org/10.3390/ani13193067