The Respiratory System of the Arctocephalus australis in Comparison to the Dog as a Land-Carnivore: Are There Adaptations to Marine Life?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- -
- Sample 1. An exhaustive washout period of the trachea, bronchi and lungs was performed by leaking liquid for several days. Once cleaned, the empty ducts were filled by injecting compressed air.
- -
- Sample 2. To obtain a template of the whole bronchial tree, expansive polyurethane was inserted through the trachea. Once polyurethane was expanded and cured, the sample was incubated with flies and larvae for tissue digestion to obtain the polymeric template of the lower respiratory tract.
3. Results
3.1. Nose and Nares
3.2. Nasal Cavity
3.3. Pharynx
3.4. Larynx
3.5. Trachea
3.6. Bronchi
3.7. Lungs
- Right lung: It has four differentiated lobes, the first being the cranial lobe. Next, and separated from the cranial lobe by a deep interlobar fissure, is the middle lobe, with an elongated and pyramidal shape. Caudally to the middle lobe is the caudal lobe, with an expanded fan-like shape. The Arctocephalus australis has a fourth lobe in the right lung, the accessory lobe. It is located between both lungs, specifically in the caudal mediastinum (Figure 12). Ventrally, this accessory lobe has a groove for the passage of the caudal vena cava and the right phrenic nerve (Figure 13).
- Left lung: The left lung shows one pair of lobes. The first is the cranial lobe, which has an irregular surface. It is divided into two parts by a short fissure. The caudal lobe is large and has scarce subdivisions. Interestingly, its shape is very similar to that of the caudal right lobe (Figure 12).
- Base, or diaphragmatic surface of the lung: It is concave as it overlaps the convex thoracic surface of the diaphragm. It is limited by the basal border.
- Apex: It is free, sharpened, and laterally flattened. It fills the space of the pleural dome.
- Two surfaces: (A) The costal surface: Lateral, larger, smooth, and convex. It is in contact with the inner surface of the lateral thoracic wall. (B) The medial surface: It is smaller than the costal and is related to the mediastinum and the mediastinal structures. It presents a deep depression formed by the heart and its pericardium, the cardiac impression. The cardiac impression is deeper in the left lung (Figure 14).
- Three distinct borders (ventral, dorsal, and basal): (A) Ventral border: It is sharp and irregular. It occupies the costomediastinic sinus and presents the cardiac notch. The ventral border of the left lung is slightly greater than the one of the right lung (Table 3). (B) Basal border: The basal border separates the base (or diaphragmatic surface) from the costal and medial surfaces. As in the case of the ventral border, the basal border of the left lung has a greater extension than in the right lung (Table 3). (C) Dorsal border: It is thick and rounded. It forms the dorsal boundary between the costal surface and the medial surface. Contrary to what happens in the ventral and basal borders, the dorsal border of the right lung is the one with a greater length (Table 3).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leith, D. Adaptations to deep breath-hold diving: Respiratory and circulatory mechanics. Undersea Biomed. Res. 1989, 16, 345–354. [Google Scholar]
- Crespo, F.A. Morfología Funcional en el Sistema Respiratorio de Mamíferos Marinos. Ph.D. Thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Viamonte, Argentina, 1998. [Google Scholar]
- Wislocki, G. On the structure of the lungs of the porpoise (Tursiops truncatus). Am. J. Anat. 1929, 44, 47–77. [Google Scholar] [CrossRef]
- Reidenberg, J.S.; Laitman, J.T. Position of the larynx in Odontoceti (toothed whales). Anat. Rec. 1987, 218, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Reidenberg, J.S. Anatomical adaptations of aquatic mammals. Anat. Rec. 2007, 290, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Getty, R.; Sisson, S.; Grossman, J.D. Anatomy of Domestic Animals, 5th ed.; Salvat Editores: Barcelona, Spain, 1982; Volume 2, pp. 1710–1727. [Google Scholar]
- Climent, S.; Sarasa, M.; Muniesa, P.; Latorre, R. Manual de Anatomía y Embriología de los Animales Domésticos. Cabeza, Aparato Respiratorio, Aparato Digestive, Aparato Urogenital; Editorial Acribia S.A.: Zaragoza, Spain, 2005; pp. 13–60. [Google Scholar]
- Kooyman, G.L. Physiology without restraint in diving mammals. Mar. Mam. Sci. 1985, 1, 166–178. [Google Scholar] [CrossRef]
- Kooyman, G.L. Diverse Divers: Physiology and Behavior, 1st ed.; Springer: Berlin, Germany, 1989; pp. 53–65. [Google Scholar]
- Zapol, W.M.; Liggins, G.C.; Schneider, R.C.; Qvist, J.; Snider, M.T.; Creasy, R.K.; Hochachka, P.W. Regional blood flow during simulated diving in the conscious Weddell seal. J. Appl. Physiol. 1979, 47, 968–973. [Google Scholar] [CrossRef]
- Sinnet, E.E.; Kooyman, G.L.; Wahrenbrock, E.A. Pulmonary circulation of the harbor seal. J. Appl. Physiol. 1978, 45, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Elsner, R.; Franklin, D.L.; Van Citters, R.L.; Kenney, D.W. Cardiovascular defense against asphyxia. Science 1966, 153, 941–949. [Google Scholar] [CrossRef]
- Kooyman, G.L.; Castellini, M.A.; Davis, R.W. Physiology of diving in marine mammals. Annu. Rev. Physiol. 1981, 43, 343–356. [Google Scholar] [CrossRef]
- Williams, T.M.; Haun, J.E.; Friedl, W.A. The diving physiology of bottlenose dolphins (Tursiops truncatus) I. Balancing the demands of exercise for energy conservation at depth. J. Exp. Biol. 1999, 202, 2739–2748. [Google Scholar] [CrossRef]
- Kooyman, G.L.; Campbell, W.B. Heart rates in freely diving Weddell Seals (Leptonychotes weddelli). Comp. Biochem. Physiol. 1972, 43, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.; Zapol, W.M.; Hochachka, P.W. Metabolic activities of heart, lung and brain during diving and recovery in the Wedell seal. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1980, 48, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Hochachka, P.W.; Storey, K.B. Metabolic consequences of diving in animals and man. Science 1975, 187, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Ponganis, P. Diving Physiology of Marine Mammals and Seabirds; Cambridge University Press: Cambridge, UK, 2015; pp. 162–170. [Google Scholar] [CrossRef]
- Noren, S.R.; Williams, T.M.; Pabst, D.A.; McLellan, W.A.; Dearolf, J.L. The development of diving in marine endotherms: Preparing the skeletal muscles of dolphins, penguins, and seals for activity during submergence. J. Comp. Physiol. B 2001, 171, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Katz, H.; Pérez, W.; Bielli, A.; Chavez, R. Histomorphology of prepuberal ovaries in the South American fur seal (Arctocephalus australis, Zimmerman, 1783). Folia Morphol. 2009, 68, 277–286. [Google Scholar]
- Drabeck, C.M. Some anatomical aspects of the cardiovascular system of antarctic seals and their possible functional significance in diving. J. Morphol. 1975, 145, 85–105. [Google Scholar] [CrossRef] [PubMed]
- Pérez, W.; Katz, H.; Lima, M. Gross heart anatomy of Arctocephalus australis (Zimmerman, 1783). Anat. Sci. Int. 2008, 83, 6–10. [Google Scholar] [CrossRef]
- Stewardson, C.L.; Hemsley, S.; Meyer, M.A.; Canfield, P.J.; Maindonald, J.H. Gross and microscopic visceral anatomy of the male Cape fur seal, Arctocephalus pusillus pusillus (Pinnipedia: Otariidae), with reference to organ size and growth. J. Anat. 1999, 195, 235–255. [Google Scholar] [CrossRef]
- Martín-Orti, R.; Tostado-Marcos, C.; Loureiro, J.P.; Molpeceres-Diego, I.; Tendillo-Domínguez, E.; Santos-Álvarez, I.; Pérez-Lloret, P.; González-Soriano, J. The digestive system of the Arctocephalus australis in comparison to the dog as a land-carnivore model. Animals 2022, 12, 1634. [Google Scholar] [CrossRef]
- Tarasoff, F.J.; Kooyman, G.L. Observations on the anatomy of the respiratory system of the river otter, sea otter and harp seal. II. The trachea and bronchial tree. Can. J. Zool. 1973, 51, 171–177. [Google Scholar] [CrossRef]
- Fanning, J.C.; Harrison, R.J. The strucuture of the trachea and lungs of the south australian bottle-nosed dolphin. In Functional Anatomy of Marine Mammals, 2nd ed.; Harrison, R.J., Ed.; Academic Press: London, UK, 1974; pp. 231–252. [Google Scholar]
- Yamasaki, F.; Takahashi, K.; Kamiya, T. Lungs of Franciscana (Pontoporia blainvillei), with special references to their external aspects, weihts and bronchial ramifications. Okajimas Folia Anat. Jpn. 1977, 53, 337–358. [Google Scholar] [CrossRef] [PubMed]
- Field, C.L. Bacterial Diseases of Marine Mammals. 2022. Available online: https://www.msdvetmanual.com/exotic-and-laboratory-animals/marine-mammals/bacterial-diseases-of-marine-mammals (accessed on 1 October 2022).
- Higgins, J.L.; Hendrickson, D.A. Surgical procedures in pinniped and cetacean species. J. Zoo Wildl Med. 2013, 44, 817–836. [Google Scholar] [CrossRef] [PubMed]
- Repenning, C.A. Adaptative evolution of sea lions and walruses. Syst. Zool. 1976, 25, 375–390. [Google Scholar] [CrossRef]
- Horsefield, K.; Cumming, G. Morphology of the bronchial tree in man. J. Appl. Physiol. 1968, 24, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, R.B.; McFadden, L.A. Comparative morphometry of the upper bronchial tree in six mammalian species. Anat. Rec. 1981, 199, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Piscitelli, M.A.; Raverty, S.A.; Lillie, M.A.; Shadwick, R.E. A review of cetacean lung morphology and mechanics. J. Morphol. 2013, 274, 1425–1440. [Google Scholar] [CrossRef] [PubMed]
ID | Age Group | Sex | Length (cm) | Width (cm) | Lumen Tracheal Diameter (cm) | Tracheal Circumference (cm) | N° Cartilaginous Rings |
---|---|---|---|---|---|---|---|
M9719 | J | F | 6.9 | 1.6 | 1.2 | 5.4 | 12 + 1 |
M7419 | J | M | 7.3 | 1.7 | 1.3 | 5.6 | 12 + 1 |
M7019 | J | M | 7.8 | 1.9 | 1.4 | 5.9 | 13 + 1 |
M8419 | J | F | 8 | 1.8 | 1.4 | 6 | 14 + 1 |
M8319 | J | M | 8 | 2 | 1.5 | 6 | 13 + 1 |
M10019 | J | F | 8.1 | 2 | 1.5 | 6.1 | 12 + 1 |
M7919 | J | M | 8.3 | 2 | 1.5 | 6.2 | 12 + 1 |
M8219 | J | F | 8.7 | 2.1 | 1.6 | 6.2 | 12 + 1 |
M10419 | J | M | 9.1 | 2.2 | 1.7 | 6.2 | 12 + 1 |
M7319 | A | F | 12.8 | 2.7 | 2.4 | 6.5 | 13 + 1 |
M9919 | A | F | 14 | 3 | 2.5 | 6.7 | 12 + 1 |
Mean | J | - | 8 | 1.9 | 1.5 | 6 | 12–14 |
Mean | A | - | 13.4 | 2.9 | 2.5 | 6.6 | 12–14 |
ID | Age Group | Sex | Length (cm) | Width (cm) | Lumen Bronchus Diameter (cm) | Bronchus Circumference (cm) | N° Cartilaginous Rings | ||
---|---|---|---|---|---|---|---|---|---|
Right | Left | Right | Left | ||||||
M9719 | J | F | 6.4 + 4.7 | 9.2 | 1.1 | 0.9 | 3.5–3.2 | 17 + 8 | 20 |
M7419 | J | M | 6.8 + 5 | 9.5 | 1.1 | 1 | 3.7–3.5 | 18 + 8 | 22 |
M7019 | J | M | 7 + 5 | 9.8 | 1.1 | 1 | 3.7–3.5 | 18 + 7 | 21 |
M8419 | J | F | 7 + 5 | 10 | 1.1 | 1 | 3.7–3.5 | 16 + 7 | 19 |
M8319 | J | M | 7.4 + 5.1 | 10.2 | 1.1 | 1 | 3.7–3.5 | 18 + 7 | 21 |
M10019 | J | F | 8.4 + 5.2 | 10.6 | 1.1 | 1 | 3.8–3.6 | 17 + 8 | 20 |
M7919 | J | M | 9 + 5.2 | 11 | 1.2 | 1.1 | 3.8–3.6 | 18 + 8 | 21 |
M8219 | J | F | 9.3 + 5.4 | 11.8 | 1.2 | 1.1 | 3.9–3.7 | 16 + 7 | 20 |
M10419 | J | M | 9.8 + 5.4 | 12.4 | 1.3 | 1.2 | 3.9–3.7 | 17 + 7 | 20 |
M7319 | A | F | 13 + 6 | 15.9 | 1.4 | 1.3 | 4.1–3.9 | 17 + 8 | 21 |
M9919 | A | F | 14 + 6.4 | 17.6 | 1.6 | 1.5 | 4.3–4 | 18 + 8 | 22 |
Mean | J | - | 7.9 + 5 | 10.5 | 1.1 | 1 | 3.7 | 16–18 + 7/8 | 20–22 |
Mean | A | - | 14 + 6.2 | 16.7 | 1.5 | 1.4 | 4.2 | 16–18 + 7/8 | 20–22 |
ID | Age Group | Sex | Length (cm) | Maximum Width | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Dorsal Border | Ventral Border | Basal Border | (cm) | |||||||
Right | Left | Right | Left | Right | Left | Right | Left | |||
M9719 | J | F | 20.1 | 19.3 | 12.8 | 13.9 | 10.7 | 13.6 | 12.6 | 11.3 |
M7419 | J | M | 20.5 | 20 | 13 | 14.3 | 11 | 14 | 12.9 | 11.8 |
M7019 | J | M | 21.6 | 21 | 13.4 | 15 | 11.3 | 15.3 | 13.2 | 12.1 |
M8419 | J | F | 22.6 | 21.3 | 13.7 | 15.5 | 11.6 | 15.5 | 14 | 12.8 |
M8319 | J | M | 23.3 | 22 | 14.2 | 16.3 | 11.9 | 15.7 | 14.3 | 13 |
M10019 | J | F | 24 | 22.9 | 14.7 | 16.5 | 12.1 | 16.3 | 14.5 | 13.4 |
M7919 | J | M | 25.8 | 24.2 | 15 | 16.7 | 12.6 | 16.7 | 15.1 | 13.8 |
M8219 | J | F | 27.7 | 26 | 16.8 | 18.2 | 13.7 | 17.7 | 16.4 | 15.2 |
M10419 | J | M | 28 | 26.2 | 17.2 | 19 | 14.1 | 18 | 18 | 16.7 |
M7319 | A | F | 33 | 30.5 | 23.5 | 25.7 | 19.6 | 24.5 | 24 | 22.6 |
M9919 | A | F | 35 | 32.7 | 24.5 | 26.3 | 20.1 | 25 | 24.7 | 23 |
Mean | J | - | 23.7 | 22.5 | 14.5 | 16.1 | 12.1 | 15.8 | 14.5 | 13.3 |
Mean | A | - | 34 | 31.6 | 24 | 26 | 19.8 | 24.7 | 24.3 | 22.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molpeceres-Diego, I.; Martín-Orti, R.; Loureiro, J.-P.; Tostado-Marcos, C.; Tendillo-Domínguez, E.; Santos-Álvarez, I.; Pérez-Lloret, P.; González-Soriano, J. The Respiratory System of the Arctocephalus australis in Comparison to the Dog as a Land-Carnivore: Are There Adaptations to Marine Life? Animals 2023, 13, 199. https://doi.org/10.3390/ani13020199
Molpeceres-Diego I, Martín-Orti R, Loureiro J-P, Tostado-Marcos C, Tendillo-Domínguez E, Santos-Álvarez I, Pérez-Lloret P, González-Soriano J. The Respiratory System of the Arctocephalus australis in Comparison to the Dog as a Land-Carnivore: Are There Adaptations to Marine Life? Animals. 2023; 13(2):199. https://doi.org/10.3390/ani13020199
Chicago/Turabian StyleMolpeceres-Diego, Ignacio, Rosario Martín-Orti, Juan-Pablo Loureiro, Carlos Tostado-Marcos, Enrique Tendillo-Domínguez, Inmaculada Santos-Álvarez, Pilar Pérez-Lloret, and Juncal González-Soriano. 2023. "The Respiratory System of the Arctocephalus australis in Comparison to the Dog as a Land-Carnivore: Are There Adaptations to Marine Life?" Animals 13, no. 2: 199. https://doi.org/10.3390/ani13020199
APA StyleMolpeceres-Diego, I., Martín-Orti, R., Loureiro, J. -P., Tostado-Marcos, C., Tendillo-Domínguez, E., Santos-Álvarez, I., Pérez-Lloret, P., & González-Soriano, J. (2023). The Respiratory System of the Arctocephalus australis in Comparison to the Dog as a Land-Carnivore: Are There Adaptations to Marine Life? Animals, 13(2), 199. https://doi.org/10.3390/ani13020199