Caffeine Administration in Piglets with Low Birthweight and Low Vitality Scores, and Its Effect on Physiological Blood Profile, Acid–Base Balance, Gas Exchange, and Infrared Thermal Response
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Animals and Housing Conditions
2.3. Inclusion Criteria
2.4. Treatments
2.5. Experimental Design
2.6. Assessed Variables
2.6.1. Thermal Imaging
2.6.2. Blood Gas and Physiological Profile
2.7. Statistical Analysis
2.8. Ethical Statement
3. Results
3.1. Blood Gas Parameters
3.2. Physio-Metabolic Profile
3.3. Thermal Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadeghi, E.; Kappers, C.; Chiumento, A.; Derks, M.; Havinga, P. Improving Piglets Health and Well-Being: A Review of Piglets Health Indicators and Related Sensing Technologies. Smart Agric. Technol. 2023, 5, 100246. [Google Scholar] [CrossRef]
- Swinbourne, A.M.; Kind, K.L.; Flinn, T.; Kleemann, D.O.; van Wettere, W.H.E.J. Caffeine: A potential strategy to improve survival of neonatal pigs and sheep. Anim. Reprod. Sci. 2021, 226, 106700. [Google Scholar] [CrossRef] [PubMed]
- Farmer, C.; Edwards, S.A. Review: Improving the performance of neonatal piglets. Animal 2022, 16, 100350. [Google Scholar] [CrossRef]
- Jovic, S.; Cupic, V.; Ristic, G.; Vakanjac, S.; Dimitrijevic, B.; Miladinovic, D.; Zivkovic, L. The influence of the induction of farrowing on live birth, body mass, appearance of dystocia, mortality and surviving of neonatal pigs in litter during the first ten days. Vet. Glas. 2016, 70, 13–29. [Google Scholar] [CrossRef]
- Nam, N.H.; Sukon, P. Incidence of dystocia at piglet level in cloprostenol-induced farrowings and associated risk factors. Arch. Anim. Breed. 2022, 65, 97–103. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; López, A.; Martínez-Burnes, J.; Muns, R.; Villanueva-García, D.; Mora-Medina, P.; González-Lozano, M.; Olmos-Hernández, A.; Ramírez-Necoechea, R. Is vitality assessment important in neonatal animals? CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2018, 13, 1–13. [Google Scholar] [CrossRef]
- Ward, S.A.; Kirkwood, R.N.; Plush, K.L. Effects of Oxytocin and Carbetocin on Farrowing Performance. Anim. Reprod. Sci. 2019, 205, 88–93. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Villanueva-García, D.; Mota-Reyes, A.; Orihuela, A.; Hernández-Ávalos, I.; Domínguez-Oliva, A.; Casas-Alvarado, A.; Flores-Padilla, K.; Jacome-Romero, J.; Martínez-Burnes, J. Meconium aspiration syndrome in animal models: Inflammatory process, apoptosis, and surfactant inactivation. Animals 2022, 12, 3310. [Google Scholar] [CrossRef]
- Santiago, P.R.; Martínez-Burnes, J.; Mayagoitia, A.L.; Ramírez-Necoechea, R.; Mota-Rojas, D. Relationship of vitality and weight with the temperature of newborn piglets born to sows of different parity. Livest. Sci. 2019, 220, 26–31. [Google Scholar] [CrossRef]
- Jarratt, L.; James, S.E.; Kirkwood, R.N.; Nowland, T.L. Effects of caffeine and glucose supplementation at birth on piglet pre-weaning growth, thermoregulation, and survival. Animals 2023, 13, 435. [Google Scholar] [CrossRef] [PubMed]
- Oliviero, C.; Junnikkala, S.; Peltoniemi, O. The challenge of large litters on the immune system of the sow and the piglets. Reprod. Domest. Anim. 2019, 54, 12–21. [Google Scholar] [CrossRef]
- Le Dividich, J.; Noblet, J. Thermoregulation and energy metabolism in the neonatal pig. Ann. Rech. Vet. 1983, 14, 375–381. [Google Scholar]
- Villanueva-García, D.; Mota-Rojas, D.; Martínez-Burnes, J.; Olmos-Hernández, A.; Mora-Medina, P.; Salmerón, C.; Gómez, J.; Boscato, L.; Gutiérrez-Pérez, O.; Cruz, V.; et al. Hypothermia in newly born piglets: Mechanisms of thermoregulation and pathophysiology of death. J. Anim. Behav. Biometeorol. 2021, 9, 2101. [Google Scholar] [CrossRef]
- Alonso-Spilsbury, M.; Ramirez-Necoechea, R.; Gonzalez-Lozano, M.; Mota-Rojas, D.; Trujillo, M. Piglet survival in early lactation: A review. J. Anim. Vet. Adv. 2007, 6, 76–86. [Google Scholar]
- Jiarpinitnun, P.; Loyawatananan, S.; Sangratkanjanasin, P.; Kompong, K.; Nuntapaitoon, M.; Muns, R.; De Rensis, F.; Tummaruk, P. Administration of Carbetocin after the First Piglet Was Born Reduced Farrowing Duration but Compromised Colostrum Intake in Newborn Piglets. Theriogenology 2019, 128, 23–30. [Google Scholar] [CrossRef]
- Nuntapaitoon, M.; Tummaruk, P. Neonatal piglet survival associated with blood glucose concentration. Thai J. Vet. Med. 2014, 44, S159–S160. [Google Scholar]
- Muns, R.; Nuntapaitoon, M.; Tummaruk, P. Non-infectious causes of pre-weaning mortality in piglets. Livest. Sci. 2016, 184, 46–57. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Titto, C.G.; Orihuela, A.; Martínez-Burnes, J.; Gómez-Prado, J.; Torres-Bernal, F.; Flores-Padilla, K.; Carvajal-de la Fuente, V.; Wang, D.; la Fuente, V.C.; et al. Physiological and behavioral mechanisms of thermoregulation in mammals. Animals 2021, 11, 1733. [Google Scholar] [CrossRef] [PubMed]
- Mellor, D.J.; Stafford, K.J. Animal welfare implications of neonatal mortality and morbidity in farm animals. Vet. J. 2004, 168, 118–133. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Prado, J.; Pereira, A.M.F.; Wang, D.; Villanueva-García, D.; Domínguez-Oliva, A.; Mora-Medina, P.; Hernández-Avalos, I.; Martínez-Burnes, J.; Casas-Alvarado, A.; Olmos-Hernández, A.; et al. Thermoregulation mechanisms and perspectives for validating thermal windows in pigs with hypothermia and hyperthermia: An overview. Front. Vet. Sci. 2022, 9, 1023294. [Google Scholar] [CrossRef]
- Bienboire-Frosini, C.; Muns, R.; Marcet-Rius, M.; Gazzano, A.; Villanueva-García, D.; Martínez-Burnes, J.; Domínguez-Oliva, A.; Lezama-García, K.; Casas-Alvarado, A.; Mota-Rojas, D. Vitality in Newborn Farm Animals: Adverse Factors, Physiological Responses, Pharmacological Therapies, and Physical Methods to Increase Neonate Vigor. Animals 2023, 13, 1542. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-García, D.; Mota-Rojas, D.; Miranda-Cortés, A.E.; Mora-Medina, P.; Hernández-Avalos, I.; Casas-Alvarado, A.; Olmos-Hernández, A.; Martínez-Burnes, J. Neurobehavioral and neuroprotector effects of caffeine in animal models. J. Anim. Behav. Biometeorol. 2020, 8, 298–307. [Google Scholar] [CrossRef]
- Lodha, A.; Seshia, M.; McMillan, D.D.; Barrington, K.; Yang, J.; Lee, S.K.; Shah, P.S. Association of early caffeine administration and neonatal outcomes in very preterm neonates. JAMA Pediatr. 2015, 169, 33. [Google Scholar] [CrossRef]
- Villanueva-García, D.; Mota-Rojas, D.; Miranda-Cortés, A.; Ibarra-Ríos, D.; Casas-Alvarado, A.; Mora-Medina, P.; Martínez-Burnes, J.; Olmos-Hernández, A.; Hernández-Avalos, I. Caffeine: Cardiorespiratory effects and tissue protection in animal models. Exp. Anim. 2021, 70, 20–0185. [Google Scholar] [CrossRef]
- Hsieh, E.M.; Hornik, C.P.; Clark, R.H.; Laughon, M.M.; Benjamin, D.K.; Smith, P.B. Medication use in the neonatal intensive care unit. Am. J. Perinatol. 2014, 31, 811–821. [Google Scholar] [CrossRef]
- Kumar, V.H.S.; Lipshultz, S.E. Caffeine and cinical outcomes in premature neonates. Children 2019, 6, 118. [Google Scholar] [CrossRef]
- Nowland, T.L.; Kind, K.; Hebart, M.L.; van Wettere, W.H.E.J. Caffeine supplementation at birth, but not 8 to 12 h post-birth, increased 24 h pre-weaning mortality in piglets. Animal 2020, 14, 1529–1535. [Google Scholar] [CrossRef]
- Murdock, N.J.; Weaver, A.C.; Kelly, J.M.; Kleemann, D.O.; van Wettere, W.H.E.J.; Swinbourne, A.M. Supplementing pregnant Merino ewes with caffeine to improve neonatal lamb thermoregulation and viability. Anim. Reprod. Sci. 2021, 226, 106715. [Google Scholar] [CrossRef] [PubMed]
- Menozzi, A.; Mazzoni, C.; Serventi, P.; Zanardelli, P.; Bertini, S. Pharmacokinetics of oral caffeine in sows: A pilot study. Large Anim. Rev. 2015, 21, 207–210. [Google Scholar]
- Superchi, P.; Saleri, R.; Farina, E.; Cavalli, V.; Riccardi, E.; Sabbioni, A. Effects of oral administration of caffeine on some physiological parameters and maternal behaviour of sows at farrowing. Res. Vet. Sci. 2016, 105, 121–123. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.M.; Edwards, S.H.; Doran, G.S.; Friend, M.A. Maternal caffeine administration to ewes does not affect perinatal lamb survival. Anim. Reprod. Sci. 2021, 231, 106799. [Google Scholar] [CrossRef]
- Orozco, G.; Mota-Rojas, D.; Jaime, H.; Trujillo, M.E.; Becerril-Herrera, M.; Hernández-González, R.; Villanueva-García, D. Effects of Administration of Caffeine on Metabolic Variables in Neonatal Pigs with Peripartum Asphyxia. Am. J. Vet. Res. 2010, 71, 1214–1219. [Google Scholar] [CrossRef] [PubMed]
- Gregorio, O.; Bonilla, H.; Mota-Rojas, D.; Trujillo-Ortega, M.E.; Roldan, P.; Martínez-Rodríguez, R.; Borderas-Tordesillas, F.; Flores-Peinado, S.; Mora-Medina, P.; Ramírez-Necoechea, R. Effects of Subcutaneous Administration of Caffeine on the Physiometabolic Profile of Low-Birthweight Neonate Piglets. Anim. Prod. Sci. 2012, 52, 981. [Google Scholar] [CrossRef]
- NOM-062-ZOO-1999; Especificaciones Técnicas para la Producción, Cuidado y Uso de los Animales de Laboratorio. The Secretariat of Agriculture and Rural Development: Mexico City, Mexico, 1999. Available online: http://publico.senasica.gob.mx/?doc=743 (accessed on 8 August 2023).
- Zaleski, H.M.; Hacker, R.R. Comparison of viability scoring and blood gas analysis as measures of piglet viability. Can. J. Anim. Sci. 1993, 73, 649–653. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Martínez-Burnes, J.; Trujillo, M.E.; López, A.; Rosales, A.M.; Ramírez, R.; Orozco, H.; Merino, A.; Alonso-Spilsbury, M. Uterine and fetal asphyxia monitoring in parturient sows treated with oxytocin. Anim. Reprod. Sci. 2005, 86, 131–141. [Google Scholar] [CrossRef]
- Sherwin, C.M.; Christiansen, S.B.; Duncan, I.J.; Erhard, H.W.; Lay, D.C.; Mench, J.A.; O’Connor, C.E.; Petherick, J.C. Guidelines for the ethical use of animals in applied ethology studies. Appl. Anim. Behav. Sci. 2003, 81, 291–305. [Google Scholar] [CrossRef]
- Atik, A.; Cheong, J.; Harding, R.; Rees, S.; De Matteo, R.; Tolcos, M. Impact of daily high-dose caffeine exposure on developing white matter of the immature ovine brain. Pediatr. Res. 2014, 76, 54–63. [Google Scholar] [CrossRef]
- Abdel-Hady, H. Caffeine therapy in preterm infants. World J. Clin. Pediatr. 2015, 4, 81. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.A. Simple acid-base disorders. Vet. Clin. North Am. Small Anim. Pract. 1989, 19, 289–306. [Google Scholar] [CrossRef]
- Day, T.K. Blood gas analysis. Vet. Clin. N. Am. Small Anim. Pract. 2002, 32, 1031–1048. [Google Scholar] [CrossRef] [PubMed]
- Muir, W.W. Acid-Base Physiology. In Veterinary Anesthesia and Analgesia; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 355–371. [Google Scholar]
- Monnig, A.A. Practical cid-Babse in veterinary patients. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 1273–1286. [Google Scholar] [CrossRef] [PubMed]
- Dearlove, B.A.; Kind, K.L.; Gatford, K.L.; van Wettere, W.H.E.J. Oral caffeine administered during late gestation increases gestation length and piglet temperature in naturally farrowing sows. Anim. Reprod. Sci. 2018, 198, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Rossor, T.; Bhat, R.; Ali, K.; Peacock, J.; Rafferty, G.F.; Greenough, A. The effect of caffeine on the ventilatory response to hypercarbia in preterm infants. Pediatr. Res. 2018, 83, 1152–1157. [Google Scholar] [CrossRef]
- Carter, A.J.; O’Connor, W.T.; Carter, M.J.; Ungerstedt, U. Caffeine enhances acetylcholine release in the hippocampus in vivo by a selective interaction with adenosine A1 receptors. J. Pharmacol. Exp. Ther. 1995, 273, 637–642. [Google Scholar]
- Fredholm, B.B.; IJzerman, A.P.; Jacobson, K.A.; Klotz, K.N.; Linden, J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 2001, 53, 527–552. [Google Scholar]
- Jacobson, K.A.; Gao, Z.; Matricon, P.; Eddy, M.T.; Carlsson, J. Adenosine A 2A Receptor Antagonists: From Caffeine to Selective Non-xanthines. Br. J. Pharmacol. 2022, 179, 3496–3511. [Google Scholar] [CrossRef] [PubMed]
- Synnes, A.; Grunau, R.E. Neurodevelopmental Outcomes after Neonatal Caffeine Therapy. Semin. Fetal Neonatal Med. 2020, 25, 101160. [Google Scholar] [CrossRef]
- Kourtidou-Papadeli, C.; Papadelis, C.; Louizos, A.-L.; Guiba-Tziampiri, O. Maximum cognitive performance and physiological time trend measurements after caffeine intake. Cogn. Brain Res. 2002, 13, 407–415. [Google Scholar] [CrossRef]
- Ortega, M.E.; Mota-Rojas, D.; Juárez, O.; Villanueva-García, D.; Santiago, P.; Becerril-Herrera, M.; Hernández-González, R.; Mora-Medina, P.; Alonso-Spilsbury, M.; Rosales, A.M.; et al. Porcine neonates failing vitality score: Physio-metabolic profile and latency to the first teat contact. Czech J. Anim. Sci. 2011, 56, 499–508. [Google Scholar] [CrossRef]
- Robertson, S.M.; Friend, M.A.; Doran, G.S.; Edwards, S. Caffeine supplementation of ewes during lambing may increase lamb survival. Animal 2018, 12, 376–382. [Google Scholar] [CrossRef]
- van Dijk, A.J.; van Loon, J.P.A.M.; Taverne, M.A.M.; Jonker, F.H. Umbilical cord clamping in term piglets: A useful model to study perinatal asphyxia? Theriogenology 2008, 70, 662–674. [Google Scholar] [CrossRef]
- Lezama-García, K.; Mota-Rojas, D.; Martínez-Burnes, J.; Villanueva-García, D.; Domínguez-Oliva, A.; Gómez-Prado, J.; Mora-Medina, P.; Casas-Alvarado, A.; Olmos-Hernández, A.; Soto, P.; et al. Strategies for hypothermia compensation in altricial and precocial newborn mammals and their monitoring by infrared thermography. Vet. Sci. 2022, 9, 246. [Google Scholar] [CrossRef] [PubMed]
- Alagbonsi, A.; Salman, T.M.; Salahdeen, H.M.; Alada, A.A. Effects of adenosine and caffeine on blood glucose levels in rats. Niger. J. Exp. Clin. Biosci. 2016, 4, 35–41. [Google Scholar] [CrossRef]
- Mayo Clinic. Diabetes de Tipo 2. Available online: https://www.mayoclinic.org/es/diseases-conditions/type-2-diabetes/symptoms-causes/syc-20351193 (accessed on 9 August 2023).
- Quesnel, H.; Farmer, C.; Devillers, N. Colostrum intake: Influence on piglet performance and factors of variation. Livest. Sci. 2012, 146, 105–114. [Google Scholar] [CrossRef]
- Kanatous, S.B.; Mammen, P.P.A.; Rosenberg, P.B.; Martin, C.M.; White, M.D.; DiMaio, J.M.; Huang, G.; Muallem, S.; Garry, D.J. Hypoxia reprograms calcium signaling and regulates myoglobin expression. Am. J. Physiol. Physiol. 2009, 296, C393–C402. [Google Scholar] [CrossRef]
- Al-Othman, A.; Al-Musharaf, S.; Al-Daghri, N.M.; Yakout, S.; Alkharfy, K.M.; Al-Saleh, Y.; Al-Attas, O.S.; Alokail, M.S.; Moharram, O.; Sabico, S.; et al. Tea and coffee consumption in relation to vitamin D and calcium levels in Saudi adolescents. Nutr. J. 2012, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Villanueva-García, D.; Hernández-Ávalos, I.; Casas-Alvarado, A.; Domínguez-Oliva, A.; Lezama-García, K.; Miranda-Cortés, A.; Martínez-Burnes, J. Cardiorespiratory and neuroprotective effects of caffeine in neonate animal models. Animals 2023, 13, 1769. [Google Scholar] [CrossRef]
- Rasmussen, C.A.F.; Sutko, J.L.; Barry, W.H. Effects of ryanodine and caffeine on contractility, membrane voltage, and calcium exchange in cultured heart cells. Circ. Res. 1987, 60, 495–504. [Google Scholar] [CrossRef]
- Bal, N.C.; Periasamy, M. Uncoupling of sarcoendoplasmic reticulum calcium ATPase pump activity by sarcolipin as the basis for muscle non-shivering thermogenesis. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190135. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.A.; Wouk, J.; Weber, V.M.R.; da Luz Eltchechem, C.; de Almeida, P.; Martins, J.C.L.; Malfatti, C.R.M.; Osiecki, R. Mechanisms and biological effects of Caffeine on substrate metabolism homeostasis: A systematic review. J. Appl. Pharm. Sci. 2017, 7, 215–221. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Martínez-Burnes, J.; Casas-Alvarado, A.; Gómez-Prado, J.; Hernández-Ávalos, I.; Domínguez-Oliva, A.; Lezama-García, K.; Jacome-Romero, J.; Rodríguez-González, D.; Pereira, A.M.F. Clinical usefulness of infrared thermography to detect sick animals: Frequent and current cases. CABI Rev. 2022, 17, 1–27. [Google Scholar] [CrossRef]
- Casas-Alvarado, A.; Mota-Rojas, D.; Hernández-Avalos, I.; Martínez- Burnes, J.; Rosas, M.; Miranda-Cortés, A.E.; Domínguez- Oliva, A.; Mora- Medina, P. Assessment of thermal response, cardiorespiratory parameters and postoperative analgesia in dogs undergoing ovariohysterectomy with different combinations of epidural anesthesia and isoflurane. J. Anim. Behav. Biometeorol. 2023, 11, e2023009. [Google Scholar] [CrossRef]
- Lowe, G.; Sutherland, M.; Waas, J.; Schaefer, A.; Cox, N.; Stewart, M. Infrared thermography—A non-invasive method of measuring respiration rate in calves. Animals 2019, 9, 535. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.; Wilson, M.T.; Schaefer, A.L.; Huddart, F.; Sutherland, M.A. The use of infrared thermography and accelerometers for remote monitoring of dairy cow health and welfare. J. Dairy Sci. 2017, 100, 3893–3901. [Google Scholar] [CrossRef]
Parameter | Treatment | Basal | 1 h | 6 h | 24 h | p-Value |
---|---|---|---|---|---|---|
pH | G1 (Saline) | 7.20 ± 0.005 a,3 | 7.23 ± 0.005 c,2 | 7.22 ± 0.005 b,2 | 7.25 ± 0.005 b,c,1 | 0.006 |
G2 (10 mg/kg) | 7.19 ± 0.008 a,3 | 7.26 ± 0.005 b,2 | 7.29 ± 0.005 a,1 | 7.24 ± 0.008 b,c,2 | 0.001 | |
G3 (20 mg/kg) | 7.21 ± 0.005 a,3 | 7.28 ± 0.005 a,2 | 7.30 ± 0.005 a,1 | 7.27 ± 0.005 b,2 | 0.01 | |
G4 (30 mg/kg) | 7.17 ± 0.006 a,3 | 7.29 ± 0.005 a,2 | 7.30 ± 0.005 a,2 | 7.33 ± 0.006 a,1 | 0.001 | |
p-value | 0.91 | 0.0001 | 0.001 | 0.0001 | ||
pCO2 (mmHg) | G1 (Saline) | 85.93 ± 0.63 a,1 | 82.93 ± 0.63 a,2 | 80.93 ± 0.63 a,3 | 79.93 ± 0.63 a,4 | 0.001 |
G2 (10 mg/kg) | 85.08 ± 0.75 a,1 | 81.93 ± 0.63 b,2 | 79.93 ± 0.63 b,4 | 83.00 ± 0.74 a,3 | 0.005 | |
G3 (20 mg/kg) | 85.25 ± 0.48 a,1 | 80.93 ± 0.63 b,2 | 77.93 ± 0.63 c,2 | 77.13 ± 0.47 a,2 | 0.002 | |
G4 (30 mg/kg) | 87.46 ± 0.58 a,1 | 77.93 ± 0.63 c,2 | 76.95 ± 0.63 c,2 | 60.43 ± 0.59 b,3 | 0.001 | |
p-value | 0.87 | 0.0001 | 0.001 | 0.001 | ||
pO2 (mmHg) | G1 (Saline) | 16.83 ± 0.36 a,2 | 17.83 ± 0.36 c,1 | 17.84 ± 0.36 a,1 | 17.83 ± 0.75 b,1 | 0.0001 |
G2 (10 mg/kg) | 16.98 ± 0.31 a,2 | 19.83 ± 0.36 a,1 | 17.83 ± 0.36 a,2 | 18.00 ± 0.31 b,1 | 0.0001 | |
G3 (20 mg/kg) | 15.82 ± 0.21 a,2 | 18.83 ± 0.36 b,1 | 18.84 ± 0.36 b,1 | 19.82 ± 0.21 a,1 | 0.0001 | |
G4 (30 mg/kg) | 16.44 ± 0.17 a,3 | 18.82 ± 0.36 b,2 | 18.83 ± 0.36 b,2 | 21.06 ± 0.23 a,1 | 0.0001 | |
p-value | 0.52 | 0.0001 | 0.0001 | 0.0005 | ||
HCO3− (mmol/L) | G1 (Saline) | 18.35 ± 0.22 a,1 | 18.36 ± 0.22 b,1 | 18.34 ± 0.22 b,1 | 18.37 ± 0.22 d,1 | 0.99 |
G2 (10 mg/kg) | 18.20 ± 0.16 a,2 | 18.36 ± 0.22 b,2 | 18.35 ± 0.22 b,2 | 19.42 ± 0.16 c,1 | 0.001 | |
G3 (20 mg/kg) | 18.26 ± 0.18 a,2 | 18.36 ± 0.22 b,2 | 18.44 ± 0.22 b,2 | 20.47 ± 0.18 b,1 | 0.001 | |
G4 (30 mg/kg) | 18.22 ± 0.15 a,3 | 18.50 ± 0.22 a,3 | 19.50 ± 0.22 a,2 | 22.22 ± 0.15 a,1 | 0.001 | |
p-value | 0.89 | 0.002 | 0.0001 | 0.0001 |
Parameter | Treatment | Basal | 1 h | 6 h | 24 h | p-Value |
---|---|---|---|---|---|---|
Ca (mmol/L) | G1 (Saline) | 2.21 ± 0.02 a,1 | 2.10 ± 0.02 b,2 | 2.09 ± 0.02 b,2 | 2.08 ± 0.02 d,2 | 0.0001 |
G2 (10 mg/kg) | 2.16 ± 0.01 a,1 | 2.09 ± 0.02 b,1 | 2.08 ± 0.02 b,1 | 2.02 ± 0.01 c,2 | 0.001 | |
G3 (20 mg/kg) | 2.17 ± 0.01 a,1 | 2.07 ± 0.02 a,2 | 2.06 ± 0.02 a,2 | 1.92 ± 0.01 b,3 | 0.03 | |
G4 (30 mg/kg) | 2.08 ± 0.01 a,1 | 2.05 ± 0.02 a,1 | 2.05 ± 0.02 a,1 | 1.80 ± 0.01 a,2 | 0.0001 | |
p-value | 0.92 | 0.0001 | 0.006 | 0.002 | ||
Glucose (mg/dL) | G1 (Saline) | 58.36 ± 0.70 a,3 | 65.36 ± 0.70 d,2 | 66.36 ± 0.70 d,1 | 67.36 ± 0.70 c,1 | 0.0001 |
G2 (10 mg/kg) | 55.88 ± 0.68 a,3 | 67.36 ± 0.70 c,1 | 67.36 ± 0.70 c,1 | 64.88 ± 0.70 d,2 | 0.001 | |
G3 (20 mg/kg) | 56.65 ± 1.25 a,3 | 68.36 ± 0.70 b,2 | 70.36 ± 0.70 b,1 | 69.65 ± 0.70 b,1 | 0.0001 | |
G4 (30 mg/kg) | 57.08 ± 1.18 b,4 | 69.36 ± 0.75 a,3 | 72.36 ± 0.70 a,2 | 97.33 ± 0.70 a,1 | 0.02 | |
p-value | 0.95 | 0.0001 | 0.0001 | 0.007 | ||
Lactate (mg/dL) | G1 (Saline) | 93.97 ± 0.76 a,1 | 91.97 ± 0.76 a,2 | 91.97 ± 0.76 a,2 | 89.97 ± 0.76 a,3 | 0.0001 |
G2 (10 mg/kg) | 96.48 ± 2.09 a,1 | 90.97 ± 0.76 b,1 | 89.97 ± 0.76 b,1 | 84.44 ± 2.09 b,2 | 0.001 | |
G3 (20 mg/kg) | 92.67 ± 0.79 a,1 | 84.97 ± 0.76 d,2 | 82.97 ± 0.76 c,3 | 75.28 ± 0.79 c,4 | 0.001 | |
G4 (30 mg/kg) | 94.69 ± 0.69 a,1 | 82.97 ± 0.76 c,2 | 74.97 ± 0.76 d,3 | 41.69 ± 0.69 d,4 | 0.001 | |
p-value | 0.99 | 0.001 | 0.0001 | 0.006 |
Thermal Window | Treatment | Basal | 1 h | 6 h | 24 h | p-Value |
---|---|---|---|---|---|---|
OCU | G1 (Saline) | 33.63 ± 0.03 a,2 | 32.04 ± 0.03 c,3 | 34.65 ± 0.03 b,1 | 34.79 ± 0.03 b,1 | 0.001 |
G2 (10 mg/kg) | 33.84 ± 0.03 a,3 | 32.14 ± 0.03 b,4 | 34.78 ± 0.03 a,2 | 35.00 ± 0.03 a,1 | 0.001 | |
G3 (20 mg/kg) | 33.58 ± 0.02 a,3 | 32.27 ± 0.02 a,4 | 34.79 ± 0.02 a,2 | 35.03 ± 0.02 a,1 | 0.001 | |
G4 (30 mg/kg) | 33.55 ± 0.02 a,3 | 32.30 ± 0.02 a,4 | 34.80 ± 0.02 a,2 | 35.77 ± 0.02 a,1 | 0.001 | |
p-value | 0.96 | 0.001 | 0.04 | 0.0001 | ||
EAR | G1 (Saline) | 32.54 ± 0.03 a,3 | 30.07 ± 0.03 a,4 | 33.66 ± 0.03 a,2 | 33.91 ± 0.03 c,1 | 0.0001 |
G2 (10 mg/kg) | 32.58 ± 0.03 a,3 | 30.24 ± 0.03 a,4 | 33.73 ± 0.03 a,2 | 33.96 ± 0.03 c,1 | 0.001 | |
G3 (20 mg/kg) | 32.60 ± 0.03 a,3 | 30.30 ± 0.02 b,4 | 33.79 ± 0.02 a,2 | 34.14 ± 0.02 b,1 | 0.001 | |
G4 (30 mg/kg) | 32.49 ± 0.03 a,3 | 30.36 ± 0.03 b,4 | 33.76 ± 0.03 a,2 | 34.90 ± 0.03 a,1 | 0.001 | |
p-value | 0.97 | 0.005 | 0.37 | 0.0005 | ||
NOSE | G1 (Saline) | 22.62 ± 0.11 a,3 | 19.91 ± 0.11 a,4 | 23.30 ± 0.11 b,2 | 26.82 ± 0.11 d,1 | 0.001 |
G2 (10 mg/kg) | 22.70 ± 0.10 a,3 | 19.97 ± 0.10 a,4 | 23.62 ± 0.10 a,b,2 | 29.02 ± 0.10 c,1 | 0.001 | |
G3 (20 mg/kg) | 22.55 ± 0.07 a,3 | 19.94 ± 0.07 a,4 | 23.76 ± 0.07 a,2 | 29.67 ± 0.07 b,1 | 0.001 | |
G4 (30 mg/kg) | 22.53 ± 0.05 a,3 | 20.08 ± 0.05 a,4 | 23.96 ± 0.05 a,2 | 32.29 ± 0.05 a,1 | 0.001 | |
p-value | 0.88 | 0.69 | 0.0001 | 0.0001 | ||
LIMB | G1 (Saline) | 27.19 ± 0.11 a,3 | 24.57 ± 0.11 a,4 | 28.05 ± 0.11 a,2 | 30.42 ± 0.11 c,1 | 0.001 |
G2 (10 mg/kg) | 27.25 ± 0.11 a,3 | 24.64 ± 0.11 a,4 | 28.30 ± 0.11 a,2 | 31.38 ± 0.11 b,1 | 0.001 | |
G3 (20 mg/kg) | 27.06 ± 0.11 a,3 | 24.83 ± 0.11 a,4 | 28.41 ± 0.11 a,2 | 31.70 ± 0.11 b,1 | 0.001 | |
G4 (30 mg/kg) | 27.14 ± 0.11 a,3 | 24.79 ± 0.11 a,4 | 28.62 ± 0.11 a,2 | 33.49 ± 0.11 a,1 | 0.001 | |
p-value | 0.93 | 0.95 | 0.60 | 0.001 |
Treatment | Basal | 1 h | 6 h | 24 h | p-Value |
---|---|---|---|---|---|
G1 (Saline) | 36.18 ± 0.02 a,2 | 36.18 ± 0.01 a,2 | 36.27 ± 0.02 a,1 | 36.28 ± 0.03 c,1 | 0.001 |
G2 (10 mg/kg) | 36.18 ± 0.01 a,2 | 36.18 ± 0.02 a,2 | 36.27 ± 0.01 a,1 | 36.28 ± 0.02 b,1 | 0.001 |
G3 (20 mg/kg) | 36.12 ± 0.02 a,1 | 36.18 ± 0.01 a,2 | 36.27 ± 0.02 a,2 | 36.42 ± 0.01 b,3 | 0.001 |
G4 (30 mg/kg) | 36.14 ± 0.03 a,1 | 36.27 ± 0.02 b,2 | 36.28 ± 0.01 a,2 | 36.94 ± 0.01 a,3 | 0.001 |
p-value | 0.85 | 0.001 | 0.98 | 0.004 |
OCU | NOSE | EAR | LIMB | RT | |
---|---|---|---|---|---|
OCU | 1.00 | 0.68 p = 0.0001 | 0.92 p = 0.0001 | 0.76 p = 0.0001 | 0.26 p = 0.0001 |
NOSE | 0.68 p = 0.0001 | 1.00 | 0.79 p = 0.0001 | 0.84 p = 0.0001 | 0.41 p = 0.0001 |
EAR | 0.92 p = 0.0001 | 0.79 p = 0.0001 | 1.00 | 0.79 p = 0.0001 | 0.29 p = 0.0001 |
LIMB | 0.76 p = 0.0001 | 0.84 p = 0.0001 | 0.79 p = 0.0001 | 1.00 | 0.33 p = 0.0001 |
RT | 0.26 p = 0.0001 | 0.41 p = 0.0001 | 0.29 p = 0.0001 | 0.33 p = 0.0001 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villanueva-García, D.; Ghezzi, M.; Mora-Medina, P.; Hernández-Ávalos, I.; Olmos-Hernández, A.; Casas-Alvarado, A.; Lezama-García, K.; Domínguez-Oliva, A.; Rodríguez-González, D.; Marcet-Rius, M. Caffeine Administration in Piglets with Low Birthweight and Low Vitality Scores, and Its Effect on Physiological Blood Profile, Acid–Base Balance, Gas Exchange, and Infrared Thermal Response. Animals 2023, 13, 3491. https://doi.org/10.3390/ani13223491
Villanueva-García D, Ghezzi M, Mora-Medina P, Hernández-Ávalos I, Olmos-Hernández A, Casas-Alvarado A, Lezama-García K, Domínguez-Oliva A, Rodríguez-González D, Marcet-Rius M. Caffeine Administration in Piglets with Low Birthweight and Low Vitality Scores, and Its Effect on Physiological Blood Profile, Acid–Base Balance, Gas Exchange, and Infrared Thermal Response. Animals. 2023; 13(22):3491. https://doi.org/10.3390/ani13223491
Chicago/Turabian StyleVillanueva-García, Dina, Marcelo Ghezzi, Patricia Mora-Medina, Ismael Hernández-Ávalos, Adriana Olmos-Hernández, Alejandro Casas-Alvarado, Karina Lezama-García, Adriana Domínguez-Oliva, Daniela Rodríguez-González, and Miriam Marcet-Rius. 2023. "Caffeine Administration in Piglets with Low Birthweight and Low Vitality Scores, and Its Effect on Physiological Blood Profile, Acid–Base Balance, Gas Exchange, and Infrared Thermal Response" Animals 13, no. 22: 3491. https://doi.org/10.3390/ani13223491
APA StyleVillanueva-García, D., Ghezzi, M., Mora-Medina, P., Hernández-Ávalos, I., Olmos-Hernández, A., Casas-Alvarado, A., Lezama-García, K., Domínguez-Oliva, A., Rodríguez-González, D., & Marcet-Rius, M. (2023). Caffeine Administration in Piglets with Low Birthweight and Low Vitality Scores, and Its Effect on Physiological Blood Profile, Acid–Base Balance, Gas Exchange, and Infrared Thermal Response. Animals, 13(22), 3491. https://doi.org/10.3390/ani13223491