Evaluation of an Extract Derived from the Seaweed Ascophyllum nodosum to Reduce the Negative Effects of Heat Stress on Broiler Growth and Stress Parameters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Husbandry
2.2. Stress Measures
2.3. Growth, Feed Conversion and Uniformity
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lynch, M.B.; Sweeney, T.; Callan, J.J.; O’Sullivan, J.T.; O’Doherty, J.V. The effect of dietary laminaria derived laminarin and fucoidan on nutrient digestibility, nitrogen utilisation, intestinal microflora and volatile fatty acid concentration in pigs. J. Sci. Food Agric. 2010, 90, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Allen, V.G.; Pond, K.R.; Saker, K.K.; Fontenot, J.P.; Bagley, C.P.; Ivy, R.L.; Evans, R.R.; Brown, C.P.; Miller, M.F.; Montgomery, J.L.; et al. Influence of a seaweed extraction performance, monocyte immune cell response, and carcass characteristics in feedlot-finished steers. J. Anim. Sci. 2001, 79, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Sharp, G. Ascophyllum nodosum and its harvesting in Eastern Canada. FAO Fish. Tech. Pap. 1987, 281, 3–46. [Google Scholar]
- Bonos, E.; Kargopoulos, A.; Nikolakakis, I.; Florou-Paneri, P.; Christaki, E. The seaweed Ascophyllum nodosum as a potential functional ingredient in chicken nutrition. J. Oceanogr. Mar. Res. 2017, 4, 140. [Google Scholar] [CrossRef]
- Bach, S.J.; Wang, Y.; McAllister, T.A. Effect of feeding sun-dried seaweed (Ascophyllum nodosum) on fecal shedding of Escherichia coli O157:H7 by feedlot cattle and on growth performance of lambs. Anim. Feed Sci. Technol. 2008, 142, 17–32. [Google Scholar] [CrossRef]
- Sweeney, T.; Meredith, H.; Ryan, M.T.; Gath, V.; Thornton, K.; O’Doherty, J.V. Effects of Ascophyllum nodosum supplementation on Campylobacter jejuni colonisation, performance and gut health following an experimental challenge in 10 day old chicks. Innov. Food Sci. Emerg. Technol. 2016, 37, 247–252. [Google Scholar] [CrossRef]
- Turner, J.L.; Dritz, S.S.; Higgins, J.J.; Minton, J.E. Effects of Ascophyllum nodosum extract on growth performance and immune function of young pigs challenged with Salmonella typhimurium. J. Anim. Sci. 2002, 80, 1947–1953. [Google Scholar] [CrossRef]
- Wiseman, M. Evaluation of Tasco® as a Candidate Prebiotic in Broiler Chickens. Master of Science, Dalhousie University, Halifax, NS, Canada, 2012. [Google Scholar]
- Al-Shorepy, S.A.; Alhandrami, G.A.; Jamali, I.A. Effect of feeding diets containing seaweed on weight gain and carcass characteristics of indigenous lambs in the United Arab Emirates. Small Rumin. Res. 2001, 41, 283–287. [Google Scholar] [CrossRef]
- Fike, J.H.; Allen, V.G.; Schmidt, R.E.; Zhang, X.; Fontenot, J.P.; Bagley, C.P.; Ivy, R.L.; Evans, R.R.; Coelho, R.W.; Wester, D.B. Tasco-Forage: I. Influence of a seaweed extract on antioxidant activity in tall fescue and in ruminants. J. Anim. Sci. 2001, 79, 1011–1021. [Google Scholar] [CrossRef]
- Baardseth, E. Synopsis of biological data on knobbed wrack Ascophyllum nodosum. FAO Fish. 1970, 38, 41. [Google Scholar]
- Maruyama, H.; Tamauchi, H.; Hashimoto, M.; Nakano, T. Antitumor activity and immune response of Mekabu fucoidan extracted from Sporrophyll of Undaria pinnatifida. In Vivo 2003, 17, 245–249. [Google Scholar] [PubMed]
- Tissot, B.; Montdargent, M.; Chevolot, L.; Varenne, A.; Descroix, S.; Gareil, P.; Daniel, R. Interaction of fucoidan with the proteins of the complement classical pathway. Biochem. Biophys. Acta 2003, 1651, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Allen, V.G.; Pond, K.R.; Saker, K.K.; Fontenot, J.P.; Bagley, C.P.; Ivy, R.L.; Evans, R.R.; Schmidt, R.E.; Fike, J.H.; Zhang, X.; et al. Tasco: Influence of a brown seaweed on antioxidants in forages and livestock—A review. J. Anim. Sci. 2001, 79, E21–E31. [Google Scholar] [CrossRef]
- Sugawara, I.; Itoh, W.; Kimura, S.; Mori, S.; Shimada, K. Further characterization of sulfated homopolysaccharide as anti-HIV agent. Experientia 1989, 45, 996–999. [Google Scholar] [CrossRef]
- Chonigeat, W.; Tongsupa, S.; Supamatya, K.; Phongdara, A. Effect of fucoidan on disease resistance of Black Tiger shrimp. Aquaculture 2004, 233, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Cole, N.A. Influence of predeprivation diet nutrient density and sodium chloride content on nutrient losses and repletion in lambs. J. Anim. Sci. 1998, 76, 674–680. [Google Scholar] [CrossRef] [Green Version]
- Pompeu, L.B.; Williams, J.E.; Spiers, D.E.; Weaber, R.L.; Ellersieck, M.R.; Sargent, K.M.; Feyerabend, N.P.; Vellios, H.L.; Evans, F. Effect of Ascophyllum nodosum on alleviation of heat stress in dairy cows. Prof. Anim. Sci. 2011, 27, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Karatzia, M.; Christaki, E.; Bonos, E.; Karatzias, C.; Florou-Paneri, P. The influence of dietary Ascophyllum nodosum on haematologic parameters of dairy cows. Ital. J. Anim. Sci. 2012, 11, e31. [Google Scholar] [CrossRef]
- Archer, G.S.; Friend, T.H.; Caldwell, D.; Ameiss, K.; Krawczel, P.D. Effect of the seaweed Ascophyllum nodosum on lambs during forced walking and transport. J. Anim. Sci. 2007, 85, 225–232. [Google Scholar] [CrossRef]
- Archer, G.S.; Friend, T.H.; Caldwell, D.; Ameiss, K.; Krawczel, P.D.; Iacono, C.; Keen, H.; Martin, T. Impacts of feeding several components of the seaweed Ascophyllum nodosum on transported lambs. Anim. Feed Sci. Technol. 2008, 140, 258–271. [Google Scholar] [CrossRef]
- Abdoun, K.A.; Okab, A.B.; El-Waziry, A.M.; Smara, E.M.; Al-Haidary, A.A. Dietary supplementation of seaweed (ulva lactuca) to alleviate the impact of heat stress in growing lambs. Pak. Vet. J. 2013, 34, 108–111. [Google Scholar]
- Borzouie, S.; Rathgeber, B.M.; Stupart, C.M.; MacIsaac, J.; MacLaren, L.A. Effects of dietary inclusion of seaweed, heat stress and genetic strain on performance, plasma biochemical and hematological parameters in laying hens. Animals 2020, 10, 1570. [Google Scholar] [CrossRef] [PubMed]
- Campo, J.L.; Davila, S.G. Effect of photoperiod on heterophil to lymphocyte ratio and tonic immobility duration of chickens. Poult. Sci. 2002, 81, 1637–1639. [Google Scholar] [CrossRef] [PubMed]
- Archer, G.S.; Shivaprasad, H.L.; Mench, J.A. Effect of providing light during incubation on the health, productivity, and behavior of broiler chickens. Poult. Sci. 2009, 88, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Garriga, C.; Hunter, R.R.; Amat, C.; Planas, J.M.; Mitchell, M.A.; Moreto, M. Heat stress increases apical glucose transport in the chicken jejunum. Am. J. Physiol. Reg. Integr. Comp. Physiol. 2006, 290, R195–R201. [Google Scholar] [CrossRef] [Green Version]
- Star, L.; Decuypere, E.; Parmentier, H.; Kemp, B. Effect of single or combined climatic and hygienic stress in four layer lines: 2. Endocrine and oxidative stress responses. Poult. Sci. 2008, 87, 1031–1038. [Google Scholar] [CrossRef]
- Quinteiro-Filho, W.M.; Gomes, A.V.S.; Pinheiro, M.L.; Ribeiro, A.; Ferraz-de-Paula, V.; Astolfi-Ferreira, C.S.; Ferreira, A.J.P.; Palermo-Neto, J. Heat stress impairs performance and induces intestinal inflammation in broiler chickens infected with Salmonella Enteritidis. Avian Pathol. 2012, 41, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Quinteiro-Filho, W.M.; Ribiero, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Sakai, M.; Sá, L.R.M.; Ferreira, A.J.P.; Palermo-Neto, J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult. Sci. 2010, 89, 1905–1914. [Google Scholar] [CrossRef]
- Sohail, M.U.; Hume, M.E.; Byrd, J.A.; Nisbet, D.J.; Ijaz, A.; Sohail, A.; Shabbir, M.Z.; Rehman, H. Effect of supplementation of Prebiotic Mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult. Sci. 2012, 91, 2235–2240. [Google Scholar] [CrossRef]
- Wasti, S.; Sah, N.; Mishra, B. Impact of Heat Stress on Poultry Health and Performances, and Potential Mitigation Strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef]
- Awad, E.; Najaa, M.; Zulaikha, Z.; Zulkifli, I.; Soleimani, A. Effects of heat stress on growth performance, selected physiological and immunological parameters, caecal microflora, and meat quality in two broiler strains. Anim. Biosci. 2020, 33, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.; McIntyre, D.; Pavlidis, H.; Archer, G. Reducing stress susceptibility of broiler chickens by supplementing a yeast fermentation product in the feed or drinking water. Animals 2018, 8, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huth, J.C.; Archer, G.S. Comparison of two LED light bulbs to a dimmable CFL and their effects on broiler chicken growth, stress, and fear. Poult. Sci. 2015, 94, 2027–2036. [Google Scholar] [CrossRef] [PubMed]
- Akinyemi, F.; Adewole, D. Effects of brown seaweed products on growth performance, plasma biochemistry, immune response, and antioxidant capacity of broiler chickens challenged with heat stress. Poult. Sci. 2022, 101, 102215. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, H.; Sheikhahmadi, A.; Wang, Y.; Jiao, H.; Lin, H.; Song, Z. Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens (Gallus gallus domesticus). Int. J. Biometeorol. 2015, 59, 127–135. [Google Scholar] [CrossRef]
- Li, G.C.; Li, L.; Liu, R.Y.; Rehman, M.; Lee, W.M. Heat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domain. Proc. Natl. Acad. Sci. USA 1992, 89, 2036–2040. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.J.; Lee, S.R.; Oh, J.W. Effects of dietary fermented seaweed and seaweed fusiforme on growth performance, carcass parameters and immunoglobulin concentration in broiler chicks. Asian-Australas. J. Anim. Sci. 2014, 27, 862–870. [Google Scholar] [CrossRef]
- Kulshreshtha, G.; Hincke, M.T.; Prithiviraj, B.; Critchley, A. A review of the varied uses of macroalgae as dietary supplements in selected poultry with special reference to laying hen and broiler chickens. J. Mar. Sci. Eng. 2020, 8, 536. [Google Scholar] [CrossRef]
- Kumar, A.K. Effect of Sargassum wightii on growth, carcass and serum qualities of broiler chickens. Vet. Sci. Res. 2018, 3, 000156. [Google Scholar]
Ingredient, % | Starter (Day 1 to 14) | Grower (Day 15 to 28) | Finisher (Day 29 to 42) |
---|---|---|---|
Corn | 58.4 | 63.1 | 68.95 |
Soybean meal (48% CP) | 34.4 | 29.85 | 24.1 |
DL-Methionine | 0.32 | 0.27 | 0.23 |
L-Lysine HCl | 0.19 | 0.21 | 0.2 |
L-Threonine | 0.06 | 0.07 | 0.07 |
Soy oil | 2.85 | 2.85 | 3 |
Limestone | 1.43 | 1.35 | 1.24 |
Monocalcium phosphate | 1.56 | 1.44 | 1.29 |
Salt | 0.43 | 0.37 | 0.23 |
Sodium bicarbonate | 0 | 0.12 | 0.31 |
Vitamin and mineral premix | 0.3 | 0.3 | 0.3 |
Calculated nutrients, % | |||
ME, kcal/kg | 3057 | 3103 | 3169 |
Crude protein | 22.07 | 20.26 | 17.94 |
Crude fat | 5.4 | 5.53 | 5.84 |
Calcium | 0.9 | 0.84 | 0.76 |
Total phosphorus | 0.7 | 0.67 | 0.61 |
Av. phosphorus | 0.45 | 0.42 | 0.38 |
Sodium | 0.19 | 0.2 | 0.2 |
Treatment | Corticosterone (pg/mL) | Heterophil/Lymphocyte Ratio | Asymmetry Score 5 | HSP70 (pg/mL) |
---|---|---|---|---|
CNS 1,3 | 1080.5 b | 0.40 b | 1.52 b | 3.49 c |
SWNS 2,3 | 1085.2 b | 0.45 b | 1.49 b | 3.34 c |
CHS 1,4 | 2419.2 a | 1.05 a | 2.06 a | 4.33 a |
SWHS 2,4 | 1180.2 b | 0.61 b | 1.45 b | 3.60 b |
Diet effect | ||||
C 1 | 1749.8 | 0.73 | 1.79 | 3.84 |
SW 2 | 1132.7 | 0.53 | 1.47 | 3.37 |
Heat stress effect | ||||
NS 3 | 1082.9 | 0.63 | 1.50 | 3.46 |
HS 4 | 1799.7 | 0.83 | 1.75 | 3.75 |
SEM | 152.0 | 0.06 | 0.06 | 0.04 |
p-value | ||||
Main Effect diet | 0.03 | 0.06 | 0.01 | <0.001 |
Main Effect HS | 0.01 | <0.001 | 0.03 | <0.001 |
Interaction | 0.03 | 0.02 | 0.01 | <0.001 |
Treatment | D42 BW | d0–42 FCR | %CV | Uniformity Score |
---|---|---|---|---|
(Kg) | ||||
CNS 1,3 | 2.95 a | 1.602 c | 10.62 | 74.17 |
SWNS 2,3 | 2.91 a | 1.685 bc | 9.25 | 71.17 |
CHS 1,4 | 2.03 b | 1.89 a | 14.2 | 53.83 |
SWHS 2,4 | 2.16 c | 1.75 b | 15.3 | 53.83 |
Diet effect | ||||
C 1 | 2.49 | 1.744 | 12.41 | 64 |
SW 2 | 2.53 | 1.719 | 12.28 | 62.5 |
Heat stress effect | ||||
NS 3 | 2.93 | 1.643 | 14.2 | 58.83 |
HS 4 | 2.1 | 1.819 | 10.62 | 74.17 |
SEM | 0.09 | 0.029 | 0.83 | 3.26 |
p-value | ||||
Main | 0.12 | 0.54 | 0.92 | 0.79 |
Effect diet | ||||
Main | <0.001 | <0.001 | <0.001 | 0 < 0.001 |
Effect HS | ||||
Interaction | 0.04 | 0.02 | 0.38 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Archer, G.S. Evaluation of an Extract Derived from the Seaweed Ascophyllum nodosum to Reduce the Negative Effects of Heat Stress on Broiler Growth and Stress Parameters. Animals 2023, 13, 259. https://doi.org/10.3390/ani13020259
Archer GS. Evaluation of an Extract Derived from the Seaweed Ascophyllum nodosum to Reduce the Negative Effects of Heat Stress on Broiler Growth and Stress Parameters. Animals. 2023; 13(2):259. https://doi.org/10.3390/ani13020259
Chicago/Turabian StyleArcher, Gregory S. 2023. "Evaluation of an Extract Derived from the Seaweed Ascophyllum nodosum to Reduce the Negative Effects of Heat Stress on Broiler Growth and Stress Parameters" Animals 13, no. 2: 259. https://doi.org/10.3390/ani13020259
APA StyleArcher, G. S. (2023). Evaluation of an Extract Derived from the Seaweed Ascophyllum nodosum to Reduce the Negative Effects of Heat Stress on Broiler Growth and Stress Parameters. Animals, 13(2), 259. https://doi.org/10.3390/ani13020259