Effects of Age on Compounds, Metabolites and Meat Quality in Beijing-You Chicken Breast Meat
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Physical Properties
2.2.1. Water-Holding Capacity
2.2.2. Shear Force
2.2.3. Dry Matter
2.2.4. Intramuscular Fat
2.3. Free Amino Acids
2.4. Liquid Chromatography–Mass Spectrometry
2.5. Gas Chromatography–Mass Spectroscopy
2.6. Statistical Analysis
3. Results
3.1. Physical Properties’ Analysis
3.2. Amino Acid Analysis
3.3. Metabolomics Analysis
3.3.1. PCA and OPLS-DA Analysis
3.3.2. Differential Metabolites’ Analysis
3.3.3. Key Metabolic Pathway Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kurihara, K. Glutamate: From discovery as a food flavor to role as a basic taste (umami). Am. J. Clin. Nutr. 2009, 90, 719S–722S. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, C.; Kong, Y.; Li, F.; Yue, X. Effects of intramuscular fat on meat quality and its regulation mechanism in Tan sheep. Front. Nutr. 2022, 9, 908355. [Google Scholar] [CrossRef]
- Aaslyng, M.D.; Bejerholm, C.; Ertbjerg, P.; Bertram, H.C.; Andersen, H.J. Cooking loss and juiciness of pork in relation to raw meat quality and cooking procedure. Food Qual. Prefer. 2003, 14, 277–288. [Google Scholar] [CrossRef]
- Khan, M.I.; Jo, C.; Tariq, M.R. Meat flavor precursors and factors influencing flavor precursors--A systematic review. Meat Sci. 2015, 110, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yu, M.; Liu, Z.; Deng, D.; Cui, Y.; Tian, Z.; Wang, G. Effect of amino acids and their derivatives on meat quality of finishing pigs. J. Food Sci. Technol. 2020, 57, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Catalá, A. A synopsis of the process of lipid peroxidation since the discovery of the essential fatty acids. Biochem. Biophys. Res. Commun. 2010, 399, 318–323. [Google Scholar] [CrossRef]
- Shahidi, F.; Hossain, A. Role of Lipids in Food Flavor Generation. Molecules 2022, 27, 5014. [Google Scholar] [CrossRef]
- Guijas, C.; Montenegro-Burke, J.R.; Warth, B.; Spilker, M.E.; Siuzdak, G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat. Biotechnol. 2018, 36, 316–320. [Google Scholar] [CrossRef]
- Zeki, Ö.C.; Eylem, C.C.; Reçber, T.; Kır, S.; Nemutlu, E. Integration of GC-MS and LC-MS for untargeted metabolomics profiling. J. Pharm. Biomed. Anal. 2020, 190, 113509. [Google Scholar] [CrossRef] [PubMed]
- Setyabrata, D.; Cooper, B.R.; Sobreira, T.J.P.; Legako, J.F.; Martini, S.; Kim, Y.H.B. Elucidating mechanisms involved in flavor generation of dry-aged beef loins using metabolomics approach. Food Res. Int. 2021, 139, 109969. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, G.; Yin, X.; Ge, C.; Liao, G. Effects of different cooking methods on free fatty acid profile, water-soluble compounds and flavor compounds in Chinese Piao chicken meat. Food Res. Int. 2021, 149, 110696. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhao, X.; Zhang, B.; Cui, Y.; Nueraihemaiti, M.; Kou, Q.; Luo, H. Assessment of components related to flavor and taste in Tan-lamb meat under different silage-feeding regimens using integrative metabolomics. Food Chem. X 2022, 14, 100269. [Google Scholar] [CrossRef]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Chu, Q.; Yan, Z.; Zhang, J.; Usman, T.; Zhang, Y.; Liu, H.; Wang, H.; Geng, A.; Liu, H. Association of SNP rs80659072 in the ZRS with polydactyly in Beijing You chickens. PLoS ONE 2017, 12, e0185953. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Cao, J.; Geng, A.; Zhang, X.; Wang, H.; Chu, Q.; Yan, Z.; Zhang, Y.; Liu, H.; Zhang, J. Integration of GC-MS and LC-MS for metabolite characteristics of thigh meat between fast- and slow-growing broilers at marketable age. Food Chem. 2023, 403, 134362. [Google Scholar] [CrossRef]
- Andres-Hernando, A.; Cicerchi, C.; Kuwabara, M.; Orlicky, D.J.; Sanchez-Lozada, L.G.; Nakagawa, T.; Johnson, R.J.; Lanaspa, M.A. Umami-induced obesity and metabolic syndrome is mediated by nucleotide degradation and uric acid generation. Nat. Metab. 2021, 3, 1189–1201. [Google Scholar] [CrossRef] [PubMed]
- Jennen, D.G.J.; Brings, A.D.; Liu, G.; Jüngst, H.; Tholen, E.; Jonas, E.; Tesfaye, D.; Schellander, K.; Phatsara, C. Genetic aspects concerning drip loss and water-holding capacity of porcine meat. J. Anim. Breed. Genet. 2007, 124 (Suppl. S1), 2–11. [Google Scholar] [CrossRef]
- Stewart, S.M.; Gardner, G.E.; McGilchrist, P.; Pethick, D.W.; Polkinghorne, R.; Thompson, J.M.; Tarr, G. Prediction of consumer palatability in beef using visual marbling scores and chemical intramuscular fat percentage. Meat Sci. 2021, 181, 108322. [Google Scholar] [CrossRef]
- Deng, S.; Liu, R.; Li, C.; Xu, X.; Zhou, G. Meat quality and flavor compounds of soft-boiled chickens: Effect of Chinese yellow-feathered chicken breed and slaughter age. Poult. Sci. 2022, 101, 102168. [Google Scholar] [CrossRef]
- Veiseth-Kent, E.; Hollung, K.; Ofstad, R.; Aass, L.; Hildrum, K.I. Relationship between muscle microstructure, the calpain system, and shear force in bovine longissimus dorsi muscle. J. Anim. Sci. 2010, 88, 3445–3451. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Church, D.D.; Hirsch, K.R.; Park, S.; Kim, I.-Y.; Gwin, J.A.; Pasiakos, S.M.; Wolfe, R.R.; Ferrando, A.A. Essential Amino Acids and Protein Synthesis: Insights into Maximizing the Muscle and Whole-Body Response to Feeding. Nutrients 2020, 12, 3717. [Google Scholar] [CrossRef] [PubMed]
- Diez-Simon, C.; Eichelsheim, C.; Mumm, R.; Hall, R.D. Chemical and Sensory Characteristics of Soy Sauce: A Review. J. Agric. Food Chem. 2020, 68, 11612–11630. [Google Scholar] [CrossRef] [PubMed]
- Varavinit, S.; Shobsngob, S. Production of Meat-Like Flavor. Sci. Asia 2000, 26, 219–224. [Google Scholar] [CrossRef]
- Ge, Y.; Gai, K.; Li, Z.; Chen, Y.; Wang, L.; Qi, X.; Xing, K.; Wang, X.; Xiao, L.; Ni, H.; et al. HPLC-QTRAP-MS-based metabolomics approach investigates the formation mechanisms of meat quality and flavor of Beijing You chicken. Food Chem. X 2023, 17, 100550. [Google Scholar] [CrossRef]
- Shen, Y.; Hu, L.-T.; Xia, B.; Ni, Z.-J.; Elam, E.; Thakur, K.; Zhang, J.-G.; Wei, Z.-J. Effects of different sulfur-containing substances on the structural and flavor properties of defatted sesame seed meal derived Maillard reaction products. Food Chem. 2021, 365, 130463. [Google Scholar] [CrossRef] [PubMed]
- Charoensin, S.; Laopaiboon, B.; Boonkum, W.; Phetcharaburanin, J.; Villareal, M.O.; Isoda, H.; Duangjinda, M. Thai Native Chicken as a Potential Functional Meat Source Rich in Anserine, Anserine/Carnosine, and Antioxidant Substances. Animals 2021, 11, 902. [Google Scholar] [CrossRef]
- Cheah, I.K.; Halliwell, B. Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2012, 1822, 784–793. [Google Scholar] [CrossRef]
- Lees, E.K.; Król, E.; Grant, L.; Shearer, K.; Wyse, C.; Moncur, E.; Bykowska, A.S.; Mody, N.; Gettys, T.W.; Delibegovic, M. Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21. Aging Cell 2014, 13, 817–827. [Google Scholar] [CrossRef]
- Zhang, F.; Klebansky, B.; Fine, R.M.; Xu, H.; Pronin, A.; Liu, H.; Tachdjian, C.; Li, X. Molecular mechanism for the umami taste synergism. Proc. Natl. Acad. Sci. USA 2008, 105, 20930–20934. [Google Scholar] [CrossRef]
- Peng, J.Y.; Yuming, G.; Xin, Y.; Fangyu, L. Effects of dietary arginine and methionine levels on broiler carcass traits and meat quality. J. Anim. Vet. Adv. 2010, 9, 1546–1551. [Google Scholar]
- Fu, Y.; Cao, S.; Yang, L.; Li, Z. Flavor formation based on lipid in meat and meat products: A review. J. Food Biochem. 2022, 46, e14439. [Google Scholar] [CrossRef] [PubMed]
Terms | 90 d | 120 d | 150 d |
---|---|---|---|
Drip loss (%) | 3.85 ± 1.02 a | 2.83 ± 0.78 b | 3.61 ± 1.11 a |
Cooking loss (%) | 21.65 ± 2.49 a | 14.40 ± 3.29 c | 18.41 ± 2.26 b |
Shear force (N) | 19.21 ± 5.31 b | 29.15 ± 8.46 a | 30.62 ± 6.90 a |
Intramuscular fat (%) | 2.42 ± 2.06 b | 4.68 ± 1.97 a | 5.66 ± 2.42 a |
Dry matter (%) | 27.03 ± 0.83 a | 26.84 ± 0.75 ab | 26.42 ± 0.64 b |
Free Amino Acids (mg/g) | 90 d | 120 d | 150 d |
---|---|---|---|
Aspartic acid | 0.041 ± 0.009 | 0.041 ± 0.015 | 0.037 ± 0.022 |
Threonine | 0.313 ± 0.100 | 0.315 ± 0.163 | 0.298 ± 0.115 |
Serine | 0.235 ± 0.040 a | 0.165 ± 0.049 b | 0.210 ± 0.045 a |
Glutamic acid | 0.315 ± 0.075 | 0.336 ± 0.148 | 0.351 ± 0.123 |
Glycine | 0.213 ± 0.033 a | 0.162 ± 0.034 b | 0.148 ± 0.027 b |
Alanine | 0.309 ± 0.093 a | 0.312 ± 0.086 a | 0.279 ± 0.102 b |
Citrulline | ND | ND | ND |
Valine | 0.145 ± 0.028 a | 0.078 ± 0.027 b | 0.088 ± 0.025 b |
Cystine | ND | ND | ND |
Methionine | 0.026 ± 0.010 b | 0.026 ± 0.012 b | 0.042 ± 0.011 a |
Isoleucine | 0.088 ± 0.018 a | 0.044 ± 0.020 b | 0.053 ± 0.016 b |
Leucine | 0.176 ± 0.030 a | 0.098 ± 0.040 b | 0.114 ± 0.032 b |
Tyrosine | 0.099 ± 0.024 a | 0.070 ± 0.025 b | 0.062 ± 0.026 b |
Phenylalanine | 0.071 ± 0.019 | 0.067 ± 0.022 | 0.061 ± 0.027 |
Tryptophan | ND | ND | ND |
Lysine | 0.210 ± 0.038 a | 0.144 ± 0.038 b | 0.120 ± 0.035 b |
Histidine | 0.062 ± 0.021 a | 0.029 ± 0.033 b | 0.047 ± 0.028 ab |
Arginine | 0.160 ± 0.039 a | 0.112 ± 0.038 b | 0.087 ± 0.04 b |
Proline | ND | ND | 0.009 ± 0.02 |
Terms | 90 d | 120 d | 150 d |
---|---|---|---|
TAA (mg/g) | 2.46 ± 0.38 a | 1.99 ± 0.57 b | 2.01 ± 0.42 b |
EAA (mg/g) | 1.03 ± 0.18 a | 0.76 ± 0.28 b | 0.78 ± 0.2 b |
UAA (mg/g) | 0.36 ± 0.07 | 0.38 ± 0.16 | 0.39 ± 0.12 |
SAA (mg/g) | 1.07 ± 0.18 | 0.95 ± 0.27 | 0.94 ± 0.21 |
BAA (mg/g) | 0.74 ± 0.13 a | 0.47 ± 0.15 b | 0.46 ± 0.13 b |
EAA/TAA | 41.82 | 37.73 | 38.35 |
UAA/TAA | 16.7 | 17.68 | 18.21 |
SAA/TAA | 50.25 | 44.76 | 44.32 |
BAA/TAA | 34.67 | 21.98 | 21.81 |
Terms | 120 d vs. 90 d | 150 d vs. 90 d | 150 d vs. 120 d |
---|---|---|---|
GC-MS | 42 | 46 | 40 |
LC-MS | 90 | 103 | 49 |
1 Overlapped | 4 | 7 | 1 |
2 Unique | 128 | 142 | 88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Cao, J.; Chang, C.; Geng, A.; Wang, H.; Chu, Q.; Yan, Z.; Zhang, X.; Zhang, Y.; Liu, H.; et al. Effects of Age on Compounds, Metabolites and Meat Quality in Beijing-You Chicken Breast Meat. Animals 2023, 13, 3419. https://doi.org/10.3390/ani13213419
Chen X, Cao J, Chang C, Geng A, Wang H, Chu Q, Yan Z, Zhang X, Zhang Y, Liu H, et al. Effects of Age on Compounds, Metabolites and Meat Quality in Beijing-You Chicken Breast Meat. Animals. 2023; 13(21):3419. https://doi.org/10.3390/ani13213419
Chicago/Turabian StyleChen, Xia, Jing Cao, Cheng Chang, Ailian Geng, Haihong Wang, Qin Chu, Zhixun Yan, Xiaoyue Zhang, Yao Zhang, Huagui Liu, and et al. 2023. "Effects of Age on Compounds, Metabolites and Meat Quality in Beijing-You Chicken Breast Meat" Animals 13, no. 21: 3419. https://doi.org/10.3390/ani13213419
APA StyleChen, X., Cao, J., Chang, C., Geng, A., Wang, H., Chu, Q., Yan, Z., Zhang, X., Zhang, Y., Liu, H., & Zhang, J. (2023). Effects of Age on Compounds, Metabolites and Meat Quality in Beijing-You Chicken Breast Meat. Animals, 13(21), 3419. https://doi.org/10.3390/ani13213419