Buffering Capacity Comparison of Tris Phosphate Carbonate and Buffered Peptone Water Salmonella Pre-Enrichments for Manufactured Feed and Feed Ingredients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. pH Values
3.2. pH Differences
3.3. Salmonella Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bissonnette, G.K.; Jezeski, J.J.; McFeters, G.A.; Stuart, D. Influence of Environmental Stress on Enumeration of Indicator Bacteria from Natural Waters. Appl. Microbiol. 1975, 29, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.W.; Ordal, Z.J. Thermal Injury and Recovery of Salmonella typhimurium and Its Effect on Enumeration Procedures. Appl. Microbiol. 1969, 18, 332–336. [Google Scholar] [CrossRef]
- Ray, B.; Jezeski, J.J.; Busta, F.F. Effect of Rehydration on Recovery, Repair, and Growth of Injured Freeze-Dried Salmonella anatum. Appl. Microbiol. 1971, 22, 184–189. [Google Scholar] [CrossRef]
- Ray, B.; Speck, M.L. Enumeration of Escherichia coli in Frozen Samples after Recovery from Injury. Appl. Microbiol. 1973, 25, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.W. Low pH Adaptation and the Acid Tolerance Response of Salmonella typhimurium. Crit. Rev. Microbiol. 1995, 21, 215–237. [Google Scholar] [CrossRef]
- D’Aoust, J.Y. Update on Preenrichment and Selective Enrichment Conditions for Detection of Salmonella in Foods. J. Food Prot. 1981, 44, 369–374. [Google Scholar] [CrossRef] [PubMed]
- North, W.R., Jr. Lactose Pre-enrichment Method for Isolation of Salmonella from Dried Egg Albumin: Its Use in a Survey of Commercially Produced Albumen. Appl. Microbiol. 1961, 9, 188–195. [Google Scholar] [CrossRef]
- HiMedia Laboratories. Technical Data, Buffered Peptone Water, M614. Available online: https://himedialabs.com/TD/M614.pdf (accessed on 15 August 2023).
- Jay, J.M. Foodborne Gastroenteritis Caused by Salmonella and Shigella. In Modern Food Microbiology; Springer: Boston, MA, USA, 1998; pp. 507–526. ISBN 978-1-4615-7476-7. [Google Scholar]
- Li, H.; Wang, H.; D’Aoust, J.Y.; Maurer, J. Salmonella Species. In Food Microbiology: Fundamentals and Frontiers, 4th ed.; Doyle, M.P., Buchanan, R.L., Eds.; ASM Press: Washington, DC, USA, 2012; pp. 223–261. ISBN 9781683670582. [Google Scholar]
- Bhunia, A.K. Salmonella enterica. In Foodborne Microbial Pathogens, 2nd ed.; Springer: New York, NY, USA, 2018; pp. 271–287. ISBN 9781493973491. [Google Scholar]
- Cox, N.A.; Bailey, J.S.; Thomson, J.E.; Juven, B.J. Salmonella and Other Enterobacteriaceae Found in Commercial Poultry Feed. Poult. Sci. 1983, 62, 2169–2175. [Google Scholar] [CrossRef]
- Quinn, C.; Ward, J.; Griffin, M.; Yearsley, D.; Egan, J. A Comparison of Conventional Culture and Three Rapid Methods for the Detection of Salmonella in Poultry Feeds and Environmental Samples. Lett. Appl. Microbiol. 1995, 20, 89–91. [Google Scholar] [CrossRef]
- Veldman, A.; Vahl, H.; Borggreve, G.J.; Fuller, D.C. A Survey of the Incidence of Salmonella Species and Enterobacteriaceae in Poultry Feeds and Feed Components. Vet. Rec. 1995, 136, 169–172. [Google Scholar] [CrossRef]
- Davies, R.H.; Wray, C. Persistence of Salmonella enteritidis in Poultry Units and Poultry Food. Br. Poult. Sci. 1996, 37, 589–596. [Google Scholar] [CrossRef]
- Heyndrickx, M.; Vandekerchove, D.; Herman, L.; Rollier, I.; Grijspeerdt, K.; De Zutter, L. Routes for Salmonella Contamination of Poultry Meat: Epidemiological Study from Hatchery to Slaughterhouse. Epidemiol. Infect. 2002, 129, 253–265. [Google Scholar] [CrossRef]
- Munoz, L.R.; Pacheco, W.J.; Hauck, R.; Macklin, K.S. Evaluation of Commercially Manufactured Animal Feeds to Determine Presence of Salmonella, Escherichia coli, and Clostridium perfringens. J. Appl. Poult. Res. 2021, 30, 100142. [Google Scholar] [CrossRef]
- Koyuncu, S.; Haggblom, P. A Comparative Study of Cultural Methods for the Detection of Salmonella in Feed and Feed Ingredients. BMC Vet. Res. 2009, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Maciorowski, K.G.; Herrera, P.; Jones, F.T.; Pillai, S.D.; Ricke, S.C. Cultural and immunological detection methods for Salmonella spp. in animal feeds—A review. Vet. Res. Commun. 2006, 30, 127–137. [Google Scholar] [CrossRef]
- Cox, N.A.; Burdick, D.; Bailey, J.S.; Thomson, J.E. Effect of the steam conditioning and pelleting process on the microbiology and quality of commercial-type poultry feeds. Poult. Sci. 1986, 65, 704–709. [Google Scholar] [CrossRef]
- Dunkley, K.D.; Callaway, T.R.; Chalova, V.I.; McReynolds, J.L.; Hume, M.E.; Dunkley, C.S.; Kubena, L.F.; Nisbet, D.J.; Ricke, S.C. Foodborne Salmonella ecology in the avian gastrointestinal tract. Anaerobe 2009, 15, 26–35. [Google Scholar] [CrossRef]
- Richardson, K.E.; Cox, N.A.; Cosby, D.E.; Berrang, M.E.; Holcombe, N.L.; Weller, C.E. Dry and Heat Stress Affects H2S Production of Salmonella on Selective Plating Media. J. Environ. Sci. Health Part B 2019, 54, 313–316. [Google Scholar] [CrossRef]
- Blankenship, L.C. Some characteristics of acid injury and recovery of Salmonella bareilly in a model system. J. Food Prot. 1981, 44, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Kuijpers, A.F.; Mooijman, K.A. Detection of Salmonella in Food, Feed and Veterinary Samples by EU Laboratories. Food Res. Int. 2012, 45, 885–890. [Google Scholar] [CrossRef]
- Mooijman, K.A. The New ISO 6579-1: A Real Horizontal Standard for Detection of Salmonella, at Last! Food Microbiol. 2018, 71, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Berrang, M.E.; Cosby, D.E.; Cox, N.A.; Cason, J.A.; Richardson, K.E. Optimizing Buffering Chemistry to Maintain Near Neutral pH of Broiler Feed during Pre-enrichment for Salmonella. Poult. Sci. 2015, 94, 3048–3051. [Google Scholar] [CrossRef]
- Richardson, K.E.; Cosby, D.E.; Berrang, M.E.; Cox, N.A.; Clay, S.M.; Weller, C.; Holcombe, J. Evaluation of the Tris Phosphate Carbonate Salmonella Pre-enrichment Medium for Poultry Feed and Feed Ingredients. J. Appl. Poult. Res. 2021, 30, 100104. [Google Scholar] [CrossRef]
- Cox, N.A.; Cason, J.A.; Buhr, R.J.; Richardson, K.E.; Richardson, L.J.; Rigsby, L.L.; Fedorka-Cray, P.J. Variations in Preenrichment pH of Poultry Feed and Feed Ingredients after Incubation Periods up to 48 Hours. J. Appl. Poult. Res. 2013, 22, 190–195. [Google Scholar] [CrossRef]
- Cromwell, G.L.; Cline, T.R.; Crenshaw, J.D.; Crenshaw, T.D.; Easter, R.A.; Ewan, R.C.; Hamilton, C.R.; Hill, G.M.; Lewis, A.J.; Mahan, D.C.; et al. Variability among Sources and Laboratories in Analyses of Wheat Middlings. J. Anim. Sci. 2000, 78, 2652–2658. [Google Scholar] [CrossRef]
- Belyea, R.L.; Rausch, K.D.; Clevenger, T.E.; Singh, V.; Johnston, D.B.; Tumbleson, M.E. Sources of Variation in Composition of DDGS. Anim. Feed. Sci. Technol. 2010, 159, 122–130. [Google Scholar] [CrossRef]
- Rausch, K.D.; Belyea, R.L. The Future of Coproducts from Corn Processing. Appl. Biochem. Biotechnol. 2006, 128, 47–86. [Google Scholar] [CrossRef]
- Poore, M.H.; Johns, J.T.; Burris, W.R. Soybean Hulls, Wheat Middlings, and Corn Gluten Feed as Supplements for Cattle on Forage-Based Diets. Vet. Clin. Food Anim. Pract. 2002, 18, 213–231. [Google Scholar] [CrossRef]
- ZoBell, D.R.; Goonewardene, L.A.; Olson, K.C.; Stonecipher, C.A.; Wiedmeier, R.D. Effects of Feeding Wheat Middlings on Production, Digestibility, Ruminal Fermentation, and Carcass Characteristics in Beef Cattle. Can. J. Anim. Sci. 2003, 83, 551–557. [Google Scholar] [CrossRef]
- Batal, A.; Dale, N.; Café, M. Nutrient Composition of Peanut Meal. J. Appl. Poult. Res. 2005, 14, 254–257. [Google Scholar] [CrossRef]
- Dozier, W.A., III; Hess, J.B. Soybean Meal Quality and Analytical Techniques. In Soybean and Nutrition; El-Shemy, H., Ed.; InTech: Rijeka, Croatia, 2011; pp. 111–124. [Google Scholar]
- Huss, A.; Cochrane, R.; Jones, C.; Atungulu, G.G. Physical and Chemical Methods for the Reduction of Biological Hazards in Animal Feeds. In Food and Feed Safety Systems and Analysis; Ricke, S.C., Atungulu, G.G., Rainwater, C., Park, S.H., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 83–95. [Google Scholar] [CrossRef]
- Müller, V. Bacterial Fermentation. In Encyclopedia of Life Sciences; John Wiley & Sons: Oxford, UK, 2001; pp. 1–7. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Mahrose, K.M.; Attia, F.A.M.; Swelum, A.A.; Taha, A.E.; Shewita, R.S.; Hussein, E.-S.O.S.; Alowaimer, A.N. Laying Performance, Physical, and Internal Egg Quality Criteria of Hens Fed Distillers Dried Grains with Solubles and Exogenous Enzyme Mixture. Animals 2019, 9, 150. [Google Scholar] [CrossRef]
- Lamsal, B.P.; Pathirapong, P.; Rakshit, S. Microbial Growth and Modification of Corn Distillers Dried Grains with Solubles during Fermentation. Ind. Crops Prod. 2012, 37, 553–559. [Google Scholar] [CrossRef]
- Vicuna, R. Bacterial Degradation of Lignin. Enzym. Microb. Technol. 1988, 10, 646–655. [Google Scholar] [CrossRef]
- Iram, A.; Cekmecelioglu, D.; Demirci, A. Distillers’ Dried Grains with Solubles (DDGS) and Its Potential as Fermentation Feedstock. Appl. Microbiol. Biotechnol. 2020, 104, 6115–6128. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Meng, Q.; Yu, Z. Effect of pH Buffering Capacity and Sources of Dietary Sulfur on Rumen Fermentation, Sulfide Production, Methane Production, Sulfate Reducing Bacteria, and Total Archaea in In Vitro Rumen Cultures. Bioresour. Technol. 2015, 186, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, J.; Sun, Y.; Wang, W. Transient Bacteria Removal by Concentrated Sulfuric Acid for Cell Pollution. J. Biochem. Biophy. 2018, 2, 103. [Google Scholar]
- Clemente-Carazo, M.; Leal, J.J.; Huertas, J.P.; Garre, A.; Palop, A.; Periago, P.M. The Different Response to an Acid Shock of Two Salmonella Strains Marks Their Resistance to Thermal Treatments. Front. Microbiol. 2021, 12, 691248. [Google Scholar] [CrossRef]
- Kallapura, G.; Kogut, M.H.; Morgan, M.J.; Pumford, N.R.; Bielke, L.R.; Wolfenden, A.D.; Faulkner, O.B.; Latorre, J.D.; Menconi, A.; Hernandez-Velasco, X.; et al. Fate of Salmonella Senftenberg in Broiler Chickens Evaluated by Challenge Experiments. Avian Pathol. 2014, 43, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Kamble, N.M.; Lee, J.H. Characterization and Evaluation of a Salmonella enterica Serotype Senftenberg Mutant Created by Deletion of Virulence-Related Genes for Use as a Live Attenuated Vaccine. Clin. Vaccine Immunol. 2016, 23, 802–812. [Google Scholar] [CrossRef]
- Myoujin, Y.; Yona, R.; Umiji, S.; Tanimoto, T.; Otsuki, K.; Murase, T. Salmonella enterica subsp. enterica Serovar Agona Infections in Commercial Pheasant Flocks. Avian Pathol. 2003, 32, 355–359. [Google Scholar] [CrossRef]
- Cascarosa, E.; Gea, G.; Arauzo, J. Thermochemical Processing of Meat and Bone Meal: A Review. Renew. Sustain. Energy Rev. 2012, 16, 942–957. [Google Scholar] [CrossRef]
- Jiang, X. Prevalence and Characterization of Salmonella in Animal Meals Collected from Rendering Operations. J. Food Prot. 2016, 79, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Fedorka-Cray, P.J.; Hogg, A.; Gray, J.T.; Lorenzen, K.; Velasquez, J.; Von Behren, P. Feed and Feed Trucks as Sources of Salmonella Contamination in Swine. J. Swine Health Prod. 1997, 5, 189–193. [Google Scholar] [CrossRef]
- Beuchat, L.R.; Komitopoulou, E.; Beckers, H.; Betts, R.P.; Bourdichon, F.; Fanning, S.; Joosten, H.M.; Ter Kuile, B.H. Low-Water Activity Foods: Increased Concern as Vehicles of Foodborne Pathogens. J. Food Prot. 2013, 76, 150–172. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.M.; Parker, A.J.; Short, G.; O’Connor, A.M.; Wittum, T.E. Salmonella Detection in Commercially Prepared Livestock Feed and the Raw Ingredients and Equipment Used to Manufacture the Feed: A Systematic Review and Meta-analysis. Prev. Vet. Med. 2022, 198, 105546. [Google Scholar] [CrossRef]
Feed Mill | Type of Feed Mill | State | Type of Feed Sample | No. of Samples |
---|---|---|---|---|
A | Pigs, Integrator | OK | Ground corn | 10 |
Wheat middlings | 10 | |||
Post mixing | 10 | |||
Post cooling | 10 | |||
Pellet loadout | 10 | |||
B | Broilers, Integrator | MS | Ground corn | 8 |
C | Pigs, Toll Mill | IA | Ground corn | 10 |
DDGS 1 | 10 | |||
Post mixing | 10 | |||
Mash loadout | 8 | |||
D | Pigs, Toll Mill | IA | Ground corn | 10 |
DDGS 1 | 10 | |||
Post mixing | 10 | |||
Mash loadout | 10 | |||
E | Research and Education (R&E) | AL | Ground corn | 14 |
DDGS 1 | 14 | |||
Poultry by-product meal | 14 | |||
Meat and bone meal | 7 | |||
Peanut meal | 7 | |||
Post mixing | 14 | |||
Post cooling | 14 | |||
Pellet loadout | 14 | |||
F | Pigs, Toll Mill | IL | Ground corn | 7 |
DDGS 1 | 7 | |||
Soybean meal | 7 | |||
Mash loadout | 14 |
TPC Formula | Brand | Amount (1 L) |
---|---|---|
Peptone | BD Bacto, Franklin Lakes, NJ, USA | 10 g (1%) |
NaCl (sodium chloride) | VWR Chemicals, Fountain Pkwy, OH, USA | 5 g (0.085 M) |
Na2HPO4 (disodium phosphate) | VWR Chemicals, Fountain Pkwy, OH, USA | 3 g (25 mM) |
NaHPO4 (sodium phosphate) | Fisher Scientific, Fair Lawn, NJ, USA | 1.5 g (11 mM) |
Na2CO3 (sodium carbonate) | Fisher Scientific, Fair Lawn, NJ, USA | 4.2 g (50 mM) |
1 M Tris, pH 8.0 | VWR Chemicals, Fountain Pkwy, OH, USA | 100 mL (100 mM) |
H2O | - | ad 1000 mL |
Feed Type | No. of Samples | TPC (pH) | BPW (pH) | ||||||
---|---|---|---|---|---|---|---|---|---|
Initial | S.E. 2 | Final | S.E. 2 | Initial | S.E. 2 | Final | S.E. 2 | ||
Ground corn | 59 | 8.03 a | 0.02 | 7.14 b | 0.04 | 7.05 a | 0.02 | 6.01 ab | 0.05 |
DDGS 1 | 41 | 6.98 d | 0.02 | 6.91 cd | 0.05 | 5.81d | 0.03 | 5.90 bc | 0.06 |
Poultry by-product meal | 14 | 7.60 c | 0.04 | 7.14 bc | 0.08 | 6.54 c | 0.05 | 6.22 ab | 0.1 |
Wheat middlings | 10 | 7.94 ab | 0.05 | 6.57 ef | 0.09 | 7.09 a | 0.06 | 5.15 d | 0.12 |
Meat and bone meal | 7 | 7.85 ab | 0.06 | 7.77 a | 0.11 | 6.96 ab | 0.07 | 6.45 a | 0.15 |
Peanut meal | 7 | 8.04 a | 0.06 | 5.75 g | 0.11 | 6.92 ab | 0.07 | 4.68 d | 0.15 |
Soybean meal | 7 | 7.93 ab | 0.06 | 5.59 g | 0.11 | 6.99 ab | 0.07 | 4.86 d | 0.15 |
Post mixing | 44 | 7.99 a | 0.02 | 6.54 f | 0.04 | 6.91 ab | 0.03 | 5.69 c | 0.06 |
Mash loadout | 32 | 7.78 b | 0.03 | 6.80 de | 0.05 | 6.82 b | 0.03 | 5.93 abc | 0.07 |
Post cooling | 24 | 8.04 a | 0.03 | 6.39 f | 0.06 | 6.92 ab | 0.04 | 5.11 d | 0.08 |
Pellet loadout | 24 | 8.02 a | 0.03 | 6.23 f | 0.06 | 6.87 ab | 0.04 | 5.05 d | 0.08 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Type of Sample | No. of Samples | TPC (pH) | BPW (pH) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Initial | Final | I − F (%) 1 | S.E. 2 | p-Value | Initial | Final | I − F (%) 1 | S.E. 2 | p-Value | ||
Ground corn | 59 | 8.03 * | 7.14 * | 11.11% | 0.03 | <0.0001 | 7.05 * | 6.01 * | 14.64% | 0.07 | <0.0001 |
DDGS 3 | 41 | 6.98 | 6.91 | 1.01% | 0.04 | 0.076 | 5.81 | 5.90 | −1.55% | 0.06 | 0.164 |
Poultry by-product meal | 14 | 7.60 * | 7.14 * | 6.08% | 0.06 | <0.0001 | 6.54 * | 6.22 * | 4.89% | 0.02 | <0.0001 |
Wheat middlings | 10 | 7.94 * | 6.57 * | 17.25% | 0.06 | <0.0001 | 7.09 * | 5.15 * | 27.40% | 0.06 | <0.0001 |
Meat and bone meal | 7 | 7.85 * | 7.77 * | 1.06% | 0.02 | 0.004 | 6.96 * | 6.45 * | 7.33% | 0.03 | <0.0001 |
Peanut meal | 7 | 8.04 * | 5.75 * | 28.46% | 0.13 | <0.0001 | 6.92 * | 4.68 * | 32.36% | 0.16 | <0.0001 |
Soybean meal | 7 | 7.93 * | 5.59 * | 29.48% | 0.13 | <0.0001 | 6.99 * | 4.86 * | 30.46% | 0.09 | <0.0001 |
Post mixing | 44 | 7.99 * | 6.54 * | 18.20% | 0.03 | <0.0001 | 6.91 * | 5.69 * | 17.68% | 0.06 | <0.0001 |
Mash loadout | 32 | 7.78 * | 6.80 * | 12.55% | 0.11 | <0.0001 | 6.82 * | 5.93 * | 13.03% | 0.09 | <0.0001 |
Post cooling | 24 | 8.04 * | 6.39 * | 20.52% | 0.05 | <0.0001 | 6.92 * | 5.11 * | 26.18% | 0.03 | <0.0001 |
Pellet loadout | 24 | 8.02 * | 6.23 * | 22.22% | 0.06 | <0.0001 | 6.87 * | 5.05 * | 26.49% | 0.05 | <0.0001 |
Sample | P.E. 1 | pH | Agglutination Test | Serotype | ||
---|---|---|---|---|---|---|
Initial | Final | Poly | Group | |||
Meat and bone meal | BPW | 6.89 | 6.4 | A | C1 | Oranienburg |
BPW | 6.89 | 6.45 | B | E | Senftenberg | |
BPW | 7.09 | 6.42 | A | B | Agona | |
Meat and bone meal | TPC | 7.8 | 7.78 | A | C1 | Infantis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escobar, C.; Munoz, L.R.; Bailey, M.A.; Krehling, J.T.; Pacheco, W.J.; Hauck, R.; Buhr, R.J.; Macklin, K.S. Buffering Capacity Comparison of Tris Phosphate Carbonate and Buffered Peptone Water Salmonella Pre-Enrichments for Manufactured Feed and Feed Ingredients. Animals 2023, 13, 3119. https://doi.org/10.3390/ani13193119
Escobar C, Munoz LR, Bailey MA, Krehling JT, Pacheco WJ, Hauck R, Buhr RJ, Macklin KS. Buffering Capacity Comparison of Tris Phosphate Carbonate and Buffered Peptone Water Salmonella Pre-Enrichments for Manufactured Feed and Feed Ingredients. Animals. 2023; 13(19):3119. https://doi.org/10.3390/ani13193119
Chicago/Turabian StyleEscobar, Cesar, Luis R. Munoz, Matthew A. Bailey, James T. Krehling, Wilmer J. Pacheco, Rüdiger Hauck, Richard J. Buhr, and Kenneth S. Macklin. 2023. "Buffering Capacity Comparison of Tris Phosphate Carbonate and Buffered Peptone Water Salmonella Pre-Enrichments for Manufactured Feed and Feed Ingredients" Animals 13, no. 19: 3119. https://doi.org/10.3390/ani13193119
APA StyleEscobar, C., Munoz, L. R., Bailey, M. A., Krehling, J. T., Pacheco, W. J., Hauck, R., Buhr, R. J., & Macklin, K. S. (2023). Buffering Capacity Comparison of Tris Phosphate Carbonate and Buffered Peptone Water Salmonella Pre-Enrichments for Manufactured Feed and Feed Ingredients. Animals, 13(19), 3119. https://doi.org/10.3390/ani13193119