Harnessing Genomics and Transcriptomics Approaches to Improve Female Fertility in Beef Cattle—A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Female Fertility: From Biology to Economics
2.1. Heritability and The Traditional Selection of Fertility Traits
2.2. Economic Impact of Fertility in Beef Cattle Production
3. New Opportunities for Old Challenges: Novel Traits and Technologies
3.1. Genomics
Breed | Number of SNPs | Associated Traits | Number of Candidate Genes | Number of Samples | Reference |
---|---|---|---|---|---|
Crossbred | 20 | a AFC, RTS | 18 | 293 | [65] |
Crossbred | 19 | PBW, PR, b AFC | Not listed | 785 | [12] |
Crossbred | 1 | TBRD | 2 | 239 | [66] |
Red Angus | 21 | HPG, STAY | 13 | 9776 | [67] |
Nelore | c Top windows | HR, NC53 | 489 | 2925 | [68] |
Nelore | 42 | HR, AFC | 35 | 2056 | [69] |
Nelore | d Top windows | HP, NF | 204 | 1267 | [70] |
Angus e | 2 | F, SF | 1 | 22 | [29] |
Crossbred | 6 | HF, SF, IF | 10 | 36 | [71] |
Angus crossbred | 28 | HF, SF | 19 | 85 | [72] |
3.2. Transcriptomics
3.3. Integrating Genomics to Transcriptomics
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- USDA USDA ERS—Sector at a Glance. Available online: https://www.ers.usda.gov/topics/animal-products/cattle-beef/sector-at-a-glance/ (accessed on 5 June 2023).
- FAO. Global Agriculture towards 2050. In Proceedings of the High-Level Expert Forum—How to Feed the World in 2050; FAO: Rome, Italy, 2009; Available online: http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf (accessed on 15 October 2023).
- Greenwood, P.L. Review: An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal 2021, 15, 100295. [Google Scholar] [CrossRef]
- Terry, S.A.; Basarab, J.A.; Guan, L.L.; McAllister, T.A. Strategies to improve the efficiency of beef cattle production. Can. J. Anim. Sci. 2021, 101, 1–19. [Google Scholar] [CrossRef]
- Rowan, T.N. Invited Review: Genetic decision tools for increasing cow efficiency and sustainability in forage-based beef systems. Appl. Anim. Sci. 2022, 38, 660–670. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K. Livestock and global change: Emerging issues for sustainable food systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20878–20881. [Google Scholar] [CrossRef] [PubMed]
- USDA Beef 2017: Beef Cow-Calf Management Practices in the United States. Available online: https://www.aphis.usda.gov/animal_health/nahms/beefcowcalf/downloads/beef2017/Beef2017_dr_PartI.pdf (accessed on 5 June 2023).
- Moorey, S.E.; Biase, F.H. Beef heifer fertility: Importance of management practices and technological advancements. J. Anim. Sci. Biotechnol. 2020, 11, 97. [Google Scholar] [CrossRef] [PubMed]
- Prevatt, C.; Lamb, G.C.; Dahlen, C.; Mercadante, V.R.G.; Waters, K. What is the economic impact of Infertility in beef cattle? EDIS 2018, 2018, 1–4. [Google Scholar] [CrossRef]
- Mercadante, V.R.G.; Dias, N.W.; Timlin, C.L.; Pancini, S. 375 Economic consequences of pregnancy loss in beef cattle. J. Anim. Sci. 2020, 98, 124. [Google Scholar] [CrossRef]
- Hindman, M.S.; Engelken, T.J. Beef heifer development prebreeding nutritional management. In Bovine Reproduction; Hopper, R.M., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2021; pp. 359–365. ISBN 978-1-119-60246-0. [Google Scholar]
- Akanno, E.C.; Plastow, G.; Fitzsimmons, C.; Miller, S.P.; Baron, V.; Ominski, K.; Basarab, J.A. Genome-wide association for heifer reproduction and calf performance traits in beef cattle. Genome 2015, 58, 549–557. [Google Scholar] [CrossRef]
- Cushman, R.A.; Kill, L.K.; Funston, R.N.; Mousel, E.M.; Perry, G.A. Heifer calving date positively influences calf weaning weights through six parturitions. J. Anim. Sci 2013, 91, 4486–4491. [Google Scholar] [CrossRef]
- Han, Y.; Peñagaricano, F. Unravelling the genomic architecture of bull fertility in Holstein cattle. BMC Genet. 2016, 17, 143. [Google Scholar] [CrossRef]
- Wathes, D.C.; Pollott, G.E.; Johnson, K.F.; Richardson, H.; Cooke, J.S. Heifer fertility and carry over consequences for life time production in dairy and beef cattle. Animal 2014, 8, 91–104. [Google Scholar] [CrossRef]
- Goddard, M.E.; Hayes, B.J. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat. Rev. Genet. 2009, 10, 381–391. [Google Scholar] [CrossRef]
- Berry, D.P.; Wall, E.; Pryce, J.E. Genetics and genomics of reproductive performance in dairy and beef cattle. Animal 2014, 8, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Cole, J.B.; Da, Y.; VanRaden, P.M. Symposium review: Genetics, genome-wide association study, and genetic improvement of dairy fertility traits. J. Dairy Sci. 2019, 102, 3735–3743. [Google Scholar] [CrossRef]
- Cammack, K.M.; Thomas, M.G.; Enns, R.M. Reproductive traits and their heritabilities in beef cattle. Prof. Anim. Sci. 2009, 25, 517–528. [Google Scholar] [CrossRef]
- Holland, M.K.; McGowan, M. Manipulation of fertility to enhance productivity of cattle. Biochemist 2018, 40, 20–25. [Google Scholar] [CrossRef]
- McGettigan, P.A.; Browne, J.A.; Carrington, S.D.; Crowe, M.A.; Fair, T.; Forde, N.; Loftus, B.J.; Lohan, A.; Lonergan, P.; Pluta, K.; et al. Fertility and genomics: Comparison of gene expression in contrasting reproductive tissues of female cattle. Reprod. Fertil. Dev. 2016, 28, 11. [Google Scholar] [CrossRef] [PubMed]
- Olasege, B.S.; Tahir, M.S.; Gouveia, G.C.; Kour, J.; Porto-Neto, L.R.; Hayes, B.J.; Fortes, M.R.S. Genetic parameter estimates for male and female fertility traits using genomic data to improve fertility in Australian beef cattle. Anim. Prod. Sci. 2021, 61, 1863–1872. [Google Scholar] [CrossRef]
- Weller, J.I.; Ezra, E.; Ron, M. Invited review: A perspective on the future of genomic selection in dairy cattle. J. Dairy Sci. 2017, 100, 8633–8644. [Google Scholar] [CrossRef]
- Mueller, M.L.; Van Eenennaam, A.L. Synergistic power of genomic selection, assisted reproductive technologies, and gene editing to drive genetic improvement of cattle. CABI Agric. Biosci. 2022, 3, 13. [Google Scholar] [CrossRef]
- Tahir, M.S.; Porto-Neto, L.R.; Reverter-Gomez, T.; Olasege, B.S.; Sajid, M.R.; Wockner, K.B.; Tan, A.W.L.; Fortes, M.R.S. Utility of multi-omics data to inform genomic prediction of heifer fertility traits. J. Anim. Sci. 2022, 100, skac340. [Google Scholar] [CrossRef] [PubMed]
- Cánovas, A.; Reverter, A.; DeAtley, K.L.; Ashley, R.L.; Colgrave, M.L.; Fortes, M.R.S.; Islas-Trejo, A.; Lehnert, S.; Porto-Neto, L.; Rincón, G.; et al. Multi-tissue omics analyses reveal molecular regulatory networks for puberty in composite beef cattle. PLoS ONE 2014, 9, e102551. [Google Scholar] [CrossRef]
- Phillips, K.M.; Read, C.C.; Kriese-Anderson, L.A.; Rodning, S.P.; Brandebourg, T.D.; Biase, F.H.; Marks, M.L.; Elmore, J.B.; Stanford, M.K.; Dyce, P.W. Plasma metabolomic profiles differ at the time of artificial insemination based on pregnancy outcome, in Bos taurus beef heifers. Sci. Rep. 2018, 8, 13196. [Google Scholar] [CrossRef] [PubMed]
- Diniz, W.J.S.; Banerjee, P.; Rodning, S.P.; Dyce, P.W. Machine learning-based co-expression network analysis unravels potential fertility-related genes in beef cows. Animals 2022, 12, 2715. [Google Scholar] [CrossRef] [PubMed]
- Marrella, M.A.; Biase, F.H. A multi-omics analysis identifies molecular features associated with fertility in heifers (Bos taurus). Sci. Rep. 2023, 13, 12664. [Google Scholar] [CrossRef]
- Aranciaga, N.; Morton, J.D.; Berg, D.K.; Gathercole, J.L. Proteomics and metabolomics in cow fertility: A systematic review. Reproduction 2020, 160, 639–658. [Google Scholar] [CrossRef]
- Pryce, J.E.; Veerkamp, R.F. The incorporation of fertility indices in genetic improvement programmes. BSAP Occas. Publ. 2001, 26, 237–249. [Google Scholar] [CrossRef]
- Kgari, R.D.; Muller, C.J.C.; Dzama, K.; Makgahlela, M.L. Evaluation of female fertility in dairy cattle enterprises—A review. S. Afr. J. Anim. Sci. 2021, 50, 819–829. [Google Scholar] [CrossRef]
- Van den Berg, I.; Stephen, M.; Ho, P.N.; Haile-Mariam, M.; Phyn, C.; Meier, S.; Burke, C.; Steele, N.; Pryce, J.E. New phenotypes for genetic improvement of fertility in dairy cows. In Breeding Focus 2021—Improving Reproduction; Hermesch, S., Dominik, S., Eds.; Animal Genetics and Breeding Unit: Armidale, NSW, Australia, 2021; p. 187. ISBN 978-1-921597-87-9. [Google Scholar]
- Spencer, T.E.; Hansen, P.J.; Cole, J.B.; Dalton, J.; Neibergs, H. Genomic selection and reproductive efficiency in dairy cattle. In Proceedings of the Dairy Cattle Reproduction Conference, Salt Lake City, UT, USA, 13–14 November 2014; pp. 16–31. [Google Scholar]
- Georges, M.; Charlier, C.; Hayes, B. Harnessing genomic information for livestock improvement. Nat. Rev. Genet. 2019, 20, 135–156. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics; Pearson Education: London, UK, 1996. [Google Scholar]
- Johnston, D.J. Genetic improvement of reproduction in beef cattle. In Proceedings of the 10th World Congress of Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014. [Google Scholar]
- Mohammaddiyeh, M.E.T.K.; Rafat, S.A.; Shodja, J.; Javanmard, A.; Esfandyari, H. Selective genotyping to implement genomic selection in beef cattle breeding. Front. Genet. 2023, 14, 1083106. [Google Scholar] [CrossRef]
- BIF Guidelines for Uniform Beef Improvement Programs. Available online: https://guidelines.beefimprovement.org/index.php/Guidelines_for_Uniform_Beef_Improvement_Programs (accessed on 7 July 2023).
- Garrick, D.J. The nature, scope and impact of genomic prediction in beef cattle in the United States. Genet. Sel. Evol. 2011, 43, 17. [Google Scholar] [CrossRef]
- Spangler, M. Using genomics to affect cow herd reproduction. In Proceedings of the 66th Annual Florida Beef Cattle Short Course, Gainesville, FL, USA, 3–5 May 2017. [Google Scholar]
- Hindman, M.S.; Huedepohl, B.; Dewell, G.A.; Brick, T.A.; Silva, G.S.; Engelken, T.J. Physical traits and reproductive measurements associated with early conception in beef replacement heifers. Animals 2022, 12, 1910. [Google Scholar] [CrossRef]
- Fleming, A.; Baes, C.F.; Martin, A.A.A.; Chud, T.C.S.; Malchiodi, F.; Brito, L.F.; Miglior, F. Symposium review: The choice and collection of new relevant phenotypes for fertility selection. J. Dairy Sci. 2019, 102, 3722–3734. [Google Scholar] [CrossRef] [PubMed]
- Boyer, C.N.; Griffith, A.P.; Delong, K.L. Reproductive failure and long-term profitability of spring-and fall-calving beef cows. J. Agric. Resour. Econ. 2020, 45, 78–91. [Google Scholar] [CrossRef]
- Bormann, J.M.; Totir, L.R.; Kachman, S.D.; Fernando, R.L.; Wilson, D.E. Pregnancy rate and first-service conception rate in Angus heifers. J. Anim. Sci. 2006, 84, 2022–2025. [Google Scholar] [CrossRef] [PubMed]
- USDA. Beef Cow-Calf Health and Management Practices in the United States, Report 2; USDA–APHIS: Fort Collins, CO, USA, 2020. [Google Scholar]
- Damiran, D.; Larson, K.A.; Pearce, L.T.; Erickson, N.E.; Lardner, B.H.A. Effect of calving period on beef cow longevity and lifetime productivity in western Canada. Transl. Anim. Sci. 2018, 2, S61–S65. [Google Scholar] [CrossRef]
- Dickinson, S.E.; Elmore, M.F.; Kriese-Anderson, L.; Elmore, J.B.; Walker, B.N.; Dyce, P.W.; Rodning, S.P.; Biase, F.H. Evaluation of age, weaning weight, body condition score, and reproductive tract score in pre-selected beef heifers relative to reproductive potential. J. Anim. Sci. Biotechnol. 2019, 10, 18. [Google Scholar] [CrossRef]
- Alexandre, P.A.; Porto-Neto, L.R.; Hine, B.C.; Samaraweera, A.M.; Byrne, A.I.; Ingham, A.B.; Duff, C.J.; Reverter, A. Development of female fertility indicator traits for the Angus HeiferSELECT genomic tool. In Proceedings of the Association for the Advancement of Animal Breeding and Genetics, Perth, WA, USA, 26–28 July 2023; pp. 67–70. [Google Scholar]
- Brzáková, M.; Čítek, J.; Svitáková, A.; Veselá, Z.; Vostrý, L. Genetic Parameters for Age at First Calving and First Calving Interval of Beef Cattle. Animals 2020, 10, 2122. [Google Scholar] [CrossRef]
- Micheel, C.M.; Nass, S.J.; Omenn, G.S.; Committee on the Review of Omics-Based Tests for Predicting Patient Outcomes in Clinical Trials; Board on Health Care Services; Board on Health Sciences Policy; Institute of Medicine. Omics-Based Clinical Discovery: Science, Technology, and Applications; National Academies Press (US): Washington, DC, USA, 2012. [Google Scholar]
- Rexroad, C.; Vallet, J.; Matukumalli, L.K.; Reecy, J.; Bickhart, D.; Blackburn, H.; Boggess, M.; Cheng, H.; Clutter, A.; Cockett, N.; et al. Genome to Phenome: Improving Animal Health, Production, and Well-Being—A New USDA Blueprint for Animal Genome Research 2018–2027. Front. Genet. 2019, 10, 237. [Google Scholar] [CrossRef]
- Wiggans, G.R.; Cole, J.B.; Hubbard, S.M.; Sonstegard, T.S. Genomic selection in dairy cattle: The USDA experience. Annu. Rev. Anim. Biosci. 2017, 5, 309–327. [Google Scholar] [CrossRef]
- Ortega, M.S. Identification of genes associated with reproductive function in dairy cattle. Anim. Reprod. 2018, 15, 923–932. [Google Scholar] [CrossRef] [PubMed]
- García-Ruiz, A.; Cole, J.B.; VanRaden, P.M.; Wiggans, G.R.; Ruiz-López, F.J.; Van Tassell, C.P. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proc. Natl. Acad. Sci. USA 2016, 113, E3995–E4004. [Google Scholar] [CrossRef] [PubMed]
- Arisman, B.C.; Rowan, T.N.; Thomas, J.M.; Durbin, H.J.; Lamberson, W.R.; Patterson, D.J.; Decker, J.E. Evaluation of Zoetis GeneMax Advantage genomic predictions in commercial Bos taurus Angus cattle. Livest. Sci. 2023, 274, 105266. [Google Scholar] [CrossRef]
- Alexandre, P.A.; Porto-Neto, L.R.; Hine, B.; Ingham, A.; Samaraweera, M.; Duff, C.; Reverter, A. Validation of Angus HeiferSELECT using historical data. In Proceedings of the 12th World Congress on Genetics Applied to Livestock Production (WCGALP), Rotterdam, The Netherlands, 3–8 July 2022; Wageningen Academic Publishers: Wageningen, The Netherlands, 2022; pp. 1930–1933. [Google Scholar]
- Angus Australia the Advanced Genomic Tool to Inform the Selection of Replacement Heifers for Commercial Australian Angus Breeders. Available online: https://www.angusaustralia.com.au/education/breeding-and-genetics/angus-heiferselect (accessed on 19 August 2023).
- Zoetis Technical Bulletin: Inherit Select for Commercial Females. Available online: https://www3.zoetisus.com/animal-genetics/media/documents/inherit/inherit-select-technical-bulletin.pdf (accessed on 19 August 2023).
- Zoetis Implementing GENEMAX Advantage. Available online: www.angus.org/agi (accessed on 19 August 2023).
- Neogen Envigor | Genomics | Neogen. Available online: https://www.neogen.com/categories/igenity-profiles/igenity-envigor/?recommendationId=2697964316861 (accessed on 19 August 2023).
- Neogen. Igenity®® Angus Gold Results Key DNA profiles for 75% Angus and higher. Available online: https://www.neogen.com/globalassets/pim/assets/original/10018/official_angus-gold_brochure.pdf (accessed on 6 January 2023).
- Hu, Z.-L.; Park, C.A.; Reecy, J.M. Bringing the Animal QTLdb and CorrDB into the future: Meeting new challenges and providing updated services. Nucleic Acids Res. 2022, 50, D956–D961. [Google Scholar] [CrossRef]
- Fortes, M.R.S.; Reverter, A.; Zhang, Y.; Collis, E.; Nagaraj, S.H.; Jonsson, N.N.; Prayaga, K.C.; Barris, W.; Hawken, R.J. Association weight matrix for the genetic dissection of puberty in beef cattle. Proc. Natl. Acad. Sci. USA 2010, 107, 13642–13647. [Google Scholar] [CrossRef] [PubMed]
- Stegemiller, M.R.; Murdoch, G.K.; Rowan, T.N.; Davenport, K.M.; Becker, G.M.; Hall, J.B.; Murdoch, B.M. Genome-wide association analyses of fertility traits in beef heifers. Genes 2021, 12, 217. [Google Scholar] [CrossRef]
- Oliver, K.F.; Geary, T.W.; Kiser, J.N.; Galliou, J.M.; Van Emon, M.L.; Seabury, C.M.; Spencer, T.E.; Neibergs, H.L. Loci associated with conception rate in crossbred beef heifers. PLoS ONE 2020, 15, e0230422. [Google Scholar] [CrossRef]
- Speidel, S.E.; Buckley, B.A.; Boldt, R.J.; Enns, R.M.; Lee, J.; Spangler, M.L.; Thomas, M.G. Genome-wide association study of stayability and heifer pregnancy in Red Angus cattle. J. Anim. Sci. 2018, 96, 846–853. [Google Scholar] [CrossRef]
- de Melo, T.P.; de Camargo, G.M.F.; de Albuquerque, L.G.; Carvalheiro, R. Genome-wide association study provides strong evidence of genes affecting the reproductive performance of Nellore beef cows. PLoS ONE 2017, 12, e0178551. [Google Scholar] [CrossRef]
- Costa, R.B.; Camargo, G.M.F.; Diaz, I.D.P.S.; Irano, N.; Dias, M.M.; Carvalheiro, R.; Boligon, A.A.; Baldi, F.; Oliveira, H.N.; Tonhati, H.; et al. Genome-wide association study of reproductive traits in Nellore heifers using Bayesian inference. Genet. Sel. Evol. 2015, 47, 67. [Google Scholar] [CrossRef]
- Júnior, G.A.O.; Perez, B.C.; Cole, J.B.; Santana, M.H.A.; Silveira, J.; Mazzoni, G.; Ventura, R.V.; Júnior, M.L.S.; Kadarmideen, H.N.; Garrick, D.J.; et al. Genomic study and Medical Subject Headings enrichment analysis of early pregnancy rate and antral follicle numbers in Nelore heifers. J. Anim. Sci. 2017, 95, 4796–4812. [Google Scholar] [CrossRef] [PubMed]
- Minten, M.A.; Bilby, T.R.; Bruno, R.G.S.; Allen, C.C.; Madsen, C.A.; Wang, Z.; Sawyer, J.E.; Tibary, A.; Neibergs, H.L.; Geary, T.W.; et al. Effects of fertility on gene expression and function of the bovine endometrium. PLoS ONE 2013, 8, e69444. [Google Scholar] [CrossRef] [PubMed]
- Neupane, M.; Geary, T.W.; Kiser, J.N.; Burns, G.W.; Hansen, P.J.; Spencer, T.E.; Neibergs, H.L. Loci and pathways associated with uterine capacity for pregnancy and fertility in beef cattle. PLoS ONE 2017, 12, e0188997. [Google Scholar] [CrossRef] [PubMed]
- Sbardella, A.P.; Watanabe, R.N.; da Costa, R.M.; Bernardes, P.A.; Braga, L.G.; Baldi Rey, F.S.; Lôbo, R.B.; Munari, D.P. Genome-wide association study provides insights into important genes for reproductive traits in Nelore cattle. Animals 2021, 11, 1386. [Google Scholar] [CrossRef]
- Fortes, M.R.S.; Snelling, W.M.; Reverter, A.; Nagaraj, S.H.; Lehnert, S.A.; Hawken, R.J.; DeAtley, K.L.; Peters, S.O.; Silver, G.A.; Rincon, G.; et al. Gene network analyses of first service conception in Brangus heifers: Use of genome and trait associations, hypothalamic-transcriptome information, and transcription factors. J. Anim. Sci. 2012, 90, 2894–2906. [Google Scholar] [CrossRef]
- Veerkamp, R.F.; Beerda, B. Genetics and genomics to improve fertility in high producing dairy cows. Theriogenology 2007, 68, S266–S273. [Google Scholar] [CrossRef]
- Tzur, Y.B. lncRNAs in fertility: Redefining the gene expression paradigm? Trends Genet. 2022, 38, 1170–1179. [Google Scholar] [CrossRef]
- Beerda, B.; Wyszynska-Koko, J.; te Pas, M.F.W.; de Wit, A.A.C.; Veerkamp, R.F. Expression profiles of genes regulating dairy cow fertility: Recent findings, ongoing activities and future possibilities. Animal 2008, 2, 1158–1167. [Google Scholar] [CrossRef]
- Mazzoni, G.; Kadarmideen, H.N. Computational Methods for Quality Check, Preprocessing and Normalization of RNA-Seq Data for Systems Biology and Analysis. In Systems Biology in Animal Production and Health, Vol. 2; Springer International Publishing: Cham, Switzerland, 2016; pp. 61–77. [Google Scholar]
- Van Den Berge, K.; Hembach, K.M.; Soneson, C.; Tiberi, S.; Clement, L.; Love, M.I.; Patro, R.; Robinson, M.D. RNA Sequencing Data: Hitchhiker’s Guide to Expression Analysis. Annu. Rev. Biomed. Data Sci. 2019, 2, 139–173. [Google Scholar] [CrossRef]
- Basu, M.; Wang, K.; Ruppin, E.; Hannenhalli, S. Predicting tissue-specific gene expression from whole blood transcriptome. Sci. Adv. 2021, 7, eabd6991. [Google Scholar] [CrossRef]
- Banerjee, P.; Rodning, S.P.; Diniz, W.J.S.; Dyce, P.W. Co-expression network and integrative analysis of metabolome and transcriptome uncovers biological pathways for fertility in beef heifers. Metabolites 2022, 12, 708. [Google Scholar] [CrossRef]
- Moorey, S.E.; Walker, B.N.; Elmore, M.F.; Elmore, J.B.; Rodning, S.P.; Biase, F.H. Rewiring of gene expression in circulating white blood cells is associated with pregnancy outcome in heifers (Bos taurus). Sci. Rep. 2020, 10, 16786. [Google Scholar] [CrossRef]
- Mitchell, M.D.; Scholz-Romero, K.; Reed, S.; Peiris, H.N.; Koh, Y.Q.; Meier, S.; Walker, C.G.; Burke, C.R.; Roche, J.R.; Rice, G.; et al. Plasma exosome profiles from dairy cows with divergent fertility phenotypes. J. Dairy Sci. 2016, 99, 7590–7601. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, G.; Pedersen, H.S.; Rabaglino, M.B.; Hyttel, P.; Callesen, H.; Kadarmideen, H.N. Characterization of the endometrial transcriptome in early diestrus influencing pregnancy status in dairy cattle after transfer of in vitro-produced embryos. Physiol. Genom. 2020, 52, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.G.; Pryce, J.E.; Hayes, B.J.; Chamberlain, A.J.; Kemper, K.E.; Berry, D.P.; McCabe, M.; Cormican, P.; Lonergan, P.; Fair, T.; et al. Differentially expressed genes in endometrium and corpus luteum of Holstein cows selected for high and low fertility are enriched for sequence variants associated with fertility. Biol. Reprod. 2016, 94, 1–11. [Google Scholar] [CrossRef]
- Moran, B.; Cummins, S.B.; Creevey, C.J.; Butler, S.T. Transcriptomics of liver and muscle in Holstein cows genetically divergent for fertility highlight differences in nutrient partitioning and inflammation processes. BMC Genom. 2016, 17, 603. [Google Scholar] [CrossRef] [PubMed]
- Meier, S.; McNaughton, L.R.; Handcock, R.; Amer, P.R.; Beatson, P.R.; Bryant, J.R.; Dodds, K.G.; Spelman, R.; Roche, J.R.; Burke, C.R. Heifers with positive genetic merit for fertility traits reach puberty earlier and have a greater pregnancy rate than heifers with negative genetic merit for fertility traits. J. Dairy Sci. 2021, 104, 2021. [Google Scholar] [CrossRef]
- Fortes, M.R.S.; Zacchi, L.F.; Nguyen, L.T.; Raidan, F.; Weller, M.M.D.C.A.; Choo, J.J.Y.; Reverter, A.; Rego, J.P.A.; Boe-Hansen, G.B.; Porto-Neto, L.R.; et al. Pre- and post-puberty expression of genes and proteins in the uterus of Bos indicus heifers: The luteal phase effect post-puberty. Anim. Genet. 2018, 49, 539–549. [Google Scholar] [CrossRef]
- Spencer, T.E. Early pregnancy: Concepts, challenges, and potential solutions. Anim. Front. 2013, 3, 48–55. [Google Scholar] [CrossRef]
- Geary, T.W.; Burns, G.W.; Moraes, J.G.N.; Moss, J.I.; Denicol, A.C.; Dobbs, K.B.; Ortega, M.S.; Hansen, P.J.; Wehrman, M.E.; Neibergs, H.; et al. Identification of beef heifers with superior uterine capacity for pregnancy. Biol. Reprod. 2016, 95, 47. [Google Scholar] [CrossRef]
- Martins, T.; Sponchiado, M.; Silva, F.A.C.C.; Estrada-Cortés, E.; Hansen, P.J.; Peñagaricano, F.; Binelli, M. Progesterone-dependent and progesterone-independent modulation of luminal epithelial transcription to support pregnancy in cattle. Physiol. Genom. 2022, 54, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.A.C.C.; Martins, T.; Sponchiado, M.; Rocha, C.C.; Pohler, K.G.; Peñagaricano, F.; Binelli, M. Hormonal profile prior to luteolysis modulates the uterine luminal transcriptome in the subsequent cycle in beef cross-bred cows. Biol. Reprod. 2023, 108, 922–935. [Google Scholar] [CrossRef] [PubMed]
- Mamo, S.; Mehta, J.P.; McGettigan, P.; Fair, T.; Spencer, T.E.; Bazer, F.W.; Lonergan, P. RNA sequencing reveals novel gene clusters in bovine conceptuses associated with maternal recognition of pregnancy and implantation. Biol. Reprod. 2011, 85, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Forde, N.; Mehta, J.P.; McGettigan, P.A.; Mamo, S.; Bazer, F.W.; Spencer, T.E.; Lonergan, P. Alterations in expression of endometrial genes coding for proteins secreted into the uterine lumen during conceptus elongation in cattle. BMC Genom. 2013, 14, 321. [Google Scholar] [CrossRef]
- Forde, N.; Mehta, J.P.; Minten, M.; Crowe, M.A.; Roche, J.F.; Spencer, T.E.; Lonergan, P. Effects of low progesterone on the endometrial transcriptome in cattle. Biol. Reprod. 2012, 87, 124–125. [Google Scholar] [CrossRef] [PubMed]
- Rabaglino, M.B. Review: Overview of the transcriptomic landscape in bovine blastocysts and elongated conceptuses driving developmental competence. Animal 2023, 17, 100733. [Google Scholar] [CrossRef]
- Dickinson, S.E.; Griffin, B.A.; Elmore, M.F.; Kriese-Anderson, L.; Elmore, J.B.; Dyce, P.W.; Rodning, S.P.; Biase, F.H. Transcriptome profiles in peripheral white blood cells at the time of artificial insemination discriminate beef heifers with different fertility potential. BMC Genom. 2018, 19, 129. [Google Scholar] [CrossRef]
- De los Santos, J.A.; Andrade, J.P.N.; Cangiano, L.R.; Iriarte, A.; Peñagaricano, F.; Parrish, J.J. Transcriptomic analysis reveals gene expression changes in peripheral white blood cells of cows after embryo transfer: Implications for pregnancy tolerance. Reprod. Domest. Anim. 2023, 58, 946–954. [Google Scholar] [CrossRef]
- Liew, C.-C.; Ma, J.; Tang, H.-C.; Zheng, R.; Dempsey, A.A. The peripheral blood transcriptome dynamically reflects system wide biology: A potential diagnostic tool. J. Lab. Clin. Med. 2006, 147, 126–132. [Google Scholar] [CrossRef]
- Mohr, S.; Liew, C.-C. The peripheral-blood transcriptome: New insights into disease and risk assessment. Trends Mol. Med. 2007, 13, 422–432. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, F.; Leu, N.A.; Wang, P.J. MNS1 is essential for spermiogenesis and motile ciliary functions in mice. PLoS Genet. 2012, 8, e1002516. [Google Scholar] [CrossRef]
- Liu, S.; Ma, X.; Wang, Z.; Lin, F.; Li, M.; Li, Y.; Yang, L.; Rushdi, H.E.; Riaz, H.; Gao, T.; et al. MAEL gene contributes to bovine testicular development through the m5C-mediated splicing. iScience 2023, 26, 105941. [Google Scholar] [CrossRef]
- Langfelder, P.; Mischel, P.S.; Horvath, S. When is hub gene selection better than standard meta-analysis? PLoS ONE 2013, 8, e61505. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Diniz, W.J.S.; Hollingsworth, R.; Rodning, S.P.; Dyce, P.W. mRNA signatures in peripheral white blood cells predict reproductive potential in beef heifers at weaning. Genes 2023, 14, 498. [Google Scholar] [CrossRef] [PubMed]
- Ross, E.M.; Sanjana, H.; Nguyen, L.T.; Cheng, Y.Y.; Moore, S.S.; Hayes, B.J. Extensive variation in gene expression is revealed in 13 fertility-related genes using RNA-Seq, ISO-Seq, and CAGE-Seq from Brahman cattle. Front. Genet. 2022, 13, 784663. [Google Scholar] [CrossRef] [PubMed]
- Afedi, P.A.; Larimore, E.L.; Cushman, R.A.; Raynie, D.; Perry, G.A. iTRAQ-based proteomic analysis of bovine pre-ovulatory plasma and follicular fluid. Domest. Anim. Endocrinol. 2021, 76, 106606. [Google Scholar] [CrossRef] [PubMed]
- Bender, K.; Walsh, S.; Evans, A.C.O.; Fair, T.; Brennan, L. Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows. Reproduction 2010, 139, 1047–1055. [Google Scholar] [CrossRef]
- Fair, T. Metabolomics and fertility in cattle: A promising predictor. Biosci. Proc. 2019, 8, 55–62. [Google Scholar] [CrossRef]
- Forutan, M.; Engle, B.N.; Chamberlain, A.J.; Ross, E.M.; Nguyen, L.T.; D’occhio, M.; Snr, A.C.; Kho, E.A.; Fordyce, G.; Speight, S.; et al. Integrating genome-wide association and expression quantitative trait loci (eQTL) analyses identifies genes affecting fertility in cattle and suggests a common set of genes regulating fertility in mammals. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Albert, F.W.; Kruglyak, L. The role of regulatory variation in complex traits and disease. Nat. Rev. Genet. 2015, 16, 197–212. [Google Scholar] [CrossRef]
- Kadarmideen, H.N.; von Rohr, P.; Janss, L.L.G. From genetical genomics to systems genetics: Potential applications in quantitative genomics and animal breeding. Mamm. Genome 2006, 17, 548–564. [Google Scholar] [CrossRef] [PubMed]
- Kadarmideen, H.N.; Mazzoni, G. Transcriptomics–genomics data integration and expression quantitative trait loci analyses in oocyte donors and embryo recipients for improving invitro production of dairy cattle embryos. Reprod. Fertil. Dev. 2019, 31, 55. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Fuller, C.K.; Song, Y.; Meng, Q.; Zhang, B.; Yang, X.; Li, H. Sherlock: Detecting gene-disease associations by matching patterns of expression QTL and GWAS. Am. J. Hum. Genet. 2013, 92, 667–680. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, I.V.; Hayes, B.J.; Chamberlain, A.J.; Goddard, M.E. Overlap between eQTL and QTL associated with production traits and fertility in dairy cattle. BMC Genom. 2019, 20, 291. [Google Scholar] [CrossRef]
- Panda, B.S.K.; Mohapatra, S.K.; Chaudhary, D.; Alhussien, M.N.; Kapila, R.; Dang, A.K. Proteomics and transcriptomics study reveals the utility of ISGs as novel molecules for early pregnancy diagnosis in dairy cows. J. Reprod. Immunol. 2020, 140, 103148. [Google Scholar] [CrossRef]
- Christensen, O.F.; Börner, V.; Varona, L.; Legarra, A. Genetic evaluation including intermediate omics features. Genetics 2021, 219, iyab130. [Google Scholar] [CrossRef]
Trait (EPD Abbreviation) | Interpretation | Beef Cattle Breed Associations a | ||||
---|---|---|---|---|---|---|
AAA | AHA | RAA | ASA | AGA | ||
Heifer pregnancy (HP/HPG b) | Differences in the percentage of daughters who conceive and calve by 2 years of age. | |||||
Stayability (STAY) | Difference in daughters’ ability to remain in the herd and produce a calf through 6 years of age. | |||||
Sustained cow fertility (SCF) | Difference in cow’s ability to continue to calve from 3 to 12 years of age, given she calved as a 2-year-old. | |||||
30-month pregnancy (Pg30) | Differences in the percentage of a sire’s daughters to conceive and calve at 3 years of age, given they calved as a first-calf heifer. | |||||
Scrotal circumference (SC) c | Difference in the scrotal circumference of an animal’s male offspring compared to that of other sires. |
Traits | Test/Company a | Breeds | Reference |
---|---|---|---|
Fertility | INHERIT Select™ Zoetis (Parsippany-Troy Hills, NJ, USA) c | Angus, Red Angus, South Devon, Hereford, Simmental, Gelbvieh, Limousin and Charolais | [59] |
Scrotal Circumference b | |||
Heifer Pregnancy | GeneMax® Advantage™ Zoetis c | Angus (75% or greater) | [60] |
Stayability | Igenity®+Envigor Neogen (Lansing, MI, USA) | Angus, Brahman, Gelbvieh, Hereford, Red Angus, Limousin, Simmental, and others | [61] |
Heifer Pregnancy | |||
Heifer Pregnancy Rate | Igenity®® Angus Gold Neogen | Angus (75% or greater) | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kertz, N.C.; Banerjee, P.; Dyce, P.W.; Diniz, W.J.S. Harnessing Genomics and Transcriptomics Approaches to Improve Female Fertility in Beef Cattle—A Review. Animals 2023, 13, 3284. https://doi.org/10.3390/ani13203284
Kertz NC, Banerjee P, Dyce PW, Diniz WJS. Harnessing Genomics and Transcriptomics Approaches to Improve Female Fertility in Beef Cattle—A Review. Animals. 2023; 13(20):3284. https://doi.org/10.3390/ani13203284
Chicago/Turabian StyleKertz, Nicholas C., Priyanka Banerjee, Paul W. Dyce, and Wellison J. S. Diniz. 2023. "Harnessing Genomics and Transcriptomics Approaches to Improve Female Fertility in Beef Cattle—A Review" Animals 13, no. 20: 3284. https://doi.org/10.3390/ani13203284
APA StyleKertz, N. C., Banerjee, P., Dyce, P. W., & Diniz, W. J. S. (2023). Harnessing Genomics and Transcriptomics Approaches to Improve Female Fertility in Beef Cattle—A Review. Animals, 13(20), 3284. https://doi.org/10.3390/ani13203284