Effects of Duration of Calcium Propionate Supplementation in Lambs Finished with Supplemental Zilpaterol Hydrochloride: Productive Performance, Carcass Characteristics, and Meat Quality
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Housing, Basal Diet, Management, and Feed Sampling
2.2. Experimental Design and Treatments
2.3. Productive Performance Calculus
2.4. Slaughter Procedure and Visceral Organ Mass Determination
2.5. Carcass Characteristics
2.6. Whole Cuts and Tissue Composition
2.7. Meat Quality
2.8. Statistical Analyses
3. Results
3.1. Productive Performance
3.2. Ultrasound Measurements, Carcass Characteristics and Shoulder Composition
3.3. Visceral Organ Mass
3.4. Whole Cuts
3.5. Meat Characteristics
4. Discussion
4.1. Productive Performance
4.2. Ultrasound Measurements, Carcass Characteristics and Shoulder Composition
4.3. Visceral Organ Mass
4.4. Whole Cuts
4.5. Meat Characteristics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rivera-Villegas, A.; Estrada-Angulo, A.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Ríos-Rincón, F.G.; Rodríguez-Cordero, D.; Zinn, R. Comparative evaluation of supplemental zilpaterol hydrochloride sources on growth performance, dietary energetics and carcass characteristics of finishing lambs. Asian-Australas. J. Anim. Sci. 2019, 32, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Bárcena, M.; Domínguez-Vara, I.A.; Morales-Almaraz, E.; Sánchez-Torres, J.E.; Bórquez-Gastelum, J.L.; Hernández-Ramírez, D.; Trujillo-Gutiérrez, D.; Rodríguez-Gaxiola, M.A.; Pinos-Rodríguez, J.M.; Velázquez-Garduño, G.; et al. Effect of zilpaterol hydrochloride and zinc methionine on growth, carcass traits, meat quality, fatty acid profile and gene expression in longissimus dorsi muscle of sheep in intensive fattening. Agriculture 2023, 13, 684. [Google Scholar] [CrossRef]
- Lawrence, T.L.J.; Fowler, V.R. Compensatory growth. In Growth of Farm Animals; CABI Publishing: Wallingford, UK, 2002; pp. 229–254. [Google Scholar] [CrossRef]
- Osorio-Teran, A.I.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Martínez-Gomez, D.; Hernández-García, P.A.; Martínez-García, J.A. Effect of calcium propionate and monensin on in vitro digestibility and gas production. Rev. Bras. Zootec. 2017, 46, 348–353. [Google Scholar] [CrossRef]
- Murillo-Ortiz, M.; Pámanes-Carrasco, G.; Castillo, Y.; Ortiz-Robledo, F.; Herrera-Torres, E. Evaluation of monensin, yeast and glucogenic precursor on growth performance, ruminal fermentation and digestive kinetics of feedlot steers. Indian J. Anim. Res. 2019, 1–4. [Google Scholar] [CrossRef]
- Sano, H.; Fujita, T. Effect of supplemental calcium propionate on insulin action to blood glucose metabolism in adult sheep. Reprod. Nutr. Dev. 2006, 46, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Aiello, R.J.; Armentano, L.E.; Bertics, S.J.; Murphy, A.T. Volatile fatty acid uptake and propionate metabolism in ruminant hepatocytes. J. Dairy Sci. 1989, 72, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Aispuro, J.; Sanchez-Torres, M.; Mendoza-Martínez, G.; Cordero Mora, J.; Figueroa-Velasco, J.; Ayala-Monter, M.; Crosby-Galvan, M. Addition of calcium propionate to finishing lamb diets. Vet. Mex. OA 2018, 5, 37–46. [Google Scholar] [CrossRef]
- Carrillo-Muro, O.; Rivera-Villegas, A.; Hernández-Briano, P.; López-Carlos, M.A.; Aguilera-Soto, J.I.; Estrada-Angulo, A.; Medina-Flores, C.A.; Méndez-Llorente, F. Effect of calcium propionate level on the growth performance, carcass characteristics, and meat quality of feedlot ram lambs. Small Rumin. Res. 2022, 207, 106618. [Google Scholar] [CrossRef]
- Carrillo-Muro, O.; Rivera-Villegas, A.; Hernandez-Briano, P.; Lopez-Carlos, M.A.; Castro-Perez, B.I. Effect of Dietary Calcium Propionate Inclusion Period on the Growth Performance, Carcass Characteristics, and Meat Quality of Feedlot Ram Lambs. Agriculture 2023, 13, 1577. [Google Scholar] [CrossRef]
- Ortiz-Rodea, A.; Barbosa-Amezcua, M.; Partida, J.A.; González-Ronquillo, M. Effect of zilpaterol hydrochloride on animal performance and carcass characteristics in sheep: A meta-analysis. J. Appl. Anim. Res. 2016, 41, 104–112. [Google Scholar] [CrossRef]
- Estrada-Angulo, A.; Barreras-Serrano, A.; Contreras, G.; Obregon, J.F.; Robles-Estrada, J.C.; Plascencia, A.; Zinn, R.A. Influence of level of zilpaterol chlorhydrate supplementation on growth performance and carcass characteristics of feedlot lambs. Small Rumin. Res. 2008, 80, 107–110. [Google Scholar] [CrossRef]
- Johnson, B.J.; Smith, S.B.; Chung, K.Y. Historical overview of the effect of b-adrenergic agonists on beef cattle production. Asian-Australas. J. Anim. Sci. 2014, 27, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Cayetano-De-Jesus, J.A.; Rojo-Rubio, R.; Grajales-Lagunes, A.; Avendaño-Reyes, L.; Macias-Cruz, U.; Gonzalez-del-Prado, V.; Olmedo-Juárez, A.; Chay-Canul, A.; Roque-Jiménez, J.A.; Lee-Rangel, H.A. Effect of zilpaterol hydrochloride on performance and meat quality in finishing lambs. Agriculture 2020, 10, 241. [Google Scholar] [CrossRef]
- Holmer, S.F.; Fernández-Dueñas, D.M.; Scramlin, S.M.; Souza, C.M.; McKeith, F.K.; Killefer, J.; Delmore, R.J.; Beckett, J.L.; Lawrence, T.E.; VanOverbeke, D.L.; et al. The effect of zilpaterol hydrochloride on meat quality of calf-fed Holstein steers. J. Anim. Sci. 2009, 89, 4188–4194. [Google Scholar] [CrossRef]
- López-Baca, M.Á.; Contreras, M.; González-Ríos, H.; Macías-Cruz, U.; Torrentera, N.; Valenzuela-Melendres, M.; Muhlia-Almazán, A.; Soto-Navarro, S.; Avendaño-Reyes, L. Growth, carcass characteristics, cut yields and meat quality of lambs finished with zilpaterol hydrochloride and steroid implant. Meat Sci. 2019, 58, 107890. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007; p. 384.
- Association of Official Agricultural Chemists (AOAC). Official Methods of Analysis of AOAC International, 20th ed.; Association of Official Agricultural Chemists: Rockville, MD, USA, 2016. [Google Scholar]
- North American Meat Processor Association (NAMP). The Meat Buyers Guide; North American Meat Processor Association: Weimar, TX, USA, 1997. [Google Scholar]
- Luaces, M.L.; Calvo, C.; Fernández, B.; Fernández, A.; Viana, J.L.; Sánchez, L. Predicting equations for tisular composition in carcass of Gallega breed lambs. Arch. Zootec. 2008, 217, 3. [Google Scholar]
- Tsai, T.C.; Ockerman, H.W. Water binding measurement of meat. J. Food Sci. 1981, 46, 697–701. [Google Scholar] [CrossRef]
- American Meat Science Association (AMSA). Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat, 2nd ed.; American Meat Science Association: Champaign, IL, USA, 2016. [Google Scholar]
- De Araújo Camilo, D.; Sales Pereira, E.; Guimarães Pimentel, P.; Lopes Oliveira, R.; Duarte Cândido, M.J.; Goes Ferreira Costa, M.R.; da Silva Aquino, R.M. Intake and feeding behaviour of Morada Nova lambs fed different energy levels. Ital. J. Anim. Sci. 2012, 11, e3. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Dai, C.; Li, J.; Huang, P.; Li, Y.; Ding, X.; Huang, J.; Hussain, T.; Yang, H. Effects of dietary energy on growth performance, carcass characteristics, serum biochemical index, and meat quality of female Hu lambs. Anim. Nutr. 2020, 6, 499–506. [Google Scholar] [CrossRef]
- Papi, N.; Mostafa-Tehrani, A.; Amanlou, H.; Memarian, M. Effects of dietary forage-to-concentrate ratios on performance and carcass characteristics of growing fat-tailed lambs. Anim. Feed Sci. Technol. 2011, 163, 93–98. [Google Scholar] [CrossRef]
- Piola-Junior, W.; de Castro, F.A.B.; Bumbieris Junior, V.H.; da Silva, L.D.F.; Muniz, C.A.D.S.D.; Ribeiro, E.D.A. Effects of dietary energy level on the performance and carcass characteristics of lambs. Semin. Ciências Agrárias 2020, 41, 2307–2316. [Google Scholar] [CrossRef]
- Avendaño-Reyes, L.; Macías-Cruz, U.; Álvarez-Valenzuela, F.D.; Águila-Tepato, E.; Torrentera-Olivera, N.G.; Soto-Navarro, S.A. Effects of zilpaterol hydrochloride on growth performance, carcass characteristics, and wholesale cut yield of hair-breed ewe lambs consuming feedlot diets under moderate environmental conditions. J. Anim. Sci. 2011, 89, 4188–4194. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.S.; Choi, C.B. Effects of zinc on lipogenesis of bovine intramuscular adipocytes. Asian-Australas. J. Anim. Sci. 2004, 17, 1378–1382. [Google Scholar] [CrossRef]
- López-Carlos, M.A.; Ramírez, R.G.; Aguilera-Soto, J.I.; Rodríguez, H.; Aréchiga, C.F.; Méndez-Llorente, F.; Chavez, J.J.; Medina, C.A.; Silva, J.M. Effect of the administration program of 2 βadrenergic agonists on growth performance and carcass and meat characteristics of feedlot ram lambs. J. Anim. Sci. 2012, 90, 152131. [Google Scholar] [CrossRef]
- Ríos Rincón, F.G.; Barreras-Serrano, A.; Estrada-Angulo, A.; Obregón, J.F.; Plascencia-Jorquera, A.; Portillo-Loera, J.J.; Zinn, R.A. Effect of level of dietary zilpaterol hydrochloride (β2-agonist) on performance, carcass characteristics and visceral organ mass in hairy lambs fed all-concentrate diets. J. Appl. Anim. Res. 2010, 38, 33–38. [Google Scholar] [CrossRef]
- Johnson, B.J.; Chung, K.Y. Alterations in the physiology of growth of cattle with growth-enhancing compounds. Vet. Clin. N. Am. Food Anim. Pract. 2007, 23, 321–332. [Google Scholar] [CrossRef]
- Moloney, A.P. Growth and carcass composition in sheep offered isoenergetic rations which resulted in different concentrations of ruminal metabolites. Livest. Prod. Sci. 1998, 56, 157–164. [Google Scholar] [CrossRef]
- Cifuentes-López, R.O.; Lee-Rangel, H.A.; García-Lopez, J.C.; Vicente, J.G.; Flores-Primo, A.; Pinos-Rodriguez, J.M. Effect of calcium propionate on live weight, consumption and carcass of lambs fed on alfalfa hay (Medicago sativa). Agrociencia 2018, 52, 81–88. [Google Scholar]
- Lee-Rangel, H.A.; Mendoza, G.D.; Gonzalez, S.S. Effect of calcium propionate and sorghum level on lamb performance. Anim. Feed Sci. Technol. 2012, 177, 237–241. [Google Scholar] [CrossRef]
- Estrada-Angulo, A.; López-Soto, M.A.; Rivera-Méndez, C.R.; Castro, B.I.; Ríos, F.G.; Dávila-Ramos, H.; Barreras, A.; Urías-Estrada, J.D.; Zinn, R.A.; Plascencia, A. Effects of combining feed grade urea and a slow-release urea product on performance, dietary energetics and carcass characteristics of feedlot lambs fed finishing diets with different starch to acid detergent fibre ratios. Asian-Australas. J. Anim. Sci. 2016, 29, 1725–1733. [Google Scholar] [CrossRef]
- Lopez-Carlos, M.A.; Ramirez, R.G.; Aguilera-Soto, J.I.; Plascencia, A.; Rodriguez, H.; Arechiga, C.F.; Rincon, R.M.; Medina-Flores, C.A.; Gutierrez-Bañuelos, H. Effect of two beta adrenergic agonists and feeding duration on feedlot performance and carcass characteristics of finishing lambs. Livest. Prod. Sci. 2011, 138, 251–258. [Google Scholar] [CrossRef]
- Mersmann, H.J. Overview of the effects of ß-adrenergic receptor agonists on animal growth including mechanisms of action. J. Anim. Sci. 1998, 761, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Z.; Cristopherson, B.T.; Ly, T.; Moibi, J.A. Effects of a beta-adrenergic Agonist (L-644,969) on performance and carcass traits of growing lambs in a cold environment. Can. J. Anim. Sci. 2000, 80, 459–465. [Google Scholar] [CrossRef]
- Yang, T.Y.; McElligott, M.A. Multiple actions of ß-Adrenergic agonists on skeletal muscle and adipose tissue. Biochem. J. 1989, 261, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Macías-Cruz, U.; Álvarez-Valenzuela, F.D.; Torrentera-Olivera, N.G.; Velázquez-Morales, J.V.; Correa-Calderón, A.; Robinson, P.H.; Avendaño-Reyes, L. Effect of zilpaterol hydrochloride on feedlot performance and carcass characteristics of ewe lambs during heat-stress conditions. Anim. Prod. Sci. 2010, 50, 983–989. [Google Scholar] [CrossRef]
- Avendaño-Reyes, L.; Meraz-Murillo, F.J.; Pérez-Linares, C.; Figueroa-Saavedra, F.; Correa, A.; Álvarez-Valenzuela, F.D.; Guerra-Liera, J.E.; López-Rincón, G.; Macías-Cruz, U. Evaluation of the efficacy of Grofactor, a beta-adrenergic agonist based on zilpaterol hydrochloride, using feedlot finishing bulls. J. Anim. Sci. 2016, 94, 2954–2961. [Google Scholar] [CrossRef]
- Elam, N.A.; Vasconcelos, J.T.; Hilton, G.; VanOverbeke, D.L.; Lawrence, T.E.; Montgomery, T.H. Effect of zilpaterol hydrochloride duration of feeding on performance and carcass characteristics of feedlot cattle. J. Anim. Sci. 2009, 87, 2133–2141. [Google Scholar] [CrossRef]
- Bradford, G.; Spurlock, G. Effects of castrating lambs on growth and body composition. Anim. Prod. 1964, 6, 291–299. [Google Scholar] [CrossRef]
- Owens, F.N.; Dubeski, P.; Hanson, C.F. Factors that alter the growth and development of ruminants. J. Anim. Sci. 1993, 71, 3138–3150. [Google Scholar] [CrossRef]
- Shadnoush, G.; Ghorbani, G.; Edris, M. Effect of different energy levels in feed and slaughter weights on carcass and chemical composition of Lori-Bakhtiari ram lambs. Small Rumin. Res. 2004, 51, 243–249. [Google Scholar] [CrossRef]
- Gomes, M.A.B.; Moraes, G.V.D.; Mataveli, M.; Macedo, F.D.A.F.D.; Carneiro, T.C.; Rossi, R.M. Performance and carcass characteristics of lambs fed on diets supplemented with glycerin from biodiesel production. Rev. Bras. Zootec. 2011, 40, 2211–2219. [Google Scholar] [CrossRef]
- Plascencia, A.; Torrentera, N.; Zinn, R.A. Influence of the B-agonist, zilpaterol, on growth performance and carcass characteristics of feedlot steers. Proc. West. Sect. Am. Soc. Anim. Sci. 1999, 50, 331–334. [Google Scholar]
- Rojo-Rubio, R.; Avendaño-Reyes, L.; Albarrán, B.; Vázquez, J.F.; Soto-Navarro, S.A.; Guerra, J.E.; Macías-Cruz, U. Zilpaterol hydrochloride improves growth performance and carcass traits without affecting wholesale cut yields of hair sheep finished in feedlot. J. Appl. Anim. Res. 2018, 46, 375–379. [Google Scholar] [CrossRef]
- Hilton, G.G.; Montgomery, J.L.; Krehbiel, C.R.; Yates, D.A.; Hutcheson, J.P.; Nichols, W.T. Effects of feeding zilpaterol hydrochloride with and without monensin and tylosin on carcass cutability and meat palatability of beef steers. J. Anim. Sci. 2009, 87, 1394–1406. [Google Scholar] [CrossRef]
- Carrillo-Muro, O.; Rivera-Villegas, A.; Castro-Pérez, B.; Urías-Estrada, J.; Angulo-Montoya, C.; Hernández-Briano, P.; Plascencia, A.; Barreras, A.; Estrada-Angulo, A. Generic zilpaterol sources affect similarly the meat quality of hairy lambs when compared with patent zilpaterol. Iran. J. Appl. Anim. 2021, 11, 615–619. [Google Scholar]
- Walter, L.A.J.; Schmitz, A.N.; Nichols, W.T.; Hutcheson, J.P.; Lawrence, T.E. Live growth performance, carcass grading characteristics, and harvest yields of beef steers sup-plemented zilpaterol hydrochloride and offered ad libitum or maintenance energy intake. J. Anim. Sci. 2018, 96, 1688–1703. [Google Scholar] [CrossRef]
- Partida, J.A.; Casaya, T.A.; Rubio, M.S.; Medina, R.D. Effect of zilpaterol hydrochloride on the carcass characteristics of Katahdin Lamb terminal crosses. Vet. Mex. OA 2015, 2, 1–13. [Google Scholar] [CrossRef]
- Carr, S.N.; Ivers, D.J.; Anderson, D.B.; Jones, D.J.; Mowrey, D.H.; England, M.B.; Killefer, J.; Rincker, P.J.; McKeith, F.K. The effects of ractopamine hydrochloride on lean carcass yields and pork quality characteristics. J. Anim. Sci. 2005, 83, 2886–2893. [Google Scholar] [CrossRef]
Ingredients | g kg−1 DM |
---|---|
Alfalfa hay mature | 100.0 |
Oats hay | 100.0 |
Dry-rolled corn yellow | 500.0 |
Dried distiller grains | 130.0 |
Soybean meal-44 | 54.0 |
Molasses cane | 80.00 |
Calcium carbonate | 10.0 |
Sodium bentonite | 10.0 |
Sodium sesquicarbonate | 15.0 |
Microminerals: Co, Fe, I, Mn, Zn, Se, and Cu a | 0.5 |
Vitamins: A, D and E b | 0.5 |
Chemical composition, g kg−1 DM c | |
Dry matter | 835.1 |
Crude protein | 137.2 |
Ether extract | 23.8 |
Neutral detergent fiber | 204.0 |
Calcium | 8.5 |
Phosphorus | 2.4 |
Ca:P ratio | 3.5 |
Calculated net energy, Mcal/kg c | |
Maintenance | 1.9 |
Gain | 1.3 |
Item b | Control | Duration of CaPr Supplementation + ZH a | SEM | Effects (p-Value) | ||||
---|---|---|---|---|---|---|---|---|
0 | 14 | 28 | 42 | Linear | Quadratic | |||
IBW, kg | 40.2 | 40.1 | 40.0 | 40.2 | 40.0 | 0.83 | 1.00 | 0.96 |
FBW, kg | 49.4 b | 49.9 b | 51.2 ab | 54.1 a | 51.5 ab | 0.85 | 0.06 | 0.04 |
ADG, kg/d | 0.220 b | 0.234 b | 0.263 ab | 0.333 a | 0.272 ab | 0.02 | 0.06 | 0.04 |
DMI, kg/d | 1.4 a | 1.1 b | 1.3 a | 1.2 ab | 1.1 b | 0.06 | 0.33 | 0.15 |
ADG:DMI ratio | 0.150 c | 0.204 b | 0.205 b | 0.264 a | 0.219 b | 0.01 | 0.07 | 0.09 |
Item b | Control | Duration of CaPr Supplementation + ZH a | SEM | Effects (p-Value) | ||||
---|---|---|---|---|---|---|---|---|
0 | 14 | 28 | 42 | Linear | Quadratic | |||
Ultrasound measurements | ||||||||
Fat thickness, mm | 2.9 | 3.1 | 4.0 | 3.4 | 3.8 | 0.32 | 0.90 | 0.20 |
LMA, cm2 | 12.4 b | 12.5 b | 13.8 a | 12.6 ab | 12.7 ab | 0.31 | 0.10 | 0.05 |
Carcass characteristics | ||||||||
HCW, kg | 23.8 b | 24.0 b | 25.8 ab | 26.3 a | 25.4 ab | 0.43 | 0.003 | 0.72 |
CCW, kg | 22.9 b | 23.1 b | 25.0 ab | 25.6 a | 24.6 ab | 0.44 | 0.002 | 0.71 |
Dressing percentage | 53.3 b | 55.8 b | 58.0 a | 58.0 a | 58.6 a | 0.45 | 0.0001 | 0.05 |
Cooling loss, % | 3.2 | 3.5 | 3.2 | 2.4 | 3.1 | 0.46 | 0.22 | 0.50 |
Carcass length, cm | 71.8 | 68.0 | 69.2 | 70.5 | 67.9 | 1.73 | 0.73 | 0.10 |
Leg circumference, cm | 44.9 | 46.4 | 47.9 | 48.6 | 48.3 | 0.79 | 0.03 | 0.61 |
Chest circumference, cm | 27.9 | 25.1 | 27.0 | 25.0 | 25.7 | 0.9 | 0.10 | 0.61 |
Shoulder composition | ||||||||
Muscle, % | 61.9 | 59.2 | 62.4 | 61.8 | 61.0 | 2.06 | 0.76 | 0.58 |
Fat, % | 21.1 | 20.8 | 18.4 | 18.4 | 20.0 | 1.70 | 0.23 | 0.91 |
Bone, % | 17.1 | 20.1 | 19.3 | 19.9 | 19.0 | 0.84 | 0.08 | 0.11 |
Item b | Control | Duration of CaPr Supplementation + ZH a | SEM | Effects (p-Value) | ||||
---|---|---|---|---|---|---|---|---|
0 | 14 | 28 | 42 | Linear | Quadratic | |||
Empty BW, kg | 53.2 b | 56.2 b | 58.0 a | 57.7 a | 58.9 a | 0.60 | 0.01 | 0.03 |
Skin | 148.6 | 135.1 | 151.5 | 160.1 | 160.6 | 13.10 | 0.43 | 0.32 |
Limbs | 24.4 | 26.3 | 28.7 | 26.6 | 28.2 | 0.93 | 0.51 | 0.24 |
Head | 39.1 | 37.9 | 41.6 | 41.1 | 40.9 | 1.34 | 0.11 | 0.75 |
Heart | 4.9 | 4.6 | 5.5 | 5.3 | 6.1 | 0.40 | 0.40 | 0.83 |
Lungs | 23.6 | 27.1 | 25.1 | 26.0 | 23.7 | 1.55 | 0.54 | 0.30 |
Liver | 21.1 | 20.5 | 22.0 | 22.0 | 21.9 | 1.22 | 0.39 | 0.71 |
Spleen | 2.0 | 2.0 | 1.9 | 2.0 | 2.2 | 0.30 | 0.91 | 0.84 |
Kidney | 2.7 | 3.0 | 3.3 | 3.1 | 3.5 | 0.30 | 0.12 | 0.34 |
Testicles | 15.4 | 14.1 | 15.6 | 15.4 | 14.7 | 1.10 | 0.83 | 0.50 |
Visceral fat | 23.1 | 27.0 | 22.9 | 26.0 | 25.7 | 3.87 | 0.83 | 0.91 |
Perirenal fat | 14.6 | 13.3 | 13.7 | 12.4 | 13.7 | 1.38 | 0.44 | 0.91 |
Stomach c | 29.9 | 27.3 | 29.7 | 25.3 | 26.1 | 1.82 | 0.23 | 0.63 |
Large intestine | 10.6 | 11.4 | 12.0 | 9.5 | 10.2 | 1.27 | 0.63 | 0.14 |
Small intestine | 18.3 | 17.0 | 20.5 | 21.6 | 19.8 | 1.63 | 0.12 | 0.43 |
Item b | Control | Duration of CaPr Supplementation + ZH a | SEM | Effects (p-Value) | ||||
---|---|---|---|---|---|---|---|---|
0 | 14 | 28 | 42 | Linear | Quadratic | |||
Whole cuts, g/kg of EBW | ||||||||
Forequarter | 6.2 | 6.1 | 6.4 | 6.7 | 6.1 | 0.16 | 0.11 | 0.32 |
Hindquarter | 5.3 | 5.5 | 5.5 | 5.4 | 5.36 | 0.21 | 0.75 | 0.34 |
Shoulder IMPS207 | 2.1 b | 2.3 ab | 2.2 ab | 2.4 a | 2.2 ab | 0.06 | 0.09 | 0.63 |
Shoulder IMPS206 | 1.1 | 1.1 | 1.2 | 1.1 | 0.9 | 0.09 | 0.73 | 0.61 |
Leg IMPS233 | 3.0 | 3.1 | 3.2 | 3.0 | 3.1 | 0.10 | 0.83 | 0.14 |
Loin IMPS231 | 1.3 | 1.2 | 1.4 | 1.4 | 1.26 | 0.11 | 0.45 | 0.82 |
Rack IMPS204 | 0.77 | 0.62 | 0.76 | 0.73 | 0.58 | 0.03 | 0.92 | 0.21 |
Ribs IMPS209A | 0.69 | 0.66 | 0.64 | 0.65 | 0.64 | 0.03 | 0.48 | 0.45 |
Flank IMPS232 | 0.91 | 1.1 | 0.9 | 0.99 | 0.96 | 0.04 | 0.82 | 0.64 |
Breast IMPS209 | 0.87 b | 0.93 b | 1.1 ab | 1.1 a | 1.0 ab | 0.03 | 0.004 | 0.40 |
Neck | 0.70 | 0.47 | 0.62 | 0.69 | 0.68 | 0.11 | 0.81 | 0.13 |
Whole cuts, as percentage of CCW | ||||||||
Forequarter | 51.0 | 50.1 | 52.8 | 55.3 | 49.9 | 1.82 | 0.11 | 0.34 |
Hindquarter | 43.3 | 45.1 | 45.1 | 44.3 | 44.0 | 1.5 | 0.75 | 0.33 |
Shoulder IMPS207 | 8.5 | 9.5 | 9.2 | 9.8 | 9.1 | 0.35 | 0.07 | 0.64 |
Shoulder IMPS206 | 4.4 | 4.5 | 4.8 | 4.5 | 3.7 | 0.45 | 0.75 | 0.61 |
Leg IMPS233 | 12.5 | 13.0 | 13.0 | 12.4 | 12.9 | 0.42 | 0.86 | 0.10 |
Loin IMPS231 | 5.4 | 5.1 | 6.0 | 5.7 | 5.2 | 0.43 | 0.45 | 0.90 |
Rack IMPS204 | 2.2 b | 2.5 b | 3.1 a | 3.0 a | 2.4 b | 0.21 | 0.94 | 0.13 |
Ribs IMPS209A | 2.9 | 2.7 | 2.6 | 2.7 | 2.6 | 0.14 | 0.33 | 0.42 |
Flank IMPS232 | 3.7 | 4.4 | 3.6 | 4.1 | 4.0 | 0.25 | 0.74 | 0.61 |
Breast IMPS209 | 3.6 | 3.8 | 4.1 | 4.7 | 4.3 | 0.22 | 0.002 | 0.53 |
Neck | 2.9 | 1.9 | 2.5 | 2.9 | 2.8 | 0.48 | 0.83 | 0.10 |
Item b | Control | Duration of CaPr Supplementation + ZH a | SEM | Effects (p-Value) | ||||
---|---|---|---|---|---|---|---|---|
0 | 14 | 28 | 42 | Linear | Quadratic | |||
Meat characteristics | ||||||||
pH24 h | 5.3 | 5.4 | 5.7 | 5.7 | 5.58 | 0.19 | 0.08 | 0.7 |
Purge loss24 h, % | 0.44 | 0.47 | 0.98 | 0.65 | 0.71 | 0.12 | 0.06 | 0.11 |
Purge loss48 h, % | 0.41 b | 1.5 ab | 1.4 ab | 2.1 a | 1.9 a | 0.37 | 0.03 | 0.63 |
Cook loss, % | 12.4 b | 12.2 b | 18.2 a | 19.1 a | 16.7 a | 2.17 | 0.14 | 0.001 |
WHC, % | 11.4 | 13.8 | 14.5 | 14.4 | 14.0 | 2.17 | 0.30 | 0.54 |
WBSF, kg/cm2 | 4.2 | 4.0 | 3.9 | 3.9 | 4.2 | 0.1 | 0.28 | 0.74 |
Color | ||||||||
L* | 44.2 | 43.3 | 47.2 | 44.8 | 42.5 | 2.18 | 0.54 | 0.70 |
a* | 16.9 | 16.1 | 13.5 | 16.0 | 16.3 | 1.23 | 0.13 | 0.72 |
b* | 4.4 | 4.2 | 3.4 | 4.0 | 4.4 | 0.56 | 0.24 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo-Muro, O.; Rivera-Villegas, A.; Hernandez-Briano, P.; Lopez-Carlos, M.A.; Plascencia, A. Effects of Duration of Calcium Propionate Supplementation in Lambs Finished with Supplemental Zilpaterol Hydrochloride: Productive Performance, Carcass Characteristics, and Meat Quality. Animals 2023, 13, 3113. https://doi.org/10.3390/ani13193113
Carrillo-Muro O, Rivera-Villegas A, Hernandez-Briano P, Lopez-Carlos MA, Plascencia A. Effects of Duration of Calcium Propionate Supplementation in Lambs Finished with Supplemental Zilpaterol Hydrochloride: Productive Performance, Carcass Characteristics, and Meat Quality. Animals. 2023; 13(19):3113. https://doi.org/10.3390/ani13193113
Chicago/Turabian StyleCarrillo-Muro, Octavio, Alejandro Rivera-Villegas, Pedro Hernandez-Briano, Marco Antonio Lopez-Carlos, and Alejandro Plascencia. 2023. "Effects of Duration of Calcium Propionate Supplementation in Lambs Finished with Supplemental Zilpaterol Hydrochloride: Productive Performance, Carcass Characteristics, and Meat Quality" Animals 13, no. 19: 3113. https://doi.org/10.3390/ani13193113
APA StyleCarrillo-Muro, O., Rivera-Villegas, A., Hernandez-Briano, P., Lopez-Carlos, M. A., & Plascencia, A. (2023). Effects of Duration of Calcium Propionate Supplementation in Lambs Finished with Supplemental Zilpaterol Hydrochloride: Productive Performance, Carcass Characteristics, and Meat Quality. Animals, 13(19), 3113. https://doi.org/10.3390/ani13193113