Serum Allergen-Specific Immunoglobulin E in Cats with Inflammatory Bronchial Disease
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Diagnostic Tests
2.2. Allergen Testing
2.3. Statistical Analysis
3. Results
3.1. Study Cats
3.2. Allergen Reaction
3.3. Different Allergen Groups
3.4. Blood and BALF Eosinophils
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Padrid, P. Animal models of asthma. Am. J. Respir. Crit. Care Med. 1996, 96, 211–233. [Google Scholar]
- Adamama-Moraitou, K.K.; Patsikas, M.N.; Koutinas, A.F. Feline lower airway disease: A retrospective study of 22 naturally occurring cases from Greece. J. Feline Med. Surg. 2004, 6, 227–233. [Google Scholar] [CrossRef]
- Grotheer, M.; Hirschberger, J.; Hartmann, K.; Castelletti, N.; Schulz, B. Comparison of signalment, clinical, laboratory and radiographic parameters in cats with feline asthma and chronic bronchitis. J. Feline Med. Surg. 2020, 22, 649–655. [Google Scholar] [CrossRef]
- Byers, C.G.; Dhupa, N. Feline bronchial asthma: Pathophysiology and diagnosis. Compend. Contin. Educ. Pract. Vet. 2005, 27, 418–425. [Google Scholar]
- Lee, E.A.; Johnson, L.R.; Johnson, E.G.; Vernau, W. Clinical features and radiographic findings in cats with eosinophilic, neutrophilic, and mixed airway inflammation (2011–2018). J. Vet. Intern. Med. 2020, 34, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Kirschvink, N.; Leemans, J.; Delvaux, F.; Snaps, F.; Clercx, C.; Gustin, P. Functional, inflammatory and morphological characterisation of a cat model of allergic airway inflammation. Vet. J. 2007, 174, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Nafe, L.A.; DeClue, A.E.; Lee-Fowler, T.M.; Eberhardt, J.M.; Reinero, C.R. Evaluation of biomarkers in bronchoalveolar lavage fluid for discrimination between asthma and chronic bronchitis in cats. Am. J. Vet. Res. 2010, 71, 583–591. [Google Scholar] [CrossRef]
- Norris Reinero, C.R.; Decile, K.C.; Berghaus, R.D.; Williams, K.J.; Leutenegger, C.M.; Walby, W.F.; Schelegle, E.S.; Hyde, D.M.; Gershwin, L.J. An experimental model of allergic asthma in cats sensitized to house dust mite or bermuda grass allergen. Int. Arch. Allergy Immunol. 2004, 135, 117–131. [Google Scholar] [CrossRef]
- Dye, J.A.; McKiernan, B.C.; Rozanski, E.A.; Hoffmann, W.E.; Losonsky, J.M.; Homco, L.D.; Weisiger, R.M.; Kakoma, I. Bronchopulmonary disease in the cat: Historical, physical, radiographic, clinicopathologic, and pulmonary functional evaluation of 24 affected and 15 healthy cats. J. Vet. Intern. Med. 1996, 10, 385–400. [Google Scholar] [CrossRef]
- Padrid, P.; Snook, S.; Finucane, T.; Shiue, P.; Cozzi, P.; Solway, J.; Leff, A.R. Persistent airway hyperresponsiveness and histologic alterations after chronic antigen challenge in cats. Am. J. Respir. Crit. Care Med. 1995, 151, 184–193. [Google Scholar] [CrossRef]
- Hirt, R.A.; Galler, A.; Shibly, S.; Bilek, A. Airway hyperresponsiveness to adenosine 5’-monophosphate in feline chronic inflammatory lower airway disease. Vet. J. 2011, 187, 54–59. [Google Scholar] [CrossRef]
- Deo, S.S.; Mistry, K.J.; Kakade, A.M.; Niphadkar, P.V. Role played by Th2 type cytokines in IgE mediated allergy and asthma. Lung India 2010, 27, 66–71. [Google Scholar] [CrossRef]
- van Eeden, M.E.; Vientos-Plotts, A.I.; Cohn, L.A.; Reinero, C.R. Serum allergen-specific IgE reactivity: Is there an association with clinical severity and airway eosinophilia in asthmatic cats? J. Feline Med. Surg. 2020, 22, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Moriello, K.A.; Stepien, R.L.; Henik, R.A.; Wenholz, L.J. Pilot study: Prevalence of positive aeroallergen reactions in 10 cats with small-airway disease without concurrent skin disease. Vet. Dermatol. 2007, 18, 94–100. [Google Scholar] [CrossRef]
- Buller, M.C.; Johnson, L.R.; Outerbridge, C.A.; Vernau, W.; White, S.D. Serum immunoglobulin E responses to aeroallergens in cats with naturally occurring airway eosinophilia compared to unaffected control cats. J. Vet. Intern. Med. 2020, 34, 2671–2676. [Google Scholar] [CrossRef] [PubMed]
- Ansotegui, I.J.; Melioli, G.; Canonica, G.W.; Caraballo, L.; Villa, E.; Ebisawa, M.; Passalacqua, G.; Savi, E.; Ebo, D.; Gómez, R.M.; et al. IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper. World Allergy Organ. J. 2020, 13, 100080. [Google Scholar] [CrossRef]
- Loewenstein, C.; Mueller, R.S. A review of allergen-specific immunotherapy in human and veterinary medicine. Vet. Dermatol. 2009, 20, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Lee-Fowler, T.M.; Cohn, L.A.; DeClue, A.E.; Spinka, C.M.; Ellebracht, R.D.; Reinero, C.R. Comparison of intradermal skin testing (IDST) and serum allergen-specific IgE determination in an experimental model of feline asthma. Vet. Immunol. Immunopathol. 2009, 132, 46–52. [Google Scholar] [CrossRef]
- Corcoran, B.M.; Foster, D.J.; Fuentes, V.L. Feline asthma syndrome: A retrospective study of the clinical presentation in 29 cats. J. Small Anim. Pract. 1995, 36, 481–488. [Google Scholar] [CrossRef]
- Braman, S.S. Chronic cough due to chronic bronchitis: ACCP evidence-based clinical practice guidelines. Chest 2006, 129, 104s–115s. [Google Scholar] [CrossRef] [PubMed]
- Zock, J.-P.; Sunyer, J.; Kogevinas, M.; Kromhout, H.; Burney, P.; Antó, J.M.; Group, E.S. Occupation, chronic bronchitis, and lung function in young adults: An international study. Am. J. Respir. Crit. Care Med. 2001, 163, 1572–1577. [Google Scholar] [CrossRef]
- Takeyama, K.; Jung, B.; Shim, J.J.; Burgel, P.-R.; Dao-Pick, T.; Ueki, I.F.; Protin, U.; Kroschel, P.; Nadel, J.A. Activation of epidermal growth factor receptors is responsible for mucin synthesis induced by cigarette smoke. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2001, 280, L165–L172. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.J.; Brightling, C. Pathogenesis of asthma: Implications for precision medicine. Clin. Sci. 2017, 131, 1723–1735. [Google Scholar] [CrossRef] [PubMed]
- Douwes, J.; Gibson, P.; Pekkanen, J.; Pearce, N. Non-eosinophilic asthma: Importance and possible mechanisms. Thorax 2002, 57, 643–648. [Google Scholar] [CrossRef]
- Reinero, C.R. Advances in the understanding of pathogenesis, and diagnostics and therapeutics for feline allergic asthma. Vet. J. 2011, 190, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Holtzman, M.J.; Tyner, J.W.; Kim, E.Y.; Lo, M.S.; Patel, A.C.; Shornick, L.P.; Agapov, E.; Zhang, Y. Acute and chronic airway responses to viral infection: Implications for asthma and chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2005, 2, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, A.; Caramori, G.; Gnemmi, I.; Contoli, M.; Vicari, C.; Capelli, A.; Magno, F.; D’anna, S.; Zanini, A.; Brun, P. T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clin. Exp. Immunol. 2009, 157, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Choy, D.F.; Hart, K.M.; Borthwick, L.A.; Shikotra, A.; Nagarkar, D.R.; Siddiqui, S.; Jia, G.; Ohri, C.M.; Doran, E.; Vannella, K.M. TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. Sci. Transl. Med. 2015, 7, ra129–ra301. [Google Scholar] [CrossRef]
- Bullone, M.; Carriero, V.; Bertolini, F.; Folino, A.; Mannelli, A.; Di Stefano, A.; Gnemmi, I.; Torchio, R.; Ricciardolo, F.L.M. Elevated serum IgE, oral corticosteroid dependence and IL-17/22 expression in highly neutrophilic asthma. Eur. Respir. J. 2019, 54, 1900068. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.; Humbert, M.; Meng, Q.; Pfister, R.; Menz, G.; Gould, H.J.; Kay, A.B.; Durham, S.R. Local expression of epsilon germline gene transcripts and RNA for the epsilon heavy chain of IgE in the bronchial mucosa in atopic and nonatopic asthma. J. Allergy Clin. Immunol. 2001, 107, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Kirschvink, N.; Kersnak, E.; Leemans, J.; Delvaux, F.; Clercx, C.; Snaps, F.; Gustin, P. Effects of age and allergen-induced airway inflammation in cats: Radiographic and cytologic correlation. Vet. J. 2007, 174, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Ybarra, W.L.; Johnson, L.R.; Drazenovich, T.L.; Johnson, E.G.; Vernau, W. Interpretation of multisegment bronchoalveolar lavage in cats (1/2001–1/2011). J. Vet. Intern. Med. 2012, 26, 1281–1287. [Google Scholar] [CrossRef] [PubMed]
- Papi, A.; Brightling, C.; Pedersen, S.E.; Reddel, H.K. Asthma. Lancet 2018, 391, 783–800. [Google Scholar] [CrossRef]
- Reinero, C.R.; Byerly, J.R.; Berghaus, R.D.; Berghaus, L.J.; Schelegle, E.S.; Hyde, D.M.; Gershwin, L.J. Rush immunotherapy in an experimental model of feline allergic asthma. Vet. Immunol. Immunopathol. 2006, 110, 141–153. [Google Scholar] [CrossRef]
- Reinero, C.R.; Cohn, L.A.; Delgado, C.; Spinka, C.M.; Schooley, E.K.; DeClue, A.E. Adjuvanted rush immunotherapy using CpG oligodeoxynucleotides in experimental feline allergic asthma. Vet. Immunol. Immunopathol. 2008, 121, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Lee-Fowler, T.M.; Cohn, L.A.; DeClue, A.E.; Spinka, C.M.; Reinero, C.R. Evaluation of subcutaneous versus mucosal (intranasal) allergen-specific rush immunotherapy in experimental feline asthma. Vet. Immunol. Immunopathol. 2009, 129, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, R.E. Efficacy of hyposensitization in feline allergic diseases based upon results of in vitro testing for allergen-specific immunoglobulin E. J. Am. Anim. Hosp. Assoc. 1997, 33, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Prost, C. Treatment of feline asthma with allergen avoidance and specific immunotherapy: Experience with 20 cats. Rev. Fr. D Allergol. D Immunol. Clin. 2008, 48, 409–413. [Google Scholar]
- Schulz, B.S.; Richter, P.; Weber, K.; Mueller, R.S.; Wess, G.; Zenker, I.; Hartmann, K. Detection of feline Mycoplasma species in cats with feline asthma and chronic bronchitis. J. Feline Med. Surg. 2014, 16, 943–949. [Google Scholar] [CrossRef]
- Loft, K.E.; Rosser, E.J., Jr. Group 1 and 2 Dermatophagoides house dust mite allergens in the microenvironment of cats. Vet. Dermatol. 2010, 21, 152–158. [Google Scholar] [CrossRef]
- Lo Feudo, C.M.; Stucchi, L.; Alberti, E.; Conturba, B.; Zucca, E.; Ferrucci, F. Intradermal Testing Results in Horses Affected by Mild-Moderate and Severe Equine Asthma. Animals 2021, 11, 2086. [Google Scholar] [CrossRef] [PubMed]
- Milián, E.; Díaz, A.M. Allergy to house dust mites and asthma. Puerto Rico Health Sci. J. 2004, 23, 47–57. [Google Scholar]
- Nuttall, T.J.; Hill, P.B.; Bensignor, E.; Willemse, T. House dust and forage mite allergens and their role in human and canine atopic dermatitis. Vet. Dermatol. 2006, 17, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Prost, C. Feline atopic dermatitis: Clinical signs and diagnosis. Eur. J. Companion Anim. Pract. 2009, 19, 223–229. [Google Scholar]
- Louis, R.; Pilette, C.; Michel, O.; Michils, A.; Brusselle, G.; Poskin, A.; Van Schoor, J.; Denhaerynck, K.; Vancayzeele, S.; Abraham, I.; et al. Variability in total serum IgE over 1 year in severe asthmatics. Allergy Asthma Clin. Immunol. 2019, 15, 20. [Google Scholar] [CrossRef]
- Mims, J.W. Asthma: Definitions and pathophysiology. Int. Forum Allergy Rhinol. 2015, 5 (Suppl. 1), S2–S6. [Google Scholar] [CrossRef]
- Pearce, N.; Pekkanen, J.; Beasley, R. How much asthma is really attributable to atopy? Thorax 1999, 54, 268–272. [Google Scholar] [CrossRef]
- Han, Y.; Jia, Q.; Jahani, P.S.; Hurrell, B.P.; Pan, C.; Huang, P.; Gukasyan, J.; Woodward, N.C.; Eskin, E.; Gilliland, F.D.; et al. Genome-wide analysis highlights contribution of immune system pathways to the genetic architecture of asthma. Nat. Commun. 2020, 11, 1776. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, L.; Winterroth, L.C.; Garcia, M.; Weiman, S.; Wong, J.W.; Sunwoo, J.B.; Nadeau, K.C. Epigenetically mediated pathogenic effects of phenanthrene on regulatory T cells. J. Toxicol. 2013, 2013, 967029. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.J.; Gangnon, R.E.; Evans, M.D.; Roberg, K.A.; Anderson, E.L.; Pappas, T.E.; Printz, M.C.; Lee, W.M.; Shult, P.A.; Reisdorf, E.; et al. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am. J. Respir. Crit. Care Med. 2008, 178, 667–672. [Google Scholar] [CrossRef]
- Hilty, M.; Burke, C.; Pedro, H.; Cardenas, P.; Bush, A.; Bossley, C.; Davies, J.; Ervine, A.; Poulter, L.; Pachter, L.; et al. Disordered microbial communities in asthmatic airways. PLoS ONE 2010, 5, e8578. [Google Scholar] [CrossRef]
- Moffatt, M.F.; Kabesch, M.; Liang, L.; Dixon, A.L.; Strachan, D.; Heath, S.; Depner, M.; von Berg, A.; Bufe, A.; Rietschel, E. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 2007, 448, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Vientós-Plotts, A.I.; Ericsson, A.C.; McAdams, Z.L.; Rindt, H.; Reinero, C.R. Respiratory dysbiosis in cats with spontaneous allergic asthma. Front. Vet. Sci. 2022, 9, 930385. [Google Scholar] [CrossRef]
- Mueller, R.S. Update on Allergen Immunotherapy. Vet. Clin. N. Am. Small Anim. Pract. 2019, 49, 1–7. [Google Scholar] [CrossRef]
- Altmann, F. Coping with cross-reactive carbohydrate determinants in allergy diagnosis. Allergo J. Int. 2016, 25, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Mari, A.; Iacovacci, P.; Afferni, C.; Barletta, B.; Tinghino, R.; Di Felice, G.; Pini, C. Specific IgE to cross-reactive carbohydrate determinants strongly affect the in vitro diagnosis of allergic diseases. J. Allergy Clin. Immunol. 1999, 103, 1005–1011. [Google Scholar] [CrossRef]
- Gedon, N.K.Y.; Boehm, T.; Klinger, C.J.; Udraite, L.; Mueller, R.S. Agreement of serum allergen test results with unblocked and blocked IgE against cross-reactive carbohydrate determinants (CCD) and intradermal test results in atopic dogs. Vet. Dermatol. 2019, 30, 195-e161. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; McKinney, B.H.; Blankenship, K.D.; Morris, D.O. Detection and Inhibition of IgE for cross-reactive carbohydrate determinants evident in an enzyme-linked immunosorbent assay for detection of allergen-specific IgE in the sera of dogs and cats. Vet Dermatol 2020, 31, 439-e116. [Google Scholar] [CrossRef]
Mites | Pollen of Crops | Weeds | Trees | Grasses | Fungi | Other |
---|---|---|---|---|---|---|
Mould mite (Tyrophagus putrescentiae) | Rape (Brassica napus) | Nettle mix (Urtica spp.) | Silver birch (Betula verrucosa) | Orchard grass (Dactylis glomerata) | Alternaria alternata | Flea (Ctenocephalides spp.) |
House dust mite (Dermatophagoides farinae) | Lambs quarter (Chenopodium album) | Olive (Olea europaea) | Timothy (Phleum pratens) | Aspergillus fumigatus | ||
Hay mite (Lepidoglyphus destructor) | Common ragweed (Ambrosia elatior) | London plan (Platanus hispanica) | Rye grass (Lolium perenne) | Cladosporium herbarum | ||
House dust mite (Dermatophagoides pteronyssinus) | Sheep sorrel (Rumex acetosella) | Osier (Salix viminalis) | Bermuda grass (Cynodon dactylon) | Malassezia | ||
Grain mite (Acarus siro) | Common mugwort (Artemisia vulgaris) | Pine (Pinus sylvestris) | Oat (Avena sativa) | |||
Dandelion (Taraxacum officinale) | European privet (Ligustrum vulgare) | Rye (Secale cereale) | ||||
Englisch plantain (Plantago lanceolata) | Cypress (Cupressus sempervirens) | Blue grass, Kentucky (Poa pratensis) | ||||
English oak (Quercus robur) | ||||||
American elm (Ulmus Americana) |
EI 1 83/567 | NI 2 40/325 | MI 3 28/182 | HC 4 46/440 | |
---|---|---|---|---|
EI 1 83/567 | 0.887 | 1.0 | 0.341 | |
NI 2 40/325 | 0.887 | 0.662 | 0.485 | |
MI 3 28/440 | 1.0 | 0.662 | 0.298 | |
HCs 4 46/440 | 0.341 | 0.485 | 0.298 |
EI 1 2727.17 | NI 2 1410.31 | MI 3 1027.09 | HC 4 1845.01 | |
---|---|---|---|---|
EI 1 2727.17 | 0.859 | 0.264 | 0.431 | |
NI 2 1410.31 | 0.859 | 0.264 | 0.62 | |
MI 3 1027.09 | 0.264 | 0.264 | 0.266 | |
HCs 4 1845.01 | 0.431 | 0.62 | 0.266 |
EI 1 (n = 18) | NI 2 (n = 10) | MI 3 (n = 6) | HC 4 (n = 14) | p-Values | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
All groups | HCs vs. EI | HCs vs. NI | HCs vs. MI | EI vs. NI | EI vs. MI | NI vs. MI | |||||
Mites | 30 | 15 | 14 | 13 | 0.032 | 0.048 | 0.189 | 0.006 | 0.710 | 0.198 | 0.155 |
Pollen of crops | 1 | 0 | 1 | 0 | 0.324 | 1.0 | 0.3 | 1.0 | 0.446 | 0.375 | |
Weeds | 7 | 4 | 4 | 5 | 0.771 | 1.0 | 1.0 | 0.452 | 1.0 | 0.470 | 0.470 |
Trees | 31 | 16 | 6 | 12 | 0.098 | 0.030 | 0.1 | 0.788 | 0.867 | 0.214 | 0.344 |
Grasses | 26 | 16 | 5 | 22 | 0.499 | 0.746 | 1.0 | 0.168 | 0.720 | 0.255 | 0.212 |
Fungi | 5 | 3 | 5 | 2 | 0.062 | 1.0 | 1.0 | 0.095 | 1.0 | 0.115 | 0.119 |
Other | 1 | 0 | 1 | 1 | 0.634 | 1.0 | 0.263 | 1.0 | 0.447 | 0.357 |
All cats with FBD (n = 34) | EI 1 (n = 18) | NI 2 (n = 10) | MI 3 (n = 6) | HCs 4 (n = 14) | |
---|---|---|---|---|---|
House dust mite (Dermatophagoides farinae) | 23 | 11 | 6 | 6 | 7 |
House dust mite (Dermatophagoides pteronyssinus) | 13 | 7 | 4 | 2 | 4 |
European privet (Ligustrum vulgare) | 13 | 9 | 3 | 1 | 2 |
Mould mite (Tyrophagus putrescentiae) | 10 | 6 | 2 | 2 | 1 |
Oat (Avena sativa) | 8 | 4 | 3 | 1 | 4 |
Osier (Salix viminalis) | 8 | 1 | 2 | 0 | 2 |
Bermuda grass (Cynodon dactylon) | 7 | 5 | 1 | 1 | 5 |
English oak (Quercus robur) | 6 | 2 | 2 | 1 | 1 |
Timothy (Phleum pratense) | 5 | 2 | 2 | 1 | 3 |
Cypress (Cupressus sempervirens) | 5 | 2 | 3 | 0 | 5 |
Alternaria alternata | 5 | 2 | 2 | 1 | 1 |
Aspergillus fumigatus | 5 | 2 | 1 | 2 | 1 |
Orchard grass (Dactylis glomerata) | 4 | 3 | 0 | 1 | 3 |
Rye grass (Lolium perenne) | 4 | 2 | 1 | 1 | 0 |
Nettle mix (Urtica spp.) | 4 | 2 | 1 | 1 | 0 |
Dandelion (Taraxacum officinale) | 4 | 2 | 1 | 1 | 0 |
Rye (Secale cereale) | 3 | 1 | 2 | 0 | 0 |
Blue grass, Kentucky (Poa pratensis) | 3 | 2 | 1 | 0 | 2 |
Grain mite (Acarus siro) | 3 | 1 | 0 | 2 | 0 |
Silver birch (Betula verrucosa) | 3 | 3 | 1 | 0 | 0 |
Lambs quarter (Chenopodium album) | 3 | 1 | 1 | 1 | 1 |
Hay mite (Lepidoglyphus destructor) | 2 | 2 | 0 | 0 | 0 |
Rape (Brassica napus) | 2 | 1 | 0 | 1 | 0 |
Englisch plantain (Plantago lanceolata) | 2 | 1 | 1 | 0 | 1 |
Flea (Ctenocephalides sp.) | 2 | 1 | 0 | 1 | 0 |
Pine (Pinus sylvestris) | 1 | 1 | 0 | 0 | 1 |
American elm (Ulmus Americana) | 1 | 1 | 0 | 0 | 0 |
Common ragweed (Ambrosia elatior) | 1 | 1 | 0 | 1 | 0 |
Cladosporium herbarum | 1 | 1 | 0 | 0 | 0 |
Olive (Olea europaea) | 0 | 0 | 0 | 0 | 0 |
London plane (Platanus hispanica) | 0 | 0 | 0 | 0 | 0 |
Sheep sorrel (Rumex acetosella) | 0 | 0 | 0 | 0 | 1 |
Common mugwort (Artemisia vulgaris) | 0 | 0 | 0 | 0 | 1 |
Malassezia | 0 | 0 | 0 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hörner-Schmid, L.; Palić, J.; Mueller, R.S.; Schulz, B. Serum Allergen-Specific Immunoglobulin E in Cats with Inflammatory Bronchial Disease. Animals 2023, 13, 3226. https://doi.org/10.3390/ani13203226
Hörner-Schmid L, Palić J, Mueller RS, Schulz B. Serum Allergen-Specific Immunoglobulin E in Cats with Inflammatory Bronchial Disease. Animals. 2023; 13(20):3226. https://doi.org/10.3390/ani13203226
Chicago/Turabian StyleHörner-Schmid, Lina, Jelena Palić, Ralf S. Mueller, and Bianka Schulz. 2023. "Serum Allergen-Specific Immunoglobulin E in Cats with Inflammatory Bronchial Disease" Animals 13, no. 20: 3226. https://doi.org/10.3390/ani13203226
APA StyleHörner-Schmid, L., Palić, J., Mueller, R. S., & Schulz, B. (2023). Serum Allergen-Specific Immunoglobulin E in Cats with Inflammatory Bronchial Disease. Animals, 13(20), 3226. https://doi.org/10.3390/ani13203226