Inbreeding Depression and Purging for Meat Performance Traits in German Sheep Breeds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Estimated Heritabilities, Residual and Genetic Correlations and (co-)Variances
3.2. Inbreeding Depression for Daily Weight Gain
3.2.1. Individual Rate of Inbreeding
3.2.2. Ancestral and New Inbreeding According to Kalinowski
3.2.3. Interaction of F×Fa_Bal and F
3.3. Inbreeding Depression for the Meatiness Score
3.3.1. Individual Rate of Inbreeding
3.3.2. Ancestral and New Inbreeding According to Kalinowski
3.3.3. Interaction of F×Fa_Bal and F
3.4. Inbreeding Depression for the Ultrasound Muscle Thickness
3.4.1. Individual Rate of Inbreeding
3.4.2. Ancestral and New Inbreeding According to Kalinowski
3.4.3. Interaction of F×Fa_Bal and F
3.5. Inbreeding Depression for the Ultrasound Fat Thickness
3.5.1. Individual Rate of Inbreeding
3.5.2. Ancestral and New Inbreeding According to Kalinowski
3.5.3. Interaction of F×Fa_Bal and F
3.6. Inbreeding Depression by Breeding Directions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Justinski, C.; Wilkens, J.; Distl, O. Genetic Diversity and Trends of Ancestral and New Inbreeding in German Sheep Breeds by Pedigree Data. J. Anim. 2023, 13, 623. [Google Scholar] [CrossRef] [PubMed]
- Boutonnet, J.-P. Perspectives of the sheep meat world market on future production systems and trends. Small Rumin. Res. 1999, 34, 189–195. [Google Scholar] [CrossRef]
- Doekes, H.P.; Bijma, P.; Windig, J.J. How depressing is inbreeding? A meta-analysis of 30 years of research on the effects of inbreeding in livestock. Genes 2021, 12, 926. [Google Scholar] [CrossRef] [PubMed]
- Leroy, G. Inbreeding depression in livestock species: Review and meta-analysis. J. Anim. Breed. Genet. 2014, 45, 618–628. [Google Scholar] [CrossRef]
- Abebe, A.S.; Alemayehu, K.; Johansson, A.M.; Gizaw, S. Breeding practices and trait preferences of smallholder farmers for indigenous sheep in the northwest highlands of Ethiopia: Inputs to design a breeding program. PLoS ONE 2020, 15, e0233040. [Google Scholar] [CrossRef]
- Burke, J.; Apple, J.; Roberts, W.; Boger, C.; Kegley, E. Effect of breed-type on performance and carcass traits of intensively managed hair sheep. Meat Sci. 2003, 63, 309–315. [Google Scholar] [CrossRef]
- Cloete, J.; Hoffman, L.; Cloete, S. A comparison between slaughter traits and meat quality of various sheep breeds: Wool, dual-purpose and mutton. Meat Sci. 2012, 91, 318–324. [Google Scholar] [CrossRef]
- Negussie, E.; Abegaz, S.; Rege, J. Genetic trend and effects of inbreeding on growth performance of tropical fat-tailed sheep. In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002; pp. 19–23. [Google Scholar]
- Van Wyk, J.; Fair, M.; Cloete, S. Case study: The effect of inbreeding on the production and reproduction traits in the Elsenburg Dormer sheep stud. Livest. Sci. 2009, 120, 218–224. [Google Scholar] [CrossRef]
- Pedrosa, V.; Santana, M., Jr.; Oliveira, P.; Eler, J.; Ferraz, J. Population structure and inbreeding effects on growth traits of Santa Inês sheep in Brazil. Small Rumin. Res. 2010, 93, 135–139. [Google Scholar] [CrossRef]
- Borges Barbosa, A.C.; Souza Romano, G.d.; Solar Velarde, J.M.D.; Sterman Ferraz, J.B.; Breno Pedrosa, V.; Batista Pinto, L.F. Pedigree analysis of Santa Inês sheep and inbreeding effects on performance traits. Rev. Mex. Cienc. Pecu. 2020, 11, 590–604. [Google Scholar] [CrossRef]
- Hossein-Zadeh, N.G. Inbreeding effects on body weight traits of Iranian Moghani sheep. Arch. Anim. Breed. 2012, 55, 171–178. [Google Scholar] [CrossRef]
- Dorostkar, M.; Shodja, J.; Rafat, S.; Rokouei, M.; Esfandyari, H. Inbreeding and inbreeding depression in Iranian Moghani sheep breed. J. Agric. Sci. Technol. 2012, 14, 549–556. [Google Scholar]
- Mokhtari, M.; Shahrbabak, M.M.; Esmailizadeh, A.; Shahrbabak, H.M.; Gutierrez, J. Pedigree analysis of Iran-Black sheep and inbreeding effects on growth and reproduction traits. Small Rumin. Res. 2014, 116, 14–20. [Google Scholar] [CrossRef]
- Baneh, H.; Ahmadpanah, J.; Mandal, A. Studies on inbreeding and its effects on growth traits of Iran-Black sheep. Songklanakarin J. Sci. Technol. 2019, 41, 1219–1225. [Google Scholar]
- Yeganehpur, Z.; Roshanfekr, H.; Fayazi, J.; Beyranvand, M.H. Inbreeding depression on growth traits of Iranian Lori sheep. Rev. Colomb. Cienc. Pecu. 2016, 29, 264–273. [Google Scholar] [CrossRef]
- Patiabadi, Z.; Varkoohi, S.; Savar-Sofla, S. Inbreeding and inbreeding depression on body weight in Iranian Shal sheep. Iran. J. Appl. Anim. Sci. 1999, 6, 887–893. [Google Scholar]
- Wiener, G.; Lee, G.; Woolliams, J. Effects of rapid inbreeding and of crossing of inbred lines on the body weight growth of sheep. J. Anim. Sci. 1992, 55, 89–99. [Google Scholar] [CrossRef]
- Erasmus, G.; Van Wyk, J.; Konstantinov, K. Inbreeding in the Elsenburg Dormer sheep stud. S. Afr. J. Anim. Sci. 1993, 23, 77–80. [Google Scholar]
- Norberg, E.; Sørensen, A.C. Inbreeding trend and inbreeding depression in the Danish populations of Texel, Shropshire, and Oxford Down. J. Anim. Sci. 2007, 85, 299–304. [Google Scholar] [CrossRef]
- Hedrick, P.W.; Garcia-Dorado, A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 2016, 31, 940–952. [Google Scholar] [CrossRef]
- Hedrick, P.W. Purging inbreeding depression and the probability of extinction: Full-sib mating. Heredity 1994, 73, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.T.; Pryce, J.E.; Baes, C.; Maltecca, C. Invited review: Inbreeding in the genomics era: Inbreeding, inbreeding depression, and management of genomic variability. J. Dairy Sci. 2017, 100, 6009–6024. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, G.E. Inbreeding and heterosis in animals. J. Anim. Sci. 1973, 1973, 54–77. [Google Scholar] [CrossRef]
- de Cara, M.Á.R.; Villanueva, B.; Toro, M.Á.; Fernández, J. Purging deleterious mutations in conservation programmes: Combining optimal contributions with inbred matings. Heredity 2013, 110, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T.; Luo, Z. Computing inbreeding coefficients in large populations. Genet. Sel. Evol. 1992, 24, 305–313. [Google Scholar] [CrossRef]
- Ballou, J. Ancestral inbreeding only minimally affects inbreeding depression in mammalian populations. Heredity 1997, 88, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, S.T.; Hedrick, P.W.; Miller, P.S. Inbreeding depression in the Speke’s gazelle captive breeding program. Conserv. Biol. 2000, 14, 1375–1384. [Google Scholar] [CrossRef]
- Baumung, R.; Farkas, J.; Boichard, D.; Mészáros, G.; Sölkner, J.; Curik, I. GRAIN: A computer program to calculate ancestral and partial inbreeding coefficients using a gene dropping approach. J. Anim. Breed. 2015, 132, 100–108. [Google Scholar] [CrossRef]
- Boichard, D. Pedig: A fortran package for pedigree analysis suited for large populations. In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002. [Google Scholar]
- Doekes, H.P.; Curik, I.; Nagy, I.; Farkas, J.; Kövér, G.; Windig, J.J. Revised calculation of Kalinowski’s ancestral and new inbreeding coefficients. Diversity 2020, 12, 155. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Cervantes, I.; Goyache, F. Improving the estimation of realized effective population sizes in farm animals. J. Anim. Breed. Genet. 2009, 126, 327–332. [Google Scholar] [CrossRef]
- Groeneveld, E.; Kovac, M.; Mielenz, N. VCE 6.0.2. In Co-Variance Components Estimation Package; Institute of Farm Animal Genetics: Mariensee, Germany, 2008. [Google Scholar]
- Curik, I.; Sölkner, J.; Stipic, N. The influence of selection and epistasis on inbreeding depression estimates. J. Anim. Breed. Genet. 2001, 118, 247–262. [Google Scholar] [CrossRef]
- Croquet, C.; Mayeres, P.; Gillon, A.; Hammami, H.; Soyeurt, H.; Vanderick, S.; Gengler, N. Linear and curvilinear effects of inbreeding on production traits for Walloon Holstein cows. J. Dairy Sci. 2007, 90, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, J.; Siewerdt, F. Consequences of long-term inbreeding accumulation on preweaning traits in a closed nucleus Angus herd. J. Anim. Sci. 2010, 88, 87–95. [Google Scholar] [CrossRef]
- Hamadani, A.; Ganai, N.A.; Khan, N.N.; Shanaz, S.; Ahmad, T. Estimation of genetic, heritability, and phenotypic trends for weight and wool traits in Rambouillet sheep. Small Rumin. Res. 2019, 177, 133–140. [Google Scholar] [CrossRef]
- Miraei-Ashtiani, S.R.; Seyedalian, S.A.R.; Shahrbabak, M.M. Variance components and heritabilities for body weight traits in Sangsari sheep, using univariate and multivariate animal models. Small Rumin. Res. 2007, 73, 109–114. [Google Scholar] [CrossRef]
- Safari, E.; Fogarty, N.; Gilmour, A.R. A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep. Livest. Prod. Sci. 2005, 92, 271–289. [Google Scholar] [CrossRef]
- Snyman, M.; Erasmus, G.; Van Wyk, J.; Olivier, J. Direct and maternal (co) variance components and heritability estimates for body weight at different ages and fleece traits in Afrino sheep. Livest. Prod. Sci. 1995, 44, 229–235. [Google Scholar] [CrossRef]
- Van Wyk, J.; Konstantinov, K.; Erasmus, G. Variance component and heritability estimates of early growth traits in the Elsenburg Dormer sheep stud. S. Afr. J. Anim. Sci. 1993, 23, 72–76. [Google Scholar]
- Vatankhah, M.; Talebi, M. Heritability estimates and correlations between production and reproductive traits in Lori-Bakhtiari sheep in Iran. S. Afr. J. Anim. Sci. 2008, 38, 110–118. [Google Scholar]
- DeRose, M.A.; Roff, D.A. A comparison of inbreeding depression in life-history and morphological traits in animals. Evolution 1999, 53, 1288–1292. [Google Scholar] [CrossRef]
- Chapman, J.; Nakagawa, S.; Coltman, D.; Slate, J.; Sheldon, B. A quantitative review of heterozygosity–fitness correlations in animal populations. Mol. Ecol. 2009, 18, 2746–2765. [Google Scholar] [CrossRef] [PubMed]
- Hill, W.G.; Mackay, T.F.D.S. Falconer and Introduction to quantitative genetics. J. Genet. 2004, 167, 1529–1536. [Google Scholar] [CrossRef] [PubMed]
Code | BD | Breed | Nped | GE | Daily Weight Gain (g/Day) | ||
---|---|---|---|---|---|---|---|
n | Mean ± SD | h2 ± SE | |||||
AST | MON | Alpine Steinschaf | 10,420 | 4.94 | 1047 | 233.51 ± 67.01 | 0.41 ± 0.05 |
BBS | MON | Brown Mountain | 22,961 | 6.22 | 1269 | 286.86 ± 63.75 | 0.51 ± 0.04 |
BDC | EXO | Berrichon du Cher | 4680 | 3.69 | 454 | 359.23 ± 75.24 | 0.66 ± 0.06 |
BLS | CON | Bentheim | 46,173 | 8.91 | 442 | 262.79 ± 63.97 | 0.73 ± 0.07 |
BRI | CON | Carinthian | 10,669 | 4.26 | 800 | 267.93 ± 70.83 | 0.46 ± 0.08 |
CHA | MEA | Charollais | 11,237 | 3.25 | 380 | 339.66 ± 69.03 | 0.62 ± 0.08 |
COF | CON | Coburg | 70,156 | 8.15 | 1544 | 267.4 ± 76.39 | 0.66 ± 0.01 |
DOS | MEA | Dorper | 36,057 | 6.13 | 359 | 272.97 ± 54.84 | 0.34 ± 0.09 |
GGH | HEA | German Grey Heath | 69,369 | 8.57 | 919 | 210.72 ± 42.99 | 0.61 ± 0.06 |
IDF | MEA | Ile-de-France | 14,021 | 4.07 | 673 | 343.39 ± 89.43 | 0.56 ± 0.04 |
KST | MON | Krainer Steinschaf | 9671 | 5.54 | 1023 | 243.06 ± 71.11 | 0.52 ± 0.04 |
LES | CON | Leine | 42,949 | 8.70 | 1617 | 281.12 ± 78.79 | 0.62 ± 0.03 |
MFS | MER | German Mutton Merino | 132,413 | 7.33 | 3387 | 312.51 ± 70.18 | 0.51 ± 0.02 |
MLS | MER | German Merino | 204,494 | 8.52 | 6746 | 388.41 ± 69.79 | 0.53 ± 0.02 |
MLW | MER | Merino Longwool | 61,216 | 6.66 | 569 | 387.61 ± 46.16 | 0.55 ± 0.05 |
OMS | MIL | East Friesian | 71,159 | 9.06 | 1447 | 351.62 ± 78.18 | 0.63 ± 0.03 |
RHO | CON | Rhön | 78,095 | 7.19 | 508 | 273.93 ± 65.49 | 0.72 ± 0.07 |
SKF | MEA | German Blackhead Mutton | 128,839 | 7.91 | 9224 | 399.17 ± 91.19 | 0.39 ± 0.01 |
SUF | MEA | Suffolk | 68,136 | 5.27 | 5759 | 389.82 ± 88.96 | 0.40 ± 0.02 |
TEX | MEA | Texel | 58,223 | 5.79 | 4251 | 371.90 ± 75.77 | 0.36 ± 0.02 |
WAD | CON | Wald | 17,172 | 5.77 | 673 | 212.33 ± 70.97 | 0.59 ± 0.06 |
WBS | MON | White Mountain | 30,188 | 8.20 | 2119 | 303.42 ± 74.93 | 0.49 ± 0.03 |
WGH | HEA | German White Heath | 18,158 | 8.27 | 377 | 188.47 ± 59.45 | 0.75 ± 0.09 |
WHH | HEA | White Polled Heath | 41,306 | 9.94 | 709 | 189.44 ± 43.83 | 0.52 ± 0.06 |
WKF | MEA | German Whitehead Mutton | 38,390 | 7.49 | 1442 | 344.26 ± 72.38 | 0.49 ± 0.03 |
Breed | Meatiness Score (1–9) | Ultrasound Muscle Thickness (mm) | Ultrasound Fat Thickness (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
N | Mean ± SD | h2 ± SE | N | Mean ± SD | h2 ± SE | N | Mean ± SD | h2 ± SE | |
BDC | 333 | 7.76 ± 0.53 | 0.37 ± 0.06 | 343 | 32.13 ± 3.96 | 0.61 ± 0.07 | 343 | 7.26 ± 1.83 | 0.71 ± 0.07 |
CHA | 296 | 7.86 ± 0.74 | 0.42 ± 0.10 | 400 | 32.20 ± 5.53 | 0.54 ± 0.06 | 402 | 6.85 ± 2.60 | 0.68 ± 0.06 |
DOS | 180 | 7.66 ± 0.64 | 0.26 ± 0.10 | 218 | 30.07 ± 3.59 | 0.66 ± 0.08 | 218 | 5.15 ± 1.38 | 0.79 ± 0.08 |
IDF | 349 | 7.78 ± 0.72 | 0.41 ± 0.07 | 379 | 30.97 ± 3.97 | 0.63 ± 0.07 | 377 | 5.95 ± 1.61 | 0.47 ± 0.04 |
LES | 384 | 7.49 ± 0.69 | 0.35 ± 0.05 | 249 | 27.52 ± 3.11 | 0.37 ± 0.06 | 249 | 5.92 ± 1.12 | 0.52 ± 0.05 |
MFS | 2579 | 7.31 ± 0.85 | 0.28 ± 0.02 | 1998 | 27.99 ± 3.60 | 0.43 ± 0.02 | 2022 | 5.82 ± 1.48 | 0.56 ± 0.02 |
MLS | 1178 | 7.72 ± 0.66 | 0.28 ± 0.03 | 1204 | 31.75 ± 6.54 | 0.87 ± 0.02 | 1205 | 7.13 ± 3.15 | 0.86 ± 0.02 |
MLW | 262 | 7.56 ± 0.76 | 0.21 ± 0.05 | 197 | 30.18 ± 3.40 | 0.15 ± 0.05 | 197 | 5.75 ± 1.46 | 0.47 ± 0.05 |
SKF | 6162 | 7.72 ± 0.62 | 0.31 ± 0.01 | 3598 | 29.93 ± 3.80 | 0.68 ± 0.01 | 3612 | 6.66 ± 1.73 | 0.82 ± 0.01 |
SUF | 3766 | 7.80 ± 0.66 | 0.30 ± 0.02 | 4031 | 32.30 ± 4.90 | 0.55 ± 0.02 | 4035 | 6.89 ± 2.35 | 0.38 ± 0.02 |
TEX | 3395 | 7.92 ± 0.57 | 0.27 ± 0.02 | 3945 | 32.65 ± 4.51 | 0.42 ± 0.02 | 3949 | 6.93 ± 2.04 | 0.45 ± 0.02 |
WKF | 1018 | 7.63 ± 0.54 | 0.32 ± 0.05 | 1123 | 31.45 ± 3.95 | 0.46 ± 0.04 | 1127 | 8.01 ± 2.27 | 0.66 ± 0.03 |
Breed | Daily Weight Gain | SE | Meatiness Score | SE | Ultrasound Muscle Thickness | SE | Ultrasound Fat Thickness | SE |
---|---|---|---|---|---|---|---|---|
AST | −219.376 | 176.184 | ||||||
BBS | −158.9950 | 165.840 | ||||||
BDC | −319.017 | 240.206 | 2.332 | 2.926 | −15.580 | 16.799 | −6.048 | 7.851 |
BLS | 539.066 | 971.206 | ||||||
BRI | 139.508 | 164.613 | ||||||
CHA | 231.749 | 190.606 | −2.839 | 2.335 | −11.899 | 16.399 | 5.734 | 7.467 |
COF | −37.209 | 272.417 | ||||||
DOS | 3.339 | 362.405 | 6.766 | 6.501 | 20.845 | 32.880 | 19.039 | 13.786 |
GGH | −382.008 | 427.587 | ||||||
IDF | 22.494 | 115.652 | −0.551 | 2.426 | −5.107 | 6.291 | −3.184 | 2.891 |
KST | −66.466 | 212.277 | ||||||
LES | −69.414 | 228.218 | 7.896 | 7.700 | −20.193 | 41.245 | −4.084 | 16.561 |
MFS | −377.216 * | 163.948 | −4.794 | 2.586 | −4.411 | 12.438 | −7.657 | 4.814 |
MLS | −227.299 | 131.720 | 1.049 | 4.981 | 2.747 | 18.627 | 7.640 | 8.410 |
MLW | −103.540 | 428.835 | −1.217 | 27.450 | 15.815 | 99.626 | 52.397 | 42.627 |
OMS | 192.300 | 318.730 | ||||||
RHO | −446.622 | 367.132 | ||||||
SKF | −386.916 * | 144.517 | −2.881 | 1.791 | −6.310 | 12.242 | −9.162 | 5.699 |
SUF | 6.156 | 85.791 | 1.761 | 1.140 | −2.979 | 6.027 | 3.372 | 2.650 |
TEX | −169.506 | 116.667 | −1.652 | 1.666 | −7.008 | 9.174 | 4.096 | 3.719 |
WAD | −29.694 | 174.123 | ||||||
WBS | −169.948 | 353.251 | ||||||
WGH | −1384.466 | 1051.883 | ||||||
WHH | −178.101 | 681.530 | ||||||
WKF | −83.477 | 220.721 | −5.723 * | 2.484 | −10.765 | 18.547 | −12.346 | 12.341 |
Model | Daily Weight Gain | Meatiness Score | Ultrasound Muscle Thickness | Ultrasound Fat Thickness | ||
---|---|---|---|---|---|---|
Number of breeds | 25 | 12 | 12 | 12 | ||
3 | ΔFi | Mean | −146.9863 | 0.0122 | −3.7372 | 4.1497 |
SD | 339.1584 | 4.2035 | 11.9692 | 17.5269 | ||
SE | 67.8317 | 1.2135 | 3.4552 | 5.0596 | ||
95% CI | 231.7485 | 7.8960 | 20.8445 | 52.3974 | ||
5% CI | −446.6217 | −5.7226 | −20.1934 | −12.3457 | ||
p-Value | 0.0404 | 0.9921 | 0.3026 | 0.4295 | ||
4 | Fa_Kal | Mean | 81.5307 | −1.1107 | −3.5346 | 12.2960 |
SD | 884.5720 | 4.9456 | 74.4273 | 39.3548 | ||
SE | 176.9144 | 1.4277 | 21.4853 | 11.3607 | ||
95% CI | 1298.9443 | 9.6708 | 192.4876 | 135.1629 | ||
5% CI | −1119.8257 | −9.4966 | −138.4772 | −16.3338 | ||
p-Value | 0.6491 | 0.4530 | 0.8723 | 0.3023 | ||
4 | Fa_New | Mean | −45.7366 | −0.2796 | −2.2528 | −0.6576 |
SD | 154.9961 | 1.5670 | 6.7777 | 2.9451 | ||
SE | 30.9992 | 0.4524 | 1.9565 | 0.8502 | ||
95% CI | 163.3335 | 3.7482 | 6.8386 | 4.1681 | ||
5% CI | −374.8156 | −2.3767 | −19.5289 | −6.4020 | ||
p-Value | 0.1531 | 0.5491 | 0.2740 | 0.4556 | ||
5 | F | Mean | −28.9572 | −0.2056 | −1.7407 | 0.6327 |
SD | 58.1952 | 1.0825 | 4.2869 | 3.4869 | ||
SE | 11.6390 | 0.3125 | 1.2375 | 1.0066 | ||
95% CI | 59.0253 | 1.3965 | 5.6505 | 9.9859 | ||
5% CI | −141.7366 | −2.1999 | −8.7675 | −2.5614 | ||
p-Value | 0.0202 | 0.5241 | 0.1872 | 0.5425 | ||
5 | F×Fa_Bal | Mean | 801.0222 | −7.6659 | 102.9336 | 21.4346 |
SD | 4148.0000 | 23.6919 | 347.1661 | 112.0924 | ||
SE | 829.6284 | 6.8393 | 100.2182 | 32.3583 | ||
95% CI | 3549.2470 | 34.8358 | 1182.0997 | 373.6340 | ||
5% CI | −2919.4690 | −64.9516 | −121.5639 | −47.3431 | ||
p-Value | 0.3439 | 0.2862 | 0.3264 | 0.5213 |
Model | Daily Weight Gain | Meatiness Score | Ultrasound Muscle Thickness | Ultrasound Fat Thickness | ||
---|---|---|---|---|---|---|
Number of breeds | 25 | 12 | 12 | 12 | ||
3 | ΔFi/mean | Mean | −0.6121 | 0.0016 | −0.1222 | 0.7929 |
Median | −0.2735 | −0.1158 | −0.1879 | −0.0227 | ||
SD | 1.6100 | 0.5549 | 0.4002 | 3.002 | ||
SE | 0.3220 | 0.1602 | 0.1155 | 0.8666 | ||
95% CI | 0.6823 | 1.0539 | 0.6933 | 9.1162 | ||
5% CI | −1.8128 | −0.7502 | −0.7338 | −1.5407 | ||
Skewness | −3.0729 | 0.6818 | 0.8809 | 2.2538 | ||
Kurtosis | 13.4433 | −0.0660 | 0.7707 | 5.5839 | ||
p-Value | 0.0694 | 0.9923 | 0.3126 | 0.3798 | ||
3 | ΔFi/σP | Mean | −2.9855 | −0.0348 | −1.2018 | 2.7371 |
Median | −2.3955 | −1.2395 | −1.9737 | 0.1399 | ||
SD | 6.6259 | 6.6269 | 3.7540 | 12.7208 | ||
SE | 1.3252 | 1.9130 | 1.0837 | 3.6722 | ||
95% CI | 4.2630 | 11.5175 | 6.0817 | 38.3887 | ||
5% CI | −11.2270 | −10.6266 | −7.1350 | −7.5415 | ||
Skewness | −1.7125 | 0.4588 | 0.8607 | 2.2837 | ||
Kurtosis | 6.5279 | −0.2610 | 0.8097 | 5.9547 | ||
p-Value | 0.0337 | 0.9858 | 0.2911 | 0.4717 | ||
3 | ΔFi/σA | Mean | −3.9845 | −0.1044 | −1.3419 | 4.0202 |
Median | −3.2324 | −2.5247 | −2.7402 | −0.0684 | ||
SD | 8.0286 | 11.9353 | 6.5320 | 17.8301 | ||
SE | 1.6057 | 3.4454 | 1.8856 | 5.1471 | ||
95% CI | 5.3994 | 20.7801 | 13.9784 | 55.8558 | ||
5% CI | −14.3202 | −19.0753 | −11.7174 | −9.5718 | ||
Skewness | −1.3538 | 0.4687 | 1.1816 | 2.5572 | ||
Kurtosis | 4.6147 | −0.2423 | 2.3159 | 7.3876 | ||
p-Value | 0.0205 | 0.9764 | 0.4915 | 0.4512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Justinski, C.; Wilkens, J.; Distl, O. Inbreeding Depression and Purging for Meat Performance Traits in German Sheep Breeds. Animals 2023, 13, 3547. https://doi.org/10.3390/ani13223547
Justinski C, Wilkens J, Distl O. Inbreeding Depression and Purging for Meat Performance Traits in German Sheep Breeds. Animals. 2023; 13(22):3547. https://doi.org/10.3390/ani13223547
Chicago/Turabian StyleJustinski, Cathrin, Jens Wilkens, and Ottmar Distl. 2023. "Inbreeding Depression and Purging for Meat Performance Traits in German Sheep Breeds" Animals 13, no. 22: 3547. https://doi.org/10.3390/ani13223547
APA StyleJustinski, C., Wilkens, J., & Distl, O. (2023). Inbreeding Depression and Purging for Meat Performance Traits in German Sheep Breeds. Animals, 13(22), 3547. https://doi.org/10.3390/ani13223547