Effect of the Addition of Humic Substances on Morphometric Analysis and Number of Goblet Cells in the Intestinal Mucosa of Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
2.2. Collection and Processing of the Intestines
2.3. Goblet Cell Count
2.4. Serum Biochemical Markers
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Islam, K.M.S.; Schuhmacher, A.; Gropp, J. Humic Acid Substances in Animal Agriculture. Pakis. J. Nut. 2005, 4, 126–134. [Google Scholar]
- Arif, M.; Alagawany, M.; Abd El-Hack, M.E.; Saeed, M.; Arain, M.A.; Elnesr, S.S. Humic Acid as a Feed Additive in Poultry Diets: A Review. Iran. J. Vet. Res. 2019, 20, 167–172. [Google Scholar]
- Maguey-González, J.A.; Gómez-Rosales, S.; Angeles, M.L.; López-Hernández, L.H.; Rodríguez-Hernández, E.; Solís-Cruz, B.; Hernández-Patlán, D.; Merino-Gúzman, R.; Téllez-Isaías, G. Effects of humic acids on the recovery of different bacterial strains in an in vitro chicken digestive model. Res. Vet. Sci. 2022, 145, 21–28. [Google Scholar] [CrossRef]
- Angeles, M.L.; Gómez-Rosales, S.; Téllez-Isaias, G. Mechanisms of Action of Humic Substances as Growth Promoters in Animals. In Humus and Humic Substances—Recent Advances; Abdelhadi, M., Ed.; IntechOpen: London, UK, 2022. [Google Scholar]
- Taklimi, S.M.S.M.; Ghahri, H.; Isakan, M.A. Influence of different levels of humic acid and esterified glucomannan on growth performance and intestinal morphology of broiler chickens. Agric. Sci. 2012, 3, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, E.; Ocak, N.; Turan, A.; Erener, G.; Altop, A.; Cankaya, S. Performance, carcass, gastrointestinal tract and meat quality traits, and selected blood parameters of broilers fed diets supplemented with humic substances. J. Sci. Food. Agric. 2012, 92, 59–65. [Google Scholar] [CrossRef]
- Disetlhe, A.R.P.; Marume, U.; Mlambo, V.; Dinev, I. Humic acid and enzymes in canola-based broiler diets: Effects on bone development, intestinal histomorphology and immune development. S. Afr. J. Anim. Sci. 2017, 47, 914–922. [Google Scholar] [CrossRef] [Green Version]
- Kühnert, V.M.; Bartels, K.P.; Kröll, S.; Lange, N. Huminsäurehaltige Tierarzneimittel in Therapie and Prophylaxe bei gastrointestinalen Erkrankungen von Hund und Katze. Mon. Vet. 1991, 46, 4–8. [Google Scholar]
- EMEA. Committee for Veterinary Medical Products. Humic Acids and Their Sodium Salts, Summary Report. Committee for Veterinary Medicinal Products. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Maximum_Residue_Limits_-_Report/2009/11/WC500014416 (accessed on 29 October 2022).
- Maguey-Gonzalez, J.A.; Michel, M.A.; Baxter, M.F.A.; Tellez, G.; Moore, P.A.; Solis-Cruz, B.; Hernández-Patlan, D.; Merino-Guzman, R.; Hernandez-Velasco, X.; Latorre, J.D.; et al. Effect of Humic Acids on Intestinal Viscosity, Leaky Gut and Ammonia Excretion in a 24 h Feed Restriction Model to Induce Intestinal Permeability in Broiler Chickens. Anim. Sci. J. 2018, 89, 1002–1010. [Google Scholar] [CrossRef]
- Mudroňová, D.; Karaffová, V.; Pešulová, T.; Koščová, J.; Maruščáková, I.C.; Bartkovský, M. The effect of humic substances on gut microbiota and immune response of broilers. Food Agric. Immunol. 2020, 31, 137–149. [Google Scholar] [CrossRef]
- Lala, A.O.; Okwelum, N.; Oso, A.O.; Ajao, A.O.; Adegbenjo, A.A. Response of broiler chickens to varying dosage of humic acid in drinking water. J. Anim. Prod. Res. 2017, 29, 288–294. [Google Scholar]
- Duangnumsawang, Y.; Zentek, J.; Goodarzi-Boroojeni, F. Development and Functional Properties of Intestinal Mucus Layer in Poultry. Front. Immunol. 2021, 12, 745849. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.L.; Applegate, T.J. Feed Withdrawal Alters Small-Intestinal Morphology and Mucus of Broilers. Poult. Sci. 2006, 85, 1535–1540. [Google Scholar] [CrossRef]
- Domínguez-Negrete, A.; Gómez-Rosales, S.; Angeles, M.L.; López-Hernández, L.H.; Reis-de-Souza, T.C.; López-García, Y.; Zavala-Franco, A.; Téllez-Isaias, G. Effect of the Addition of Humic Substances as Growth Promoter in Broiler Chickens Under Two Feeding Regimens. Animals 2019, 9, 1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choct, M. Managing gut health through nutrition. Brit. Poult. Sci. 2009, 50, 9–15. [Google Scholar] [CrossRef]
- Kidd, M.T. Nutritional modulation of immune function in broilers. Poult. Sci. 2004, 83, 650–657. [Google Scholar] [CrossRef]
- Domínguez-Negrete, A.; Gómez-Rosales, S.; Angeles, M.d.L.; López-Hernández, L.H.; de Souza, T.C.R.; Latorre-Cárdenas, J.D.; Téllez-Isaias, G. Addition of Different Levels of Humic Substances Extracted from Worm Compost in Broiler Feeds. Animals 2021, 11, 3199. [Google Scholar] [CrossRef] [PubMed]
- Angeles, M.L.; Gómez-Rosales, S.; López-Garcia, Y.R.; Montoya-Franco, A. Growth Performance and Tibia Mineraliza-tion of Broiler Chickens Supplemented with a Liquid Extract of Humic Substances. Braz. J. Poult. Sci. 2022, 24, 1–10. [Google Scholar] [CrossRef]
- Salinas-Moreno, Y.; García-Salinas, C.; Ramírez-Díaz, J.L.; Alemán-de la Torre, I. Phenolic Compounds in Maize Grains and Its Nixtamalized Products. In Phenolic Compounds—Natural Sources, Importance and Applications; Soto-Hernandez, M., Palma-Tenango, M., Garcia-Mateos, M., Eds.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Zapata, D.J.; Rodríguez, B.J.; Ramírez, M.C.; López, A.; Parra, J. Escherichia coli lipopolysaccharide affects intestinal mucin secretion in weaned pigs. Rev. Colom. Cienc. Pec. 2015, 28, 209–217. [Google Scholar] [CrossRef] [Green Version]
- de los Santos, F.S.; Tellez, G.; Farnell, M.B.; Balog, J.M.; Anthony, N.B.; Pavlidis, H.O.; Donoghue, A.M. Hypobaric hipoxia in ascites resistant and susceptible broiler genetic lines influences gut morphology. Poult. Sci. 2005, 84, 1495–1498. [Google Scholar] [CrossRef]
- Nain, S.; Renema, R.A.; Zuidhof, M.J.; Korver, D.R. Effect of metabolic efficiency and intestinal morphology on variability in n-3 polyunsaturated fatty acid enrichment of eggs. Poult. Sci. 2012, 91, 888–898. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS User’s Guide: Statistics, Version, 64th ed.; SAS Inst Inc.: Cary, NC, USA, 1990. [Google Scholar]
- Gadde, U.; Oh, S.T.; Lee, Y.S. The Effects of Direct-fed Microbial Supplementation, as an Alternative to Antibiotics, on Growth Performance, Intestinal Immune Status, and Epithelial Barrier Gene Expression in Broiler Chickens. Probiotics Antimicrob. Prot. 2017, 9, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Koltes, D.A.; Lester, H.D.; Frost, M. Effects of bacitracin methylene disalicylate and diet change on gastrointestinal integrity and endotoxin permeability in the duodenum of broiler chicken. BMC Res. Notes 2017, 10, 470. [Google Scholar] [CrossRef] [PubMed]
- Miles, R.D.; Butcher, G.D.; Henry, P.R.; Littell, R.C. Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology. Poult. Sci. 2006, 85, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.H.; Abbas, W.; Huang, J.; He, Q.; Zhen, W.; Guo, Y.; Wang, Z. Effect of blending encapsulated essential oils and organic acids as an antibiotic growth promoter alternative on growth performance and intestinal health in broilers with necrotic enteritis. Poult. Sci. 2022, 101, 101563. [Google Scholar] [CrossRef]
- Apajalahti, J.; Kettunen, A.; Graham, H. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World’s Poult. Sci. J. 2004, 60, 223–232. [Google Scholar] [CrossRef]
- Broom, L.J. Gut barrier function: Effects of (antibiotic) growth promoters on key barrier components and associations with growth performance. Poult Sci. 2018, 97, 1572–1578. [Google Scholar] [CrossRef] [PubMed]
- Kocabagli, N.; Alp, M.; Acar, N.; Kahraman, R. The effects of dietary humate supplementation on broiler growth and carcass yield. Poult. Sci. 2012, 81, 227–230. [Google Scholar] [CrossRef]
- Ozturk, E.; Ocak, N.; Coskun, I.; Turhan, S.; Erener, G. Effects of humic substances supplementation provided through drinking water on performance, carcass traits and meat quality of broilers. J. Anim. Physiol. Anim. Nut. 2010, 94, 78–85. [Google Scholar] [CrossRef]
- Gomez-Rosales, S.; Angeles, M.L. Addition of a Worm Leachate as Source of Humic Substances in the Drinking Water of Broiler Chickens. Asian-Australas. J. Anim. Sci. 2015, 28, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Maguey-González, J.A.; Gómez-Rosales, S.; Angeles, M.L.; Téllez-Isaías, G. Use of Humic Substances from Vermicompost in Poultry. In the Global Antimicrobial Resistance Epidemic—Innovative Approaches and Cutting-Edge Solutions; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Yasar, S.; Gokcimen, A.; Altunas, I.; Yonden, Z.; Petekkaya, E. Performance and ileal histomorphology of rats treated with humic acid preparations. J. Anim. Physiol. Anim. Nutr. 2002, 86, 257–264. [Google Scholar] [CrossRef]
- Cheled-Shoval, S.L.; Gamage, N.S.W.; Amit-Romach, E.; Forder, R.; Marshal, J.; Van Kessel, A.; Uni, Z. Differences in intestinal mucin dynamics between germ-free and conventionally reared chickens after mannan-oligosaccharide supplementation. Poult. Sci. 2014, 93, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Uni, Z.; Smirnov, A.; Sklan, D. Pre-and Posthatch Development of Goblet Cells in the Broiler Small Intestine: Effect of Delayed Access to Feed. Poult. Sci. 2003, 82, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Murai, A.; Kitahara, K.; Terada, H.; Ueno, A.; Ohmori, Y.; Kobayashi, M. Ingestion of Paddy Rice Increases Intestinal Mucin Secretion and Goblet Cell Number and Prevents Dextran Sodium Sulfate-Induced Intestinal Barrier Defect in Chickens. Poult. Sci. 2018, 97, 3577–3586. [Google Scholar] [CrossRef]
- Geyra, A.; Uni, Z.; Sklan, D. The Effect of Fasting at Different Ages on Growth and Tissue Dynamics in the Small Intestine of the Young Chick. Br. J. Nutr. 2001, 86, 53–61. [Google Scholar] [CrossRef]
- Iji, P.A.; Saki, A.; Tivey, D.R. Body and Intestinal Growth of Broiler Chicks on a Commercial Starter Diet. 1. Intestinal Weight and Mucosal Development. Br. Poult. Sci. 2001, 42, 505–513. [Google Scholar] [CrossRef]
- Calik, A.; Ergün, A. Effect of Lactulose Supplementation on Growth Performance, Intestinal Histomorphology, Cecal Microbial Population, and Short-Chain Fatty Acid Composition of Broiler Chickens. Poult. Sci. 2015, 94, 2173–2182. [Google Scholar] [CrossRef] [PubMed]
- Svihus, B. Function of the digestive system. J. Appl. Poult. Sci. 2014, 23, 306–314. [Google Scholar] [CrossRef]
- Svihus, B.; Itani, K. Intestinal Passage and Its Relation to Digestive Processes. J. Appl. Poult. Res. 2019, 28, 546–555. [Google Scholar] [CrossRef]
- Mahfuz, S.; Shang, Q.; Piao, X. Phenolic compounds as natural feed additives in poultry and swine diets: A review. J. Anim. Sci. Biotechnol. 2021, 12, 48. [Google Scholar] [CrossRef]
- Khonyoung, D.; Yamauchi, K.E. Improved growth performance due to hypertrophied intestinal absorptive epithelial cells by heat-killed Lactobacillus sakei HS-1 in broiler chickens. J. Anim. Sci. 2019, 97, 2066–2075. [Google Scholar] [CrossRef] [PubMed]
- Prakatur, I.; Miskulin, M.; Pavic, M.; Marjanovic, K.; Blazicevic, V.; Miskulin, I.; Domacinovic, M. Intestinal Morphology in Broiler Chickens Supplemented with Propolis and Bee Pollen. Animals. 2019, 9, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awad, W.A.; Bohm, J.; Razzazi-Fazeli, E.; Ghareeband, K.; Zentek, J. Effect of addition of a probiotic microorganism to broiler diets contaminated with deoxynivalenol on performance and histological alterations of intestinal villi of broiler chickens. Poult. Sci. 2006, 85, 974–979. [Google Scholar] [CrossRef] [PubMed]
- Samanya, M.; Yamauchi, K. Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2002, 133, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Onderci, M.; Sahin, N.; Sahin, K.; Cikim, G.; Aydin, A.; Ozercan, I. E_cacy of supplementation of alpha-amylase-producing bacterial culture on the performance, nutrient use and gut morphology of broiler chickens fed a corn-based diet. Poult. Sci. 2006, 85, 505–510. [Google Scholar] [CrossRef] [PubMed]
14–28 Days | 28–38 Days | ||
---|---|---|---|
Diet 1 | A | B | |
Ingredients, kg | |||
White corn | 63.98 | 63.51 | 31.76 |
Blue corn | 0.00 | 0.00 | 31.76 |
Soybean paste | 29.81 | 25.10 | 25.10 |
DDGS | 0.00 | 3.50 | 3.50 |
Vegetable oil | 2.33 | 3.30 | 3.30 |
Calcium orthophosphate | 1.23 | 1.48 | 1.48 |
Calcium carbonate | 1.45 | 1.45 | 1.45 |
Vitamins and minerals 2 | 0.50 | 0.50 | 0.50 |
Salt | 0.33 | 0.30 | 0.30 |
Sodium bicarbonate | 0.20 | 0.20 | 0.20 |
Methionine | 0.00 | 0.20 | 0.20 |
Lysine | 0.00 | 0.24 | 0.24 |
Threonine | 0.00 | 0.05 | 0.05 |
Choline chloride | 0.07 | 0.07 | 0.07 |
BMD 3 | 0.05 | 0.05 | 0.05 |
Coccidiostat | 0.05 | 0.05 | 0.05 |
Calculated nutrient content | |||
ME, Kcal/kg | 3100 | 3100 | 3100 |
Crude protein, % | 19.41 | 19.97 | 20.30 |
Digestible Lys, % | 1.00 | 1.00 | 1.00 |
Digestible Met, % | 0.38 | 0.38 | 0.38 |
Digestible Thr, % | 0.65 | 0.65 | 0.65 |
Ca, % | 0.95 | 0.95 | 0.95 |
Available P, % | 0.40 | 0.40 | 0.40 |
Na, % | 0.21 | 0.21 | 0.21 |
Cl, % | 0.20 | 0.20 | 0.20 |
GPA | nonGPA | HS | SEM c | p-Value | |
---|---|---|---|---|---|
Body weight | |||||
14 days | 435.08 | 441.51 | 428.15 | 10.167 | 0.46 |
28 days | 1267.23 | 1184.01 | 1216.01 | 38.782 | 0.34 |
38 days | 2146.58 | 2105.75 | 2155.17 | 30.355 | 0.36 |
Productive variables from 14 to 28 days | |||||
Feed intake, g/d | 93.89 | 93.49 | 93.24 | 0.549 | 0.70 |
Weight gain, g/d | 60.46 | 59.03 | 59.85 | 2.260 | 0.90 |
Feed conversion | 1.56 | 1.61 | 1.57 | 0.064 | 0.84 |
Productive variables from 14 to 38 days | |||||
Feed intake, g/d | 132.65 | 133.61 | 133.68 | 1.762 | 0.90 |
Weight gain, g/d | 71.31 | 69.34 | 71.96 | 1.153 | 0.18 |
Feed conversion | 1.85 d | 1.93 e | 1.86 d | 0.023 | 0.05 |
GPA | nonGPA | HS | SEM c | p-Value | |
---|---|---|---|---|---|
Serum urea and liver enzyme concentrations at day 28 | |||||
Urea, mmol/L | 0.29 | 0.45 | 0.28 | 0.080 | 0.27 |
ALT, U/L | 7.44 | 10.31 | 10.65 | 1.366 | 0.22 |
AST, U/L | 95.08 | 114.87 | 89.49 | 13.231 | 0.39 |
FA, U/L | 1455.94 d | 1508.10 d | 596.38 e | 254.930 | 0.05 |
Serum urea and liver enzyme concentrations at day 29 | |||||
Urea, mmol/L | 0.27 | 0.30 | 0.24 | 0.038 | 0.55 |
ALT, U/L | 6.68 | 5.86 | 4.79 | 0.688 | 0.17 |
AST, U/L | 90.93 | 91.86 | 84.90 | 6.345 | 0.70 |
FA, U/L | 1666.23 | 1109.12 | 1406.35 | 204.245 | 0.17 |
Serum urea and liver enzyme concentrations at day 38 | |||||
Urea, mmol/L | 0.35 | 0.25 | 0.22 | 0.041 | 0.10 |
ALT, U/L | 2.04 | 1.77 | 2.45 | 0.426 | 0.55 |
AST, U/L | 56.13 | 59.14 | 52.78 | 3.607 | 0.77 |
FA, U/L | 1246.85 | 1700.46 | 1533.08 | 139.816 | 0.10 |
Item | GPA a | nonGPA | HS | SEMc | p-Value |
---|---|---|---|---|---|
Duodenum | |||||
Height, µm | 1385 | 1431 | 1399 | 48.513 | 0.79 |
Thickness, µm | 214 | 239 | 236 | 9.190 | 0.11 |
Area, mm2 | 0.937 | 1.096 | 1.065 | 0.061 | 0.16 |
Jejunum | |||||
Height, µm | 1227 | 1265 | 1306 | 43.760 | 0.45 |
Thickness, µm | 208 d | 257 e | 197 d | 9.551 | 0.01 |
Area, mm2 | 0.794 d | 1.038 e | 0.822 d | 0.050 | 0.01 |
Ileum | |||||
Height, µm | 682 | 686 | 731 | 28.770 | 0.41 |
Thickness, µm | 169 d | 197 e | 192 e | 8.426 | 0.01 |
Area, mm2 | 0.363 d | 0.432 e | 0.433 e | 0.025 | 0.01 |
Number of goblet cells in the villi of the jejunum | |||||
Neutral | 959 d | 1337e | 1064d | 80.599 | 0.01 |
Sulfated acid | 1079 d | 1352e | 1044d | 80.574 | 0.01 |
Non-sulfated acid | 982 d | 1342e | 996d | 69.875 | 0.01 |
Total | 3020 d | 4030e | 3104d | 213.055 | 0.01 |
Diet A a | Diet B | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Item | GPA | nonGPA | HS | GPA | nonGPA | HS | SEM c | TD | TGP | TD * TGP |
Villus histology and goblet cell number at day 29 | ||||||||||
Duodenum | ||||||||||
Height, µm | 1518 | 1630 | 1564 | 1451 | 1622 | 1491 | 101.683 | 0.15 | 0.62 | 0.39 |
Thickness, µm | 254 | 244 | 314 | 254 | 222 | 260 | 11.132 | 0.01 | 0.01 | 0.05 |
Area, mm2 | 1.252 | 1.296 | 1.59 | 1.152 | 1.181 | 1.225 | 0.108 | 0.01 | 0.28 | 0.49 |
Jejunum | ||||||||||
Height, µm | 1186 | 1116 | 1166 | 1117 | 1102 | 1039 | 38.995 | 0.05 | 0.40 | 0.39 |
Thickness, µm | 232 | 178 | 191 | 181 | 197 | 191 | 8.35 | 0.11 | 0.05 | 0.01 |
Area, mm2 | 0.908 | 0.640 | 0.726 | 0.643 | 0.691 | 0.638 | 0.045 | 0.01 | 0.05 | 0.01 |
Ileum | ||||||||||
Height, µm | 609 | 716 | 590 | 660 | 687 | 645 | 21.908 | 0.14 | 0.01 | 0.10 |
Thickness, µm | 220 | 199 | 215 | 219 | 255 | 235 | 11.239 | 0.01 | 0.83 | 0.05 |
Area, mm2 | 0.426 | 0.457 | 0.4 | 0.46 | 0.558 | 0.468 | 0.029 | 0.01 | 0.05 | 0.43 |
Number of goblet cells in the villi of the jejunum | ||||||||||
Neutral | 964 | 758 | 897 | 903 | 661 | 711 | 56.897 | 0.01 | 0.01 | 0.53 |
Sulfated acid | 987 | 590 | 678 | 765 | 719 | 663 | 51.823 | 0.40 | 0.01 | 0.01 |
Non-sulfated acid | 929 | 632 | 888 | 779 | 571 | 592 | 59.467 | 0.01 | 0.01 | 0.12 |
Total | 2880 | 1971 | 2462 | 2446 | 1952 | 1967 | 156.488 | 0.01 | 0.01 | 0.26 |
Villus histology and goblet cell number at day 38 | ||||||||||
Duodenum | ||||||||||
Height, µm | 1580 | 1667 | 1650 | 1401 | 1637 | 1670 | 66.603 | 0.24 | 0.05 | 0.30 |
Thickness, µm | 250 | 288 | 283 | 267 | 255 | 282 | 13.086 | 0.60 | 0.18 | 0.16 |
Area, mm2 | 1.241 | 1.557 | 1.496 | 1.212 | 1.387 | 1.511 | 0.095 | 0.43 | 0.01 | 0.60 |
Jejunum | ||||||||||
Height, µm | 1217 | 1178 | 1046 | 1148 | 1143 | 1156 | 42.554 | 0.94 | 0.14 | 0.08 |
Thickness, µm | 243 | 248 | 212 | 186 | 239 | 243 | 10.173 | 0.16 | 0.05 | 0.01 |
Area, mm2 | 0.935 | 0.966 | 0.723 | 0.689 | 0.892 | 0.898 | 0.057 | 0.30 | 0.06 | 0.01 |
Ileum | ||||||||||
Height, µm | 671 | 661 | 708 | 638 | 724 | 623 | 30.09 | 0.40 | 0.35 | 0.05 |
Thickness, µm | 190 | 205 | 181 | 188 | 239 | 177 | 7.193 | 0.14 | 0.01 | 0.06 |
Area, mm2 | 0.409 | 0.451 | 0.413 | 0.382 | 0.542 | 0.355 | 0.012 | 0.91 | 0.01 | 0.06 |
Number of goblet cells in the villi of the jejunum | ||||||||||
Neutral | 1125 | 1083 | 855 | 850 | 1197 | 1208 | 81.758 | 0.34 | 0.16 | 0.01 |
Sulfated acid | 1129 | 971 | 839 | 864 | 1094 | 955 | 76.253 | 0.94 | 0.3 | 0.01 |
Non-sulfated acid | 1029 | 1026 | 782 | 750 | 982 | 1047 | 71.598 | 0.74 | 0.24 | 0.01 |
Total | 3284 | 3080 | 2476 | 2464 | 3273 | 3250 | 210.174 | 0.78 | 0.24 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-García, Y.R.; Gómez-Rosales, S.; Angeles, M.d.L.; Jiménez-Severiano, H.; Merino-Guzman, R.; Téllez-Isaias, G. Effect of the Addition of Humic Substances on Morphometric Analysis and Number of Goblet Cells in the Intestinal Mucosa of Broiler Chickens. Animals 2023, 13, 212. https://doi.org/10.3390/ani13020212
López-García YR, Gómez-Rosales S, Angeles MdL, Jiménez-Severiano H, Merino-Guzman R, Téllez-Isaias G. Effect of the Addition of Humic Substances on Morphometric Analysis and Number of Goblet Cells in the Intestinal Mucosa of Broiler Chickens. Animals. 2023; 13(2):212. https://doi.org/10.3390/ani13020212
Chicago/Turabian StyleLópez-García, Yair Román, Sergio Gómez-Rosales, María de Lourdes Angeles, Héctor Jiménez-Severiano, Rubén Merino-Guzman, and Guillermo Téllez-Isaias. 2023. "Effect of the Addition of Humic Substances on Morphometric Analysis and Number of Goblet Cells in the Intestinal Mucosa of Broiler Chickens" Animals 13, no. 2: 212. https://doi.org/10.3390/ani13020212
APA StyleLópez-García, Y. R., Gómez-Rosales, S., Angeles, M. d. L., Jiménez-Severiano, H., Merino-Guzman, R., & Téllez-Isaias, G. (2023). Effect of the Addition of Humic Substances on Morphometric Analysis and Number of Goblet Cells in the Intestinal Mucosa of Broiler Chickens. Animals, 13(2), 212. https://doi.org/10.3390/ani13020212