Evaluation of the Application Value of Cottonseed Protein Concentrate as a Feed Protein Source in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Analysis of Chemical Composition, Energy, and Ileal Digestibility of CPC
2.2.1. Chemical Composition
2.2.2. Apparent Metabolizable Energy and Net Energy
2.2.3. Ileal Digestibility
2.3. Animals and Diets
2.4. Performance Parameters
2.5. Blood Sample Collection and Analysis
2.6. Statistical Analysis
3. Results
3.1. Digestibility of CPC in the Broilers’ Terminal Ileum
3.2. Growth Performance
3.3. Blood Parameters
3.4. Serum Biochemistry
3.5. Serum Antioxidant Capacity
3.6. Serum Immunoglobulin Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muszynski, S.; Kwiecien, M.; Swietlicki, M.; Dobrowolski, P.; Tatarczak, J.; Gladyszewska, B. Effects of replacing soybean meal with chickpea seeds in the diet on mechanical and thermal properties of tendon tissue in broiler chicken. Poult. Sci. 2018, 97, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Manyeula, F.; Mlambo, V.; Marume, U.; Sebola, N.A. Partial replacement of soybean products with canola meal in indigenous chicken diets: Size of internal organs, carcass characteristics and breast meat quality. Poult. Sci. 2020, 99, 256–262. [Google Scholar] [CrossRef]
- Gu, X.; Li, Z.; Wang, J.; Chen, J.; Jiang, Q.; Liu, N.; Liu, X.; Zhang, F.; Tan, B.; Li, H.; et al. Fermented cottonseed meal as a partial replacement for soybean meal could improve the growth performance, immunity and antioxidant properties, and nutrient digestibility by altering the gut microbiota profile of weaned piglets. Front. Microbiol. 2021, 12, 734389. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Ren, Y.; Xie, W.; Zhou, D.; Tang, S.; Kuang, M.; Wang, Y.; Du, S.K. Physicochemical and functional properties of protein isolate obtained from cottonseed meal. Food Chem. 2018, 240, 856–862. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Piao, X. Potential Effects of 25-Hydroxycholecalciferol on the growth performance, blood antioxidant capacity, intestinal barrier function and microbiota in broilers under lipopolysaccharide challenge. Antioxidants 2022, 11, 2094. [Google Scholar] [CrossRef]
- Voss, G.B.; Sousa, V.; Rema, P.; Pintado, M.E.; Valente, L. Processed by-products from soy beverage (Okara) as sustainable ingredients for nile tilapia (O. niloticus) juveniles: Effects on nutrient utilization and muscle quality. Animals 2021, 11, 590. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhou, M.; Wang, X.; Mao, X.; Long, X.; Xie, S.; Han, D.; Tan, Q. Effects of dietary cottonseed protein concentrate levels on growth performance, health status, flesh quality and intestinal microbiota of grass carp (Ctenopharyngodon idellus). Metabolites 2022, 12, 1046. [Google Scholar] [CrossRef]
- Xie, X.; Wang, J.; Guan, Y.; Xing, S.; Liang, X.; Xue, M.; Wang, J.; Chang, Y.; Leclercq, E. Cottonseed protein concentrate as fishmeal alternative for largemouth bass (Micropterus salmoides) supplemented a yeast-based paraprobiotic: Effects on growth performance, gut health and microbiome. Aquaculture 2022, 551, 737898. [Google Scholar] [CrossRef]
- Yin, B.; Liu, H.; Tan, B.; Dong, X.; Chi, S.; Yang, Q.; Zhang, S.; Chen, L. Cottonseed protein concentrate (CPC) suppresses immune function in different intestinal segments of hybrid grouper ♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatu via TLR-2/MyD88 signaling pathways. Fish Shellfish Immunol. 2018, 81, 318–328. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Z.; Wang, Y.; Zou, J.; Li, S.; Guo, X.; Gao, J.; Wang, Q. Largemouth bass (Micropterus salmoides) exhibited better growth potential after adaptation to dietary cottonseed protein concentrate inclusion but experienced higher inflammatory risk during bacterial infection. Front. Immunol. 2022, 13, 997985. [Google Scholar] [CrossRef]
- Nascimento, S.T.; Maia, A.S.C.; Gebremedhin, K.G.; Nascimento, C.C.N. Metabolizable heat production and evaporation of poultry. Poult. Sci. 2017, 96, 2691–2698. [Google Scholar] [CrossRef]
- McCafferty, K.W.; Choct, M.; Musigwa, S.; Morgan, N.K.; Cowieson, A.J.; Moss, A.F. Protease supplementation reduced the heat increment of feed and improved energy and nitrogen partitioning in broilers fed maize-based diets with supplemental phytase and xylanase. Anim. Nutr. 2022, 10, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, G.H.; Liao, R.B.; Chang, Y.L.; Huang, X.Y.; Wu, Y.B.; Yang, H.M.; Yan, H.J.; Cai, H.Y. Apparent metabolizable and net energy values of corn and soybean meal for broiler breeding cocks. Poult. Sci. 2017, 96, 135–143. [Google Scholar] [CrossRef]
- Wang, J.; Liang, D.; Yang, Q.; Tan, B.; Dong, X.; Chi, S.; Liu, H.; Zhang, S. The effect of partial replacement of fish meal by soy protein concentrate on growth performance, immune responses, gut morphology and intestinal inflammation for juvenile hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Fish Shellfish Immunol. 2020, 98, 619–631. [Google Scholar] [PubMed]
- He, Y.; Guo, X.; Tan, B.; Dong, X.; Yang, Q.; Liu, H.; Zhang, S.; Chi, S. Replacing fishmeal with cottonseed protein concentrate in feed for pearl gentian groupers (Epinephelus fuscoguttatus♀ × E. lanceolatus♂): Effects on growth and expressions of key genes involved in appetite and hepatic glucose and lipid metabolism. Aquac. Rep. 2021, 20, 100710. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Q.; Xi, L.; Gong, Y.; Su, J.; Han, D.; Zhang, Z.; Liu, H.; Jin, J.; Yang, Y.; et al. Effects of replacement of dietary fishmeal by cottonseed protein concentrate on growth performance, liver health, and intestinal histology of largemouth bass (Micropterus salmoides). Front. Physiol. 2021, 12, 764987. [Google Scholar] [CrossRef]
- Tang, J.W.; Sun, H.; Yao, X.H.; Wu, Y.F.; Wang, X.; Feng, J. Effects of replacement of soybean meal by fermented cottonseed meal on growth performance, serum biochemical parameters and immune function of yellow-feathered broilers. Asian-Australas. J. Anim. Sci. 2012, 25, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Jazi, V.; Boldaji, F.; Dastar, B.; Hashemi, S.R.; Ashayerizadeh, A. Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens. Br. Poult. Sci. 2017, 58, 402–408. [Google Scholar] [CrossRef]
- Abdul, B.M.; Abdul, K.A.; Loh, T.C.; Abdul, A.S.; Salleh, A.; Kaka, U.; Banke, I.S. Effects of inclusion of different doses of persicaria odorata leaf meal (POLM) in broiler chicken feed on biochemical and haematological blood indicators and liver histomorphological changes. Animals 2020, 10, 1209. [Google Scholar] [CrossRef]
- Sang, R.; Ge, B.; Li, H.; Zhou, H.; Yan, K.; Wang, W.; Cui, Q.; Zhang, X. Taraxasterol alleviates aflatoxin B1-induced liver damage in broiler chickens via regulation of oxidative stress, apoptosis and autophagy. Ecotoxicol. Environ. Saf. 2023, 251, 114546. [Google Scholar] [CrossRef]
- Tokofai, B.M.; Idoh, K.; Oke, O.E.; Agbonon, A. Hepatoprotective effects of Vernonia amygdalina (Astereaceae) extract on CCl 4 -induced liver injury in broiler chickens. Animals 2021, 11, 3371. [Google Scholar] [CrossRef] [PubMed]
- Sozcu, A.; Ipek, A.; van den Brand, H. Eggshell temperature during early and late incubation affects embryo and hatchling development in broiler chicks. Poult. Sci. 2022, 101, 102054. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, X.; Huang, R.; Nie, C.; Niu, J.; Chen, C.; Zhang, W. Biodegradation of free gossypol by helicoverpa armigera carboxylesterase expressed in pichia pastoris. Toxins 2022, 14, 816. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Feng, L.; Jiang, W.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.; Tang, L.; Zhang, Y.; Zhou, X. Dietary gossypol reduced intestinal immunity and aggravated inflammation in on-growing grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2019, 86, 814–831. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Y.; Yao, Q.; Fan, L.; Meng, L.; Zheng, N.; Li, H.; Wang, J. Alkaline phosphatase attenuates LPS-induced liver injury by regulating the miR-146a-related inflammatory pathway. Int. Immunopharmacol. 2021, 101, 108149. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Jiang, L.; Lu, X.; Liu, X.; Ling, M. Curcumin protects radiation-induced liver damage in rats through the NF-κB signaling pathway. BMC Complement. Med. Ther. 2021, 21, 10. [Google Scholar] [CrossRef] [PubMed]
- Bai, K.; Huang, Q.; Zhang, J.; He, J.; Zhang, L.; Wang, T. Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult. Sci. 2017, 96, 74–82. [Google Scholar] [CrossRef]
- Zhao, Y.; Zeng, D.; Wang, H.; Qing, X.; Sun, N.; Xin, J.; Luo, M.; Khalique, A.; Pan, K.; Shu, G.; et al. Dietary probiotic Bacillus licheniformis H2 enhanced growth performance, morphology of small intestine and liver, and antioxidant capacity of broiler chickens against Clostridium perfringens-induced subclinical necrotic enteritis. Probiotics Antimicrob. Proteins 2020, 12, 883–895. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, Y.; Shen, Y.; Li, Q.; Lan, J.; Wu, Y.; Zhang, R.; Cao, G.; Yang, C. Effects of Bacillus subtilis and Bacillus licheniformis on growth performance, immunity, short chain fatty acid production, antioxidant capacity, and cecal microflora in broilers. Poult. Sci. 2021, 100, 101358. [Google Scholar] [CrossRef]
- Shan, C.; Miao, F. Immunomodulatory and antioxidant effects of hydroxytyrosol in cyclophosphamide-induced immunosuppressed broilers. Poult. Sci. 2022, 101, 101516. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Peng, Q.Y.; Liu, Y.R.; Ma, Q.G.; Zhang, J.Y.; Guo, Y.P.; Xue, Z.; Zhao, L.H. Effects of oregano essential oil as an antibiotic growth promoter alternative on growth performance, antioxidant status, and intestinal health of broilers. Poult. Sci. 2021, 100, 101163. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, X.F.; Xing, T.; Li, J.L.; Zhu, X.D.; Zhang, L.; Gao, F. The combined impact of xylo-oligosaccharides and gamma-irradiated astragalus polysaccharides on the immune response, antioxidant capacity, and intestinal microbiota composition of broilers. Poult. Sci. 2022, 101, 101996. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, Y.; Cao, M.; Deng, J.; Chang, Y.; Shi, M.; Miao, Z. Effects of dietary Chinese yam polysaccharide copper complex on growth performance, immunity, and antioxidant capacity of broilers. Front. Vet. Sci. 2023, 10, 1123002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liang, H.; Xu, P.; Xu, G.; Zhang, L.; Wang, Y.; Ren, M.; Chen, X. Effects of enzymatic cottonseed protein concentrate as a feed protein source on the growth, plasma parameters, liver antioxidant capacity and immune status of largemouth bass (Micropterus salmoides). Metabolites 2022, 12, 1233. [Google Scholar] [CrossRef] [PubMed]
Items | Basal Diet | CPC Diet |
---|---|---|
Corn | 58.42 | 46.74 |
46% Soybean meal | 26.12 | 20.02 |
93% Casein | 6.48 | 5.18 |
Soybean oil | 4.60 | 3.68 |
62.98% CPC | - | 20.00 |
Limestone | 1.38 | 1.38 |
CaHPO4 | 2.11 | 2.11 |
NaCl | 0.28 | 0.28 |
Choline chloride | 0.08 | 0.08 |
DL-Methionine | 0.03 | 0.03 |
Premix 1 | 0.13 | 0.13 |
TiO2 | 0.37 | 0.37 |
Total | 100.00 | 100.00 |
Chemical composition 2 | ||
Metabolizable energy, MJ/kg | 13.17 | 13.03 |
Crude protein | 22.00 | 28.13 |
Calcium | 1.00 | 0.99 |
Phosphorus | 0.46 | 0.47 |
Items | Nitrogen-Free Diet | CPC Diet |
---|---|---|
Saccharose | 19.97 | 16.00 |
Corn starch | 68.10 | 40.76 |
Avicel | 5.00 | - |
Soybean oil | 3.00 | - |
62.98% CPC | - | 39.61 |
Limestone | 1.00 | 0.94 |
CaHPO4 | 1.90 | 1.66 |
NaCl | 0.30 | 0.30 |
Choline chloride | 0.10 | 0.10 |
Premix 1 | 0.13 | 0.13 |
Zeolite | 0.10 | 0.10 |
TiO2 | 0.40 | 0.40 |
Total | 100.00 | 100.00 |
Chemical composition 2 | ||
Metabolizable energy, MJ/kg | 13.31 | 11.99 |
Crude protein | 0.45 | 25.95 |
Calcium | 0.92 | 1.00 |
Phosphorus | 0.43 | 0.48 |
Items | Contents | |||||
---|---|---|---|---|---|---|
1–21 d | 22–42 d | |||||
CON | CPC-1 | CPC-2 | CON | CPC-1 | CPC-2 | |
Corn | 55.18 | 59.11 | 61.92 | 58.02 | 61.28 | 64.54 |
46% Soybean meal | 30.26 | 23.31 | 16.66 | 23.98 | 17.64 | 11.28 |
62.98% CPC | 0.00 | 4.00 | 8.00 | 0.00 | 4.00 | 8.00 |
Soybean oil | 2.06 | 0.85 | 0.00 | 3.08 | 1.98 | 0.87 |
49.42% Peanut meal | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
27% DDGS | 5.00 | 5.00 | 5.00 | 8.00 | 8.00 | 8.00 |
NaCl | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 |
CaHPO4 | 1.73 | 1.77 | 1.83 | 1.44 | 1.49 | 1.53 |
Limestone | 1.41 | 1.45 | 1.97 | 1.20 | 1.23 | 1.26 |
L-Lysine | 0.39 | 0.47 | 0.55 | 0.37 | 0.45 | 0.52 |
DL-Methionine | 0.32 | 0.32 | 0.32 | 0.28 | 0.28 | 0.28 |
L-Threonine | 0.00 | 0.06 | 0.09 | 0.02 | 0.06 | 0.11 |
L-Tryptophan | 0.00 | 0.02 | 0.01 | 0.00 | 0.00 | 0.01 |
Choline chloride | 0.20 | 0.20 | 0.20 | 0.15 | 0.15 | 0.15 |
Premix 1 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 |
Chemical composition 2 | ||||||
Metabolizable energy, MJ/kg | 12.55 | 12.55 | 12.55 | 12.97 | 12.97 | 12.97 |
Crude protein | 20.50 | 20.50 | 20.50 | 18.50 | 18.50 | 18.50 |
Calcium | 1.000 | 1.000 | 1.176 | 0.850 | 0.850 | 0.850 |
Phosphorus | 0.679 | 0.652 | 0.626 | 0.624 | 0.600 | 0.575 |
Nonphytate phosphorus | 0.450 | 0.450 | 0.450 | 0.420 | 0.420 | 0.420 |
Lysine | 1.250 | 1.250 | 1.250 | 1.100 | 1.100 | 1.100 |
Methionine | 0.632 | 0.628 | 0.625 | 0.566 | 0.563 | 0.560 |
Threonine | 0.800 | 0.809 | 0.800 | 0.720 | 0.720 | 0.720 |
Methionine + Cysteine | 0.950 | 0.950 | 0.950 | 0.850 | 0.850 | 0.850 |
Tryptophan | 0.260 | 0.263 | 0.240 | 0.221 | 0.208 | 0.200 |
Items 1 | CPC |
---|---|
Chemical composition (n = 6) | |
DM, % | 92.80 |
CP, % | 62.98 |
EE, % | 0.53 |
CF, % | 4.53 |
Ash, % | 7.89 |
Indispensable amino acids (n = 6) | |
Lys, % | 2.45 |
Met, % | 0.81 |
Arg, % | 7.74 |
Thr, % | 1.86 |
His, % | 1.79 |
Val, % | 2.56 |
Leu, % | 3.52 |
Iso, % | 1.90 |
Phe, % | 3.32 |
Dispensable amino acids (n = 6) | |
Gly, % | 2.40 |
Ser, % | 2.65 |
Pro, % | 2.20 |
Ala, % | 2.29 |
Asp, % | 5.70 |
Glu, % | 12.79 |
Cys, % | 1.07 |
Energy values (n = 6) | |
AME, kJ/g | 11.76 |
NE, kJ/g | 6.11 |
Items | CPC |
---|---|
Apparent ileal digestibility of dry matter (n = 6) | |
Dry matter, % | 75.61 |
Apparent ileal digestibility of protein (n = 6) | |
Crude protein, % | 77.71 |
Standardized ileal digestibility of protein (n = 6) | |
Crude protein, % | 77.90 |
Items 1 | Ileal Amino Acid Digestibility | |
---|---|---|
Apparent | Standardized | |
Apparent ileal digestibility of amino acid (n = 6) | ||
Lys | 69.34 | 69.38 |
Met | 68.89 | 68.95 |
Arg | 90.47 | 90.32 |
His | 76.69 | 76.76 |
Iso | 72.65 | 72.72 |
Leu | 76.10 | 76.16 |
Thr | 63.77 | 63.92 |
Val | 75.05 | 75.13 |
Ala | 71.49 | 71.56 |
Gly | 73.90 | 73.97 |
Glu | 87.61 | 87.63 |
Pro | 76.23 | 76.33 |
Ser | 74.36 | 75.45 |
Cys | 72.69 | 72.76 |
Asp | 75.06 | 76.59 |
Items | CON | CPC-1 | CPC-2 | SEM | p-Value |
---|---|---|---|---|---|
Starter phase (1–21 d) | |||||
ADG, g | 31.99 a | 29.17 ab | 26.69 b | 0.783 | 0.009 |
ADFI, g/d | 46.89 a | 45.18 a | 40.99 b | 0.839 | 0.003 |
F/G | 1.47 b | 1.55 a | 1.54 a | 0.021 | 0.023 |
Grower phase (22–42 d) | |||||
ADG, g | 68.85 a | 69.03 a | 65.69 b | 0.712 | <0.001 |
ADFI, g/d | 99.57 a | 96.15 b | 92.05 c | 3.335 | <0.001 |
F/G | 1.45 a | 1.40 b | 1.40 b | 0.021 | 0.012 |
Overall phase (1–42 d) | |||||
IBW, g | 42.35 | 42.47 | 42.29 | 0.936 | 0.847 |
FBW, kg | 2.16 a | 2.15 a | 1.99 b | 0.038 | <0.001 |
FI, kg | 30.88 a | 29.69 b | 27.96 c | 1.093 | <0.001 |
ADG, g | 50.42 a | 49.95 a | 46.06 b | 0.554 | <0.001 |
ADFI, g/d | 73.23 a | 70.68 b | 66.51 c | 1.367 | <0.001 |
F/G | 1.46 a | 1.42 b | 1.45 a | 0.015 | <0.001 |
Items | CON | CPC-1 | CPC-2 | SEM | p-Value |
---|---|---|---|---|---|
WBC, 109/L | 111.22 | 107.71 | 113.79 | 1.972 | 0.243 |
LYM, 109/L | 63.57 | 63.26 | 64.10 | 0.563 | 0.844 |
MID, 109/L | 15.84 | 14.67 | 16.05 | 0.285 | 0.099 |
GRA, 109/L | 31.81 | 30.78 | 32.64 | 2.069 | 0.524 |
RBC, 1012/L | 2.59 | 2.64 | 2.64 | 0.061 | 0.940 |
HGB, g/L | 98.33 | 99.67 | 99.27 | 2.365 | 0.564 |
HCT, L/L | 0.23 | 0.24 | 0.26 | 0.006 | 0.246 |
PLT, 109/L | 14.47 | 15.50 | 15.19 | 1.594 | 0.183 |
PCT, L/L | 0.02 | 0.02 | 0.01 | 0.002 | 0.265 |
Items | CON | CPC-1 | CPC-2 | SEM | p-Value |
---|---|---|---|---|---|
TP, mg/mL | 110.04 | 109.59 | 110.73 | 3.813 | 0.559 |
ALB, mg/mL | 38.89 | 38.96 | 37.79 | 1.504 | 0.394 |
ALP, ng/mL | 122.10 b | 149.53 a | 147.96 a | 5.514 | <0.001 |
GLB, g/L | 21.25 | 22.41 | 22.03 | 1.431 | 0.114 |
LDH, ng/mL | 10.92 | 13.06 | 11.89 | 0.566 | 0.319 |
ALT, mmoL/L | 144.71 b | 210.93 a | 212.67 a | 11.249 | 0.003 |
AST, ng/mL | 272.82 | 269.34 | 277.60 | 12.728 | 0.706 |
LP, μg/mL | 287.78 | 278.80 | 283.29 | 11.570 | 0.302 |
TG, mg/mL | 0.662 | 0.663 | 0.623 | 0.030 | 0.846 |
TCHO, μmol/dL | 421.38 | 427.88 | 412.36 | 16.959 | 0.194 |
BUN, mg/mL | 0.21 | 0.20 | 0.20 | 0.011 | 0.609 |
Items | CON | CPC-1 | CPC-2 | SEM | p-Value |
---|---|---|---|---|---|
T-AOC, U/mL | 0.17 b | 0.22 a | 0.18 b | 0.007 | 0.031 |
SOD, U/mL | 218.94 b | 369.62 a | 249.82 b | 20.064 | 0.002 |
MDA, nmoL/mL | 12.28 a | 8.41 b | 11.26 a | 0.464 | <0.001 |
GSH-Px, U/mL | 147.01 | 146.93 | 141.35 | 4.314 | 0.845 |
Item | CON | CPC-1 | CPC-2 | SEM | p-Value |
---|---|---|---|---|---|
IgA, μg/mL | 116.21 b | 221.90 a | 156.08 b | 13.147 | <0.001 |
IgM, μg/mL | 552.84 b | 731.41 a | 624.14 b | 25.733 | 0.008 |
IgG, μg/mL | 1328.03 c | 1450.93 b | 1769.05 a | 66.852 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhao, M.; Zheng, A.; Purba, A.; Chen, Z.; Qiu, K.; Wang, Z.; Chang, W.; Cai, H.; Liu, G. Evaluation of the Application Value of Cottonseed Protein Concentrate as a Feed Protein Source in Broiler Chickens. Animals 2023, 13, 3706. https://doi.org/10.3390/ani13233706
Chen X, Zhao M, Zheng A, Purba A, Chen Z, Qiu K, Wang Z, Chang W, Cai H, Liu G. Evaluation of the Application Value of Cottonseed Protein Concentrate as a Feed Protein Source in Broiler Chickens. Animals. 2023; 13(23):3706. https://doi.org/10.3390/ani13233706
Chicago/Turabian StyleChen, Xing, Manqi Zhao, Aijuan Zheng, Adanan Purba, Zhimin Chen, Kai Qiu, Zedong Wang, Wenhuan Chang, Huiyi Cai, and Guohua Liu. 2023. "Evaluation of the Application Value of Cottonseed Protein Concentrate as a Feed Protein Source in Broiler Chickens" Animals 13, no. 23: 3706. https://doi.org/10.3390/ani13233706
APA StyleChen, X., Zhao, M., Zheng, A., Purba, A., Chen, Z., Qiu, K., Wang, Z., Chang, W., Cai, H., & Liu, G. (2023). Evaluation of the Application Value of Cottonseed Protein Concentrate as a Feed Protein Source in Broiler Chickens. Animals, 13(23), 3706. https://doi.org/10.3390/ani13233706