Hemoparasites Do Not Affect Life-History Traits and Cellular Immune Response in Treefrog Hosts Boana cordobae
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Frog Collection and Processing
2.2. Microscopical Screening of Blood Smears
2.3. Skeletochronological Age Determination
2.4. Data Analysis
3. Results
3.1. Taxonomic Assessment and Features of Hemoparasites
3.2. Leukocyte Profiles
3.3. Influence of Hemoparasites on Life-History Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stuart, S.N.; Chanson, J.S.; Cox, N.A.; Young, B.E.; Rodrigues, A.S.L.; Fischman, D.L.; Waller, R.W. Status and trends of amphibian declines and extinctions worldwide. Science 2004, 306, 1783–1786. [Google Scholar] [CrossRef] [PubMed]
- Grant, E.H.C.; Miller, D.A.W.; Schmidt, B.R.; Adams, M.J.; Amburgey, S.M.; Chambert, T.; Cruickshank, S.S.; Fisher, R.N.; Green, D.M.; Hossack, B.R.; et al. Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines. Sci. Rep. 2016, 6, 25625. [Google Scholar] [CrossRef]
- Hof, C.; Araujo, M.B.; Jetz, W.; Rahbek, C. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 2011, 480, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Koprivnikar, J.; Marcogliese, D.J.; Rohr, J.R.; Orlofske, S.A.; Raffel, T.R.; Johnson, P.T.J. Macroparasite Infections of Amphibians: What Can They Tell Us? EcoHealth 2012, 9, 342–360. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.A.; Skerratt, L.F. Predicting Wild Hosts for Amphibian Chytridiomycosis: Integrating Host Life-History Traits with Pathogen Environmental Requirements. Hum. Ecol. Risk Assess. Int. J. 2012, 18, 200–224. [Google Scholar] [CrossRef]
- Spitzen-van der Sluijs, A.; van den Broek, J.; Kik, M.; Martel, A.; Janse, J.; van Asten, F.; Pasmans, F.; Grone, A.; Rijks, J.M. Monitoring ranavirus-associated mortality in a Dutch heathland in the aftermath of a ranavirus disease outbreak. J. Wildl. Dis. 2016, 52, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Azat, C.; Alvarado-Rybak, M.; Solano-Iguaran, J.J.; Velasco, A.; Valenzuela-Sánchez, A.; Flechas, S.V.; Peñafiel-Ricaurte, A.; Cunningham, A.A.; Bacigalupe, L.D. Synthesis of Batrachochytrium dendrobatidis infection in South America: Amphibian species under risk and areas to focus research and disease mitigation. Ecography 2022, 2022, e05977. [Google Scholar] [CrossRef]
- Towe, A.E.; Gray, M.J.; Carter, E.D.; Wilber, M.Q.; Ossiboff, R.J.; Ash, K.; Bohanon, M.; Bajo, B.A.; Miller, D.L. Batrachochytrium salamandrivorans Can Devour More than Salamanders. J. Wildl. Dis. 2021, 57, 942–948. [Google Scholar] [CrossRef]
- Bower, D.S.; Brannelly, L.A.; McDonald, C.A.; Webb, R.J.; Greenspan, S.E.; Vickers, M.; Gardner, M.G.; Greenlees, M.J. A review of the role of parasites in the ecology of reptiles and amphibians. Aust. Ecol. 2019, 44, 433–448. [Google Scholar] [CrossRef]
- Davies, A.J.; Johnston, M.R.L. The biology of some intraerythrocytic parasites of fishes, amphibia and reptiles. Adv. Parasitol. 2000, 45, 1–107. [Google Scholar]
- Duszynski, D.W.; Bolek, M.G.; Upton, S.J. Coccidia (Apicomplexa: Eimeriidae) of amphibians of the world. Zootaxa 2007, 1667, 1–77. [Google Scholar]
- Densmore, C.L.; Green, D.E. Diseases of amphibians. ILAR J. 2007, 48, 235–254. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.; Campaner, M.; Viola, L.B.; Takata, C.S.d.A.; Takeda, G.; Teixeira, M.M.G. Morphological and molecular diversity and phylogenetic relationships among anuran trypanosomes from the Amazonia, Atlantic Forest and Pantanal biomes in Brazil. Parasitology 2007, 134, 1623–1638. [Google Scholar] [CrossRef]
- Leal, D.D.M.; Dreyer, C.S.; da Silva, R.J.; Ribolla, P.E.M.; Paduan, K.D.; Bianchi, I.; O’Dwyer, L.H. Characterization of Hepatozoon spp. in Leptodactylus chaquensis and Leptodactylus podicipinus from two regions of the Pantanal, state of Mato Grosso do Sul, Brazil. Parasitol. Res. 2015, 114, 1541–1549. [Google Scholar] [CrossRef]
- Netherlands, E.C.; Cook, C.A.; Kruger, D.J.D.; du Preez, L.H.; Smit, N.J. Biodiversity of frog haemoparasites from sub-tropical northern KwaZulu-Natal, South Africa. Int. J. Parasitol. Parasites Wildl. 2015, 4, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Bilhalva, L.C.; de Almeida, B.A.; Colombo, P.; de Faria Valle, S.; Soares, J.F. Hematologic variables of free-living Leptodactylus luctator with and without hemoparasites and thrombidiform mites in southern Brazil. Vet. Parasitol. Reg. Stud. 2023, 38, 100834. [Google Scholar] [CrossRef] [PubMed]
- Barta, J.R.; Desser, S.S. Blood parasites of amphibians from Algonquin Park, Ontario. J. Wildl. Dis. 1984, 20, 180–189. [Google Scholar] [CrossRef]
- Barta, J.R. The Dactylosomatidae. J. Adv. Parasitol. 1991, 30, 1–37. [Google Scholar] [CrossRef]
- Barnard, S.M.; Upton, S.J. A Veterinary Guide to the Parasites of Reptiles; Protozoa; Krieger Publishing Company: Malabar, FL, USA, 1994; Volume 1. [Google Scholar]
- Spodareva, V.V.; Grybchuk-Ieremenko, A.; Losev, A.; Votýpka, J.; Lukeš, J.; Yurchenko, V.; Kostygov, A.Y. Diversity and evolution of anuran trypanosomes: Insights from the study of European species. Parasites Vectors 2018, 11, 447. [Google Scholar] [CrossRef] [PubMed]
- Mutschmann, F. Erkrankungen der Amphibien; Georg Thieme Verlag: New York, NY, USA, 2010; p. 344. [Google Scholar]
- Franca, C. Le Trypanosoma inopinatum. Arch. Protistenk. 1915, 36, 1–12. [Google Scholar]
- Willette-Frahm, M.; Wright, K.M.; Thode, B.C. Select Protozoal Diseases in Amphibians and Reptiles: A Report for the Infectious Diseases Committee, American Association of Zoo Veterinarians. Bull. Assoc. Reptil. Amphib. Vet. 1995, 5, 19–29. [Google Scholar] [CrossRef]
- Wright, K.M. Overview of amphibian medicine. In Reptile Medicine and Surgery; Saunders: St. Louis, MO, USA, 2006; Volume 2, pp. 941–971. [Google Scholar]
- Johnson, R.N.; Young, D.G.; Butler, J.F. Trypanosome Transmission by Corethrella wirthi (Diptera, Chaoboridae) to the Green Treefrog, Hyla cinerea (Anura, Hylidae). J. Med. Entomol. 1993, 30, 918–921. [Google Scholar] [CrossRef] [PubMed]
- Bernal, X.E.; de Silva, P. Cues used in host-seeking behavior by frog-biting midges (Corethrella spp. Coquillet). J. Vector Ecol. 2015, 40, 122–128. [Google Scholar] [CrossRef]
- Bernal, X.E.; Pinto, C.M. Sexual differences in prevalence of a new species of trypanosome infecting tungara frogs. Int. J. Parasitol. Parasites Wildl. 2016, 5, 40–47. [Google Scholar] [CrossRef]
- Calil, P.R.; Gonzalez, I.H.L.; Salgado, P.; Cruz, J.d.; Ramos, P.L.; Chagas, C.R.F. Hemogregarine parasites in wild captive animals, a broad study in São Paulo Zoo. J. Entomol. Zool. Stud. 2017, 5, 1378–1387. [Google Scholar]
- Coêlho, T.A.; De Souza, D.C.; da Costa Oliveira, E.; Correa, L.L.; Viana, L.A.; Kawashita-Ribeiro, R.A. Haemogregarine of Genus Dactylosoma (Adeleorina: Dactylosomatidae) in Species of Rhinella (Anura: Bufonidae) from the Brazilian Amazon. Acta Parasitol. 2021, 66, 1574–1580. [Google Scholar] [CrossRef] [PubMed]
- Cotes-Perdomo, A.; Santodomingo, A.; Castro, L.R. Hemogregarine and Rickettsial infection in ticks of toads from northeastern Colombia. Int. J. Parasitol. Parasites Wildl. 2018, 7, 237–242. [Google Scholar] [CrossRef]
- González, L.P.; Vargas-Leon, C.M.; Fuentes-Rodriguez, G.A.; Calderon-Espinosa, M.L.; Matta, N.E. Do blood parasites increase immature erythrocytes and mitosis in amphibians? Rev. Biol. Trop. 2021, 69, 615–625. [Google Scholar] [CrossRef]
- Davis, A.K.; Maney, D.L.; Maerz, J.C. The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists. Funct. Ecol. 2008, 22, 760–772. [Google Scholar] [CrossRef]
- Davis, A.K.; Hopkins, W.A. Widespread trypanosome infections in a population of eastern hellbenders (Cryptobranchus alleganiensis alleganiensis) in Virginia, USA. Parasitol. Res. 2013, 112, 453–456. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.K.; Golladay, C. A survey of leukocyte profiles of red-backed salamanders from Mountain Lake, Virginia, and associations with host parasite types. Comp. Clin. Path. 2019, 28, 1743–1750. [Google Scholar] [CrossRef]
- Allender, M.C.; Fry, M.M. Amphibian Hematology. Vet. Clin. N. Am. Exot. Anim. Pract. 2008, 11, 463–480. [Google Scholar] [CrossRef]
- Bain, P.; Harr, K.E. Hematology of Amphibians. In Schalm’s Veterinary Hematology; Wiley: Hoboken, NJ, USA, 2022; pp. 1228–1232. [Google Scholar] [CrossRef]
- Davis, A.K.; Maney, D.L. The use of glucocorticoid hormones or leucocyte profiles to measure stress in vertebrates: What’s the difference? Methods Ecol. Evol. 2018, 9, 1556–1568. [Google Scholar] [CrossRef]
- Goessling, J.M.; Kennedy, H.; Mendonça, M.T.; Wilson, A.E. A meta-analysis of plasma corticosterone and heterophil:lymphocyte ratios—Is there conservation of physiological stress responses over time? Funct. Ecol. 2015, 29, 1189–1196. [Google Scholar] [CrossRef]
- Barrio, A. Las subespecies de Hyla pulchella Dumeril y Bibron (Anura, Hylidae). Physis 1965, 25, 115–128. [Google Scholar]
- Cei, J.M. Amphibians of Argentina. Monit. Zool. Ital. N.S. Monogr. 1980, 2, 1–609. [Google Scholar]
- Faivovich, J.; García, P.C.A.; Ananias, F.; Lanari, L.; Basso, N.G.; Wheeleri, W.C. A molecular perspective on the phylogeny of the Hyla pulchella species group (Anura, Hylidae). Mol. Phyl. Evol. 2004, 32, 938–950. [Google Scholar] [CrossRef] [PubMed]
- Dubois, A. The nomenclatural status of Hysaplesia, Hylaplesia, Dendrobates and related nomina (Amphibia, Anura), with general comments on zoological nomenclature and its governance, as well as on taxonomic databases and websites. Bionomina 2017, 11, 1–48. [Google Scholar] [CrossRef]
- Ferro, J.M.; Cardozo, D.E.; Suárez, P.; Boeris, J.M.; Blasco-Zúñiga, A.; Barbero, G.; Gomes, A.; Gazoni, T.; Costa, W.; Nagamachi, C.Y.; et al. Chromosome evolution in Cophomantini (Amphibia, Anura, Hylinae). PLoS ONE 2018, 13, e0192861. [Google Scholar] [CrossRef]
- Baraquet, M.; Otero, M.A.; Grenat, P.R.; Babini, M.S.; Martino, A.L. Effect to age on the geographic variation in morphometric traits among populations of Boana cordobae (Anura: Hylidae). Rev. Biol. Trop. 2018, 66, 1401–1411. [Google Scholar] [CrossRef]
- Otero, M.A.; Baraquet, M.; Pollo, F.; Grenat, P.; Salas, N.E.; Martino, A.L. Sexual Size Dimorphism in Relation to Age and Growth in Hypsiboas cordobae (Anura: Hylidae) from Córdoba, Argentina. Herpetol. Conserv. Biol. 2017, 12, 141–148. [Google Scholar]
- Baraquet, M.; Otero, M.A.; Valetti, J.A.; Grenat, P.R.; Martino, A.L. Age, Body Size, And growth of Boana cordobae (Anura: Hylidae) along an elevational gradient in Argentina. Herpetol. Conserv. Biol. 2018, 13, 391–398. [Google Scholar]
- di Tada, I.E.; Zavattieri, M.V.; Martino, A.L. Análisis estructural del canto nupcial de Hyla pulchella cordobae (Amphibia: Hylidae) en la provincia de Córdoba (Argentina). Rev. Esp. Herp. 1996, 10, 7–11. [Google Scholar]
- Baraquet, M.; Salas, N.E.; Martino, A.L. Advertisement Calls and Interspecific Variation in Hypsiboas cordobae and Hypsiboas pulchellus (Anura, Hylidae) from Central Argentina. Acta Zool. Bulg. 2013, 65, 479–486. [Google Scholar]
- Baraquet, M.; Grenat, P.; Salas, N.; Martino, A. Geographic variation in the advertisement call of Hypsiboas cordobae (Anura, Hylidae). Acta Ethol. 2015, 18, 79–86. [Google Scholar] [CrossRef]
- Pollo, F.E.; Cibils, M.L.; Bionda, C.L.; Salas, N.E.; Martino, A.L. Trophic ecology of syntopic anuran larvae, Rhinella arenarum (Anura: Bufonidae) and Hypsiboas cordobae (Anura: Hylidae): Its relation to the structure of periphyton. Ann. Limnol. Int. J. Lim. 2015, 51, 211–217. [Google Scholar] [CrossRef]
- Pollo, F.E.; Cibils-Martina, L.; Otero, M.A.; Baraquet, M.; Grenat, P.R.; Salas, N.E.; Martino, A.L. Anuran tadpoles inhabiting a fluoride-rich stream: Diets and morphological indicators. Heliyon 2019, 5, e02003. [Google Scholar] [CrossRef]
- Pollo, F.E.; Grenat, P.R.; Otero, M.A.; Salas, N.E.; Martino, A.L. Assessment in situ of genotoxicity in tadpoles and adults of frog Hypsiboas cordobae (Barrio 1965) inhabiting aquatic ecosystems associated to fluorite mine. Ecotoxicol. Environ. Saf. 2016, 133, 466–474. [Google Scholar] [CrossRef] [PubMed]
- de la Navarre, B. Common Parasitic Diseases of Reptiles and Amphibians. In Proceedings of CVC in San Diego, 2008. Available online: https://www.dvm360.com/view/common-parasitic-diseases-reptiles-amphibians-proceedings (accessed on 1 September 2023).
- Nöller, H.G. Eine einfache Technik der Blutentnahme beim Frosch. Pflügers Arch. Physiol. 1959, 269, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Dacie, S.J.; Lewis, S.M. Practical Haematology, 8th ed.; Churchill & Livingstone: Edinburgh, Scotland, 1995. [Google Scholar]
- Pessier, A.P. Cytologic diagnosis of disease in amphibians. Vet. Clin. Exot. Anim. Pract. 2007, 10, 187–206. [Google Scholar] [CrossRef]
- Bardsley, J.; Harmsen, R. The trypanosomes of anura. J. Adv. Parasitol. 1973, 11, 1–73. [Google Scholar]
- Manwell, R.D. The Genus Dactylosoma. J. Protozool. 1964, 11, 526–530. [Google Scholar] [CrossRef]
- Smith, T.G. The genus Hepatozoon (Apicomplexa: Adeleina). J. Parasitol. 1996, 82, 565–585. [Google Scholar] [CrossRef]
- Desser, S.S. The blood parasites of anurans from Costa Rica with reflections on the taxonomy of their trypanosomes. J. Parasitol. 2001, 87, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Žičkus, T. The First Data on the Fauna and Distribution of Blood Parasites of Amphibians in Lithuania. Acta Zool. Litu. 2002, 12, 197–202. [Google Scholar] [CrossRef]
- Bush, A.; Lafferty, K.; Lotz, J.; Shostak, A. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 1997, 83, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Castanet, J.; Francillon-Vieillot, H.; Meunier, F.J.; de Ricqles, A. Bone and individual aging. In Bone Growth; Hall, B.K., Ed.; CRC Press: Boca Raton, FL, USA, 1993; Volume 7, pp. 245–283. [Google Scholar]
- Sinsch, U. Review: Skeletochronological assessment of demographic life-history traits in amphibians. Herpetol. J. 2015, 25, 5–13. [Google Scholar]
- Lai, Y.C.; Lee, T.H.; Kam, Y.C. A skeletochronological study on a subtropical, riparian ranid (Rana swinhoana) from different elevations in Taiwan. Zool. Sci. 2005, 22, 653–658. [Google Scholar] [CrossRef] [PubMed]
- von Bertalanffy, L. A quantitative theory of organic growth (Inquires on growth laws. II). Hum. Biol. 1938, 10, 181–213. [Google Scholar]
- Băncilă, R.I.; Hartel, T.; Plaiasu, R.; Smets, J.; Cogălniceanu, D. Comparing three body condition indices in amphibians: A case study of yellow-bellied toad Bombina variegata. Amphib. Reptil. 2010, 31, 558–562. [Google Scholar] [CrossRef]
- Cabagna-Zenklusen, M.C.; Lajmanovich, R.C.; Peltzer, P.M.; Attademo, A.M.; Fiorenza Biancucci, G.S.; Bassó, A. Primeros registros de endoparásitos en cinco especies de anfibios anuros del litoral argentino. Cuad. herpetol. 2009, 23, 33–40. [Google Scholar]
- Pinho, S.R.C.; Rodriguez-Malaga, S.; Lozano-Osorio, R.; Correa, F.S.; Silva, I.B.; Santos-Costa, M.C. Effects of the habitat on anuran blood parasites in the Eastern Brazilian Amazon. An. Acad. Bras. Cienc. 2021, 93, e20201703. [Google Scholar] [CrossRef] [PubMed]
- Sailasuta, A.; Satetasit, J.; Chutmongkonkul, M. Pathological study of blood parasites in rice field frogs, Hoplobatrachus rugulosus (Wiegmann, 1834). Vet. Med. Int. 2011, 2011, 850568. [Google Scholar] [CrossRef] [PubMed]
- da Costa, S.C.G.; Pereira, N.d.M. Lankesterella alencari n. sp., a toxoplasma-like organism in the central nervous system of Amphibia (Protozoa, Sporozoa). Mem. Inst. Oswaldo Cruz 1971, 69, 397–411. [Google Scholar] [CrossRef]
- Úngari, L.P.; Netherlands, E.C.; Santos, A.L.Q.; de Alcantara, E.P.; Emmerich, E.; da Silva, R.J.; O’Dwyer, L.H. Diversity of Haemogregarine Parasites Infecting Brazilian Anurans, with a Description of New Species of Dactylosoma (Apicomplexa: Adeleorina: Dactylosomatidae). Acta Parasitol. 2022, 67, 1740–1755. [Google Scholar] [CrossRef]
- Davis, A.K.; Keel, M.K.; Ferreira, A.; Maerz, J.C. Effects of chytridiomycosis on circulating white blood cell distributions of bullfrog larvae (Rana catesbeiana). Comp. Clin. Path. 2010, 19, 49–55. [Google Scholar] [CrossRef]
- Salinas, Z.A.; Biole, F.G.; Grenat, P.R.; Pollo, F.E.; Salas, N.E.; Martino, A.L. First report of Lernaea cyprinacea (Copepoda: Lernaeidae) in tadpoles and newly-metamorphosed frogs in wild populations of Lithobates catesbeianus (Anura: Ranidae) in Argentina. Phyllomedusa 2016, 15, 43–50. [Google Scholar] [CrossRef]
- Oppliger, A.; Celerier, M.; Clobert, J. Physiological and behaviour changes in common lizards parasitized by haemogregarines. Parasitology 1996, 113, 433–438. [Google Scholar] [CrossRef]
- Martín, J.; Amo, L.; López, P. Parasites and health affect multiple sexual signals in male common wall lizards, Podarcis muralis. Naturwissenschaften 2008, 95, 293–300. [Google Scholar] [CrossRef]
- Brown, G.; Shilton, C.; Shine, R. Do parasites matter? Assessing the fitness consequences of haemogregarine infection in snakes. Can. J. Zool. 2006, 84, 668–676. [Google Scholar] [CrossRef]
- Mock, B.A.; Gill, P. The infrapopulation dynamics of trypanosomes in red-spotted newts. Parasitology 1984, 88, 267–282. [Google Scholar] [CrossRef]
- Ramos, B.; Urdaneta-Morales, S. Hematophagous insects as vectors for frog trypanosomes. Rev. Biol. Trop. 1977, 25, 209–217. [Google Scholar]
- Ferguson, L.V.; Smith, T.G. Reciprocal trophic interactions and transmission of blood parasites between mosquitoes and frogs. Insects 2012, 3, 410–423. [Google Scholar] [CrossRef] [PubMed]
- Toledo, L.F.; Ruggeri, J.; de Campos, L.L.F.; Martins, M.; Neckel-Oliveira, S.; Breviglieri, C.P.B. Midges not only sucks, but may carry lethal pathogens to wild amphibians. Biotropica 2021, 53, 722–725. [Google Scholar] [CrossRef]
- Legett, H.D.; Aihara, I.; Bernal, X.E. Within host acoustic signal preference of frog-biting mosquitoes (Diptera: Culicidae) and midges (Diptera: Corethrellidae) on Iriomote Island, Japan. Entomol. Sci. 2021, 24, 116–122. [Google Scholar] [CrossRef]
Hemoparasites | Prevalence (%) | Intensity (Range) | Mean Intensity (n ± SE) | ANOVA |
---|---|---|---|---|
Intraerythrocytic (Dactylosoma) | ||||
Males | 72 | 1–40 | 10.5 ± 2.3 | p = 0.9841 |
Female | 60 | 1–22 | 8.7 ± 6.7 | |
All adults | 70 | 1–40 | 10.3 ± 2.2 | |
Extracellular (Trypanosoma) | ||||
Males | 69 | 1–50 | 10.0 ± 2.5 | p = 0.0907 |
Female | 100 | 2–28 | 8.6 ± 5.0 | |
All adults | 73 | 1–50 | 9.8 ± 2.2 |
Leukocytes [%] | Parasite-Free Individuals (n = 7) | Infected Individuals (D) (n = 3) | Infected Individuals (T) (n = 4) | Infected Individuals (D + T) (n = 23) | ANOVA |
---|---|---|---|---|---|
Lymphocytes | 94.1 | 89.4 | 89.3 | 89.9 | p = 0.5994 |
Neutrophils | 3.3 | 6.6 | 5.6 | 5.2 | p = 0.5269 |
Eosinophils | 0.9 | 2.3 | 2.0 | 2.6 | p = 0.4838 |
Basophils | 0.6 | 0.3 | 2.7 | 1.2 | p = 0.0288 |
Monocytes | 1.1 | 1.3 | 0.5 | 0.3 | p = 0.6328 |
N/L ratio | 0.036 | 0.063 | 0.076 | 0.066 | p = 0.8610 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pollo, F.; Salinas, Z.; Baraquet, M.; Otero, M.A.; Grenat, P.R.; Salas, N.; Martino, A.L.; Sinsch, U. Hemoparasites Do Not Affect Life-History Traits and Cellular Immune Response in Treefrog Hosts Boana cordobae. Animals 2023, 13, 3566. https://doi.org/10.3390/ani13223566
Pollo F, Salinas Z, Baraquet M, Otero MA, Grenat PR, Salas N, Martino AL, Sinsch U. Hemoparasites Do Not Affect Life-History Traits and Cellular Immune Response in Treefrog Hosts Boana cordobae. Animals. 2023; 13(22):3566. https://doi.org/10.3390/ani13223566
Chicago/Turabian StylePollo, Favio, Zulma Salinas, Mariana Baraquet, Manuel A. Otero, Pablo R. Grenat, Nancy Salas, Adolfo L. Martino, and Ulrich Sinsch. 2023. "Hemoparasites Do Not Affect Life-History Traits and Cellular Immune Response in Treefrog Hosts Boana cordobae" Animals 13, no. 22: 3566. https://doi.org/10.3390/ani13223566
APA StylePollo, F., Salinas, Z., Baraquet, M., Otero, M. A., Grenat, P. R., Salas, N., Martino, A. L., & Sinsch, U. (2023). Hemoparasites Do Not Affect Life-History Traits and Cellular Immune Response in Treefrog Hosts Boana cordobae. Animals, 13(22), 3566. https://doi.org/10.3390/ani13223566