Dietary Supplementation with Nucleotides, Short-Chain Fructooligosaccharides, Xylooligosaccharides, Beta-Carotene and Vitamin E Influences Immune Function in Kittens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Animals and Housing
2.3. Vaccination
2.4. Diets
2.5. Measures
2.5.1. Intake, Bodyweight and Body Condition Score
2.5.2. Blood-Based Measures
2.5.3. Serum Antibodies
2.5.4. Serum Cytokines
2.5.5. Serum Biochemistry
2.5.6. Lymphocyte Proliferation
2.5.7. Phagocytosis
2.5.8. Haematology
2.5.9. Nucleotides
2.5.10. Phenotyping
2.5.11. Physical Measurements
2.5.12. Statistical Powering
2.5.13. Statistical Analysis
3. Results
3.1. Haematology and Serum Biochemistry
3.2. Intake, Bodyweight, Body Condition Score and Physical Measurements
3.3. Serum Antibodies
3.4. Immune Function Assays
3.5. Serum Cytokines
3.6. Nucleotides
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calder, P.C.; Jackson, A.A. Undernutrition, infection and immune function. Nutr. Res. Rev. 2000, 13, 3–29. [Google Scholar] [CrossRef]
- Gross, R.L.; Newberne, P.M. Role of nutrition in immunologic function. Physiol. Rev. 1980, 60, 188–302. [Google Scholar] [CrossRef] [PubMed]
- Cerra, F.B. Nutrient modulation of inflammatory and immune function. Am. J. Surg. 1991, 161, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S.; Erbay, E. Nutrient sensing and inflammation in metabolic diseases. Nat. Rev. Immunol. 2008, 8, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Maynard, C.L.; Elson, C.O.; Hatton, R.D.; Weaver, C.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012, 489, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Pickering, L.K.; Granoff, D.M.; Erickson, J.R.; Masor, M.L.; Cordle, C.T.; Schaller, J.P.; Winship, T.R.; Paule, C.L.; Hilty, M.D. Modulation of the immune system by human milk and infant formula containing nucleotides. Pediatrics 1998, 101, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Aggett, P.; Leach, J.L.; Rueda, R.; MacLean, W.C., Jr. Innovation in infant formula development: A reassessment of ribonucleotides in 2002. Nutrition 2003, 19, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Romano, V.; Martínez-Puig, D.; Torre, C.; Iraculis, N.; Vilaseca, L.; Chetrit, C. Dietary nucleotides improve the immune status of puppies at weaning. J. Anim. Physiol. Anim. Nutr. 2007, 91, 158–162. [Google Scholar] [CrossRef]
- Gutiérrez-Castrellón, P.; Mora-Magaña, I.; Díaz-García, L.; Jiménez-Gutiérrez, C.; Ramirez-Mayans, J.; Solomon-Santibáñez, G.A. Immune response to nucleotide-supplemented infant formulae: Systematic review and meta-analysis. Br. J. Nutr. 2007, 98, S64–S67. [Google Scholar] [CrossRef]
- Vojtek, B.; Mojzisova, J.; Kulichova, L.; Smrco, P.; Drazovska, M. Effects of dietary nucleotides and cationic peptides on vaccination response in cats. Vet. Med. 2021, 66, 17–23. [Google Scholar] [CrossRef]
- Gil, A.; Martínez-Augustín, O.; Navarro, J.; Bellanti, J.; Bracci, R.; Prindull, G.; Xanthou, M. Role of dietary nucleotides in the modulation of the immune response. Neonatal Hematol. Immunol. III 1997, 139–144. [Google Scholar]
- Navarro, J.; Maldonado, J.; Narbona, E.; Ruiz-Bravo, A.; García Salmerón, J.L.; Molina, J.A.; Gil, A. Influence of dietary nucleotides on plasma immunoglobulin levels and lymphocyte subsets of preterm infants. Biofactors 1999, 10, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Rutherfurd-Markwick, K.J.; Hendriks, W.H.; Morel, P.C.; Thomas, D.G. The potential for enhancement of immunity in cats by dietary supplementation. Vet. Immunol. Immunopathol. 2013, 152, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.M.; Lieberman, M.D.; Goldfine, J.; Shou, J.; Weintraub, F.; Rosato, E.F.; Lavin, P. Enteral nutrition with supplemental arginine, RNA, and omega-3 fatty acids in patients after operation: Immunologic, metabolic, and clinical outcome. Surgery 1992, 112, 56–67. [Google Scholar] [PubMed]
- Kulkarni, A.D.; Fanslow, W.C.; Drath, D.B.; Rudolph, F.B.; Van Buren, C.T. Influence of Dietary Nucleotide Restriction on Bacterial Sepsis and Phagocytic Cell Function in Mice. Arch. Surg. 1986, 121, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Van Buren, C.T.; Rudolph, F.B.; Kulkarni, A.; Pizzini, R.; Fanslow, W.C.; Kumar, S. Reversal of immunosuppression induced by a protein-free diet: Comparison of nucleotides, fish oil, and arginine. Crit. Care Med. 1990, 18, S118. [Google Scholar] [CrossRef]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Yasui, H.; Ohwaki, M. Enhancement of Immune Response in Peyer’s Patch Cells Cultured with Bifidobacterium breve. J. Dairy Sci. 1991, 74, 1187–1195. [Google Scholar] [CrossRef]
- Adogony, V.; Respondek, F.; Biourge, V.; Rudeaux, F.; Delaval, J.; Bind, J.-L.; Salmon, H. Effects of dietary scFOS on immunoglobulins in colostrums and milk of bitches. J. Anim. Physiol. Anim. Nutr. 2007, 91, 169–174. [Google Scholar] [CrossRef]
- Jain, I.; Kumar, V.; Satyanarayana, T. Xylooligosaccharides: An economical prebiotic from agroresidues and their health benefits. Indian J. Exp. Biol. 2015, 53, 131–142. [Google Scholar]
- Chen, M.-H.; Swanson, K.S.; Fahey Jr, G.C.; Dien, B.S.; Beloshapka, A.N.; Bauer, L.L.; Rausch, K.D.; Tumbleson, M.E.; Singh, V. In vitro fermentation of xylooligosaccharides produced from Miscanthus × giganteus by human fecal microbiota. J. Agric. Food Chem. 2016, 64, 262–267. [Google Scholar] [CrossRef]
- Christensen, E.G.; Licht, T.R.; Leser, T.D.; Bahl, M.I. Dietary xylo-oligosaccharide stimulates intestinal bifidobacteria and lactobacilli but has limited effect on intestinal integrity in rats. BMC Res. Notes 2014, 7, 660. [Google Scholar] [CrossRef]
- Childs, C.E.; Röytiö, H.; Alhoniemi, E.; Fekete, A.A.; Forssten, S.D.; Hudjec, N.; Lim, Y.N.; Steger, C.J.; Yaqoob, P.; Tuohy, K.M. Xylo-oligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune function in healthy adults: A double-blind, placebo-controlled, randomised, factorial cross-over study. Br. J. Nutr. 2014, 111, 1945–1956. [Google Scholar] [CrossRef] [PubMed]
- Pourabedin, M.; Chen, Q.; Yang, M.; Zhao, X. Mannan-and xylooligosaccharides modulate caecal microbiota and expression of inflammatory-related cytokines and reduce caecal Salmonella Enteritidis colonisation in young chickens. FEMS Microbiol. Ecol. 2017, 93, fiw226. [Google Scholar] [CrossRef]
- Ebersbach, T.; Andersen, J.B.; Bergström, A.; Hutkins, R.W.; Licht, T.R. Xylo-oligosaccharides inhibit pathogen adhesion to enterocytes in vitro. Res. Microbiol. 2012, 163, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Nabarlatz, D.; Montané, D.; Kardošová, A.; Bekešová, S.; Hříbalová, V.; Ebringerová, A. Almond shell xylo-oligosaccharides exhibiting immunostimulatory activity. Carbohydr. Res. 2007, 342, 1122–1128. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Chen, Y.K.; Chang, H.C.; Lin, S.Y. Immunomodulatory effects of xylooligosaccharides. Food Sci. Technol. Res. 2012, 18, 195–199. [Google Scholar] [CrossRef]
- O’Brien, T.; Thomas, D.G.; Morel, P.C.; Rutherfurd-Markwick, K.J. Moderate dietary supplementation with vitamin E enhances lymphocyte functionality in the adult cat. Res. Vet. Sci. 2015, 99, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.G.; Morrill, J.L.; Minocha, H.C.; Morrill, M.B.; Dayton, A.D.; Frey, R.A. Effect of supplemental vitamin E on the immune system of calves. J. Dairy Sci. 1986, 69, 164–171. [Google Scholar] [CrossRef]
- Chew, B.P.; Park, J.S.; Wong, T.S.; Kim, H.W.; Weng, B.B.C.; Byrne, K.M.; Hayek, M.G.; Reinhart, G.A. Dietary β-Carotene Stimulates Cell-Mediated and Humoral Immune Response in Dogs. J. Nutr. 2000, 130, 1910–1913. [Google Scholar] [CrossRef]
- Massimino, S.; Kearns, R.J.; Loos, K.M.; Burr, J.; Park, J.S.; Chew, B.; Adams, S.; Hayek, M.G. Effects of age and dietary beta-carotene on immunological variables in dogs. J. Vet. Intern. Med. 2003, 17, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Bjornvad, C.R.; Nielsen, D.H.; Armstrong, P.J.; McEvoy, F.; Hoelmkjaer, K.M.; Jensen, K.S.; Pedersen, G.F.; Kristensen, A.T. Evaluation of a nine-point body condition scoring system in physically inactive pet cats. Am. J. Vet. Res. 2011, 72, 433–437. [Google Scholar] [CrossRef] [PubMed]
- AAFCO. American Association of Feed Control Officials Official Publication; The Association of Feed Control Officials Inc.: Washington, DC, USA, 2018. [Google Scholar]
- National Research Council. Ad Hoc Committee on Dog and Cat Nutrition. In Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Anderson, P.A.; Baker, D.H.; Sherry, P.A.; Corbin, J.E. Choline-methionine interrelationship in feline nutrition. J. Anim. Sci. 1979, 49, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Jakel, V.; Cussler, K.; Hanschmann, K.M.; Truyen, U.; König, M.; Kamphuis, E.; Duchow, K. Vaccination against Feline Panleukopenia: Implications from a field study in kittens. BMC Vet. Res. 2012, 8, 62. [Google Scholar] [CrossRef]
- Bergmann, M.; Speck, S.; Rieger, A.; Truyen, U.; Hartmann, K. Antibody response to feline herpesvirus-1 vaccination in healthy adult cats. J. Feline Med. Surg. 2020, 22, 329–338. [Google Scholar] [CrossRef] [PubMed]
- DiGangi, B.A.; Levy, J.K.; Griffin, B.; McGorray, S.P.; Dubovi, E.J.; Dingman, P.A.; Tucker, S.J. Prevalence of serum antibody titers against feline panleukopenia virus, feline herpesvirus 1, and feline calicivirus in cats entering a Florida animal shelter. J. Am. Vet. Med. Assoc. 2012, 241, 1320–1325. [Google Scholar] [CrossRef]
- Di Pierro, D.; Tavazzi, B.; Perno, C.F.; Bartolini, M.; Balestra, E.; Caliò, R.; Giardina, B.; Lazzarino, G. An ion-pairing high-performance liquid chromatographic method for the direct simultaneous determination of nucleotides, deoxynucleotides, nicotinic coenzymes, oxypurines, nucleosides, and bases in perchloric acid cell extracts. Anal. Biochem. 1995, 231, 407–412. [Google Scholar] [CrossRef]
- Reverberi, R. The statistical analysis of immunohaematological data. Blood Transfus. 2008, 6, 37–45. [Google Scholar] [CrossRef]
- Jenkins, E.; Davis, C.; Carrai, M.; Ward, M.P.; O’Keeffe, S.; van Boeijen, M.; Beveridge, L.; Desario, C.; Buonavoglia, C.; Beatty, J.A.; et al. Feline Parvovirus Seroprevalence Is High in Domestic Cats from Disease Outbreak and Non-Outbreak Regions in Australia. Viruses 2020, 12, 320. [Google Scholar] [CrossRef]
- Mouzin, D.E.; Lorenzen, M.J.; Haworth, J.D.; King, V.L. Duration of serologic response to three viral antigens in cats. J. Am. Vet. Med. Assoc. 2004, 224, 61–66. [Google Scholar] [CrossRef]
- Bergmann, M.; Schwertler, S.; Reese, S.; Speck, S.; Truyen, U.; Hartmann, K. Antibody response to feline panleukopenia virus vaccination in healthy adult cats. J. Feline Med. Surg. 2018, 20, 1087–1093. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2018. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. Biom. Z. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Kraft, W.; Hartmann, K.; Dereser, R. Dependency on age of laboratory values in dogs and cats. 1. Enzyme activities in blood serum. Tierarztl. Prax. 1995, 23, 502–508. [Google Scholar]
- Bergmann, M.; Schwertler, S.; Speck, S.; Truyen, U.; Hartmann, K. Antibody response to feline panleukopenia virus vaccination in cats with asymptomatic retrovirus infections: A pilot study. J. Feline Med. Surg. 2019, 21, 1094–1101. [Google Scholar] [CrossRef]
- Albers, R.; Bourdet-Sicard, R.; Braun, D.; Calder, P.C.; Herz, U.; Lambert, C.; Lenoir-Wijnkoop, I.; Méheust, A.; Ouwehand, A.; Phothirath, P.; et al. Monitoring immune modulation by nutrition in the general population: Identifying and substantiating effects on human health. Br. J. Nutr. 2013, 110 (Suppl. S2), S1–S30. [Google Scholar] [CrossRef] [PubMed]
- Scott, F.W.; Csiza, C.K.; Gillespie, J.H. Maternally derived immunity to feline panleukopenia. J. Am. Vet. Med. Assoc. 1970, 156, 439–453. [Google Scholar] [PubMed]
- Povey, R.C. A review of feline viral rhinotracheitis (feline herpesvirus I infection). Comp. Immunol. Microbiol. Infect. Dis. 1979, 2, 373–387. [Google Scholar] [CrossRef]
- Johnson, R.P.; Povey, R.C. Transfer and decline of maternal antibody to feline calicivirus. Can. Vet. J. 1983, 24, 6–9. [Google Scholar] [PubMed]
- Jas, D.; Aeberlé, C.; Lacombe, V.; Guiot, A.L.; Poulet, H. Onset of immunity in kittens after vaccination with a non-adjuvanted vaccine against feline panleucopenia, feline calicivirus and feline herpesvirus. Vet J 2009, 182, 86–93. [Google Scholar] [CrossRef]
- Lappin, M.R.; Andrews, J.; Simpson, D.; Jensen, W.A. Use of serologic tests to predict resistance to feline herpesvirus 1, feline calicivirus, and feline parvovirus infection in cats. J. Am. Vet. Med. Assoc. 2002, 220, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Lappin, M.R.; Veir, J.; Hawley, J. Feline panleukopenia virus, feline herpesvirus-1, and feline calicivirus antibody responses in seronegative specific pathogen-free cats after a single administration of two different modified live FVRCP vaccines. J. Feline Med. Surg. 2009, 11, 159–162. [Google Scholar] [CrossRef]
- Povey, R.C.; Koonse, H.; Hays, M.B. Immunogenicity and safety of an inactivated vaccine for the prevention of rhinotracheitis, caliciviral disease, and panleukopenia in cats. J. Am. Vet. Med. Assoc. 1980, 177, 347–350. [Google Scholar]
- Boes, M. Role of natural and immune IgM antibodies in immune responses. Mol. Immunol. 2000, 37, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Furst, D.E. Serum immunoglobulins and risk of infection: How low can you go? Semin. Arthritis Rheum. 2009, 39, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Gaskell, R.; Dawson, S.; Radford, A.; Thiry, E. Feline herpesvirus. Vet. Res. 2007, 38, 337–354. [Google Scholar] [CrossRef]
- Maldonado, J.; Navarro, J.; Narbona, E.; Gil, A. The influence of dietary nucleotides on humoral and cell immunity in the neonate and lactating infant. Early Hum. Dev. 2001, 65 (Suppl. S2), S69–S74. [Google Scholar] [CrossRef]
- Cohen, A.; Barankiewicz, J.; Lederman, H.M.; Gelfand, E.W. Purine metabolism in human T lymphocytes: Role of the purine nucleoside cycle. Can. J. Biochem. Cell Biol. 1984, 62, 577–583. [Google Scholar] [CrossRef]
- Gil, A. Modulation of the immune response mediated by dietary nucleotides. Eur. J. Clin. Nutr. 2002, 56, S1–S4. [Google Scholar] [CrossRef]
- Navarro, J.; Ruiz-Bravo, A.; Jiménez-Valera, M.; Gil, A. Modulation of antibody-forming cell and mitogen-driven lymphoproliferative responses by dietary nucleotides in mice. Immunol. Lett. 1996, 53, 141–145. [Google Scholar] [CrossRef]
- Heaton, P.R.; Reed, C.F.; Mann, S.J.; Ransley, R.; Stevenson, J.; Charlton, C.J.; Smith, B.H.; Harper, E.J.; Rawlings, J.M. Role of dietary antioxidants to protect against DNA damage in adult dogs. J. Nutr. 2002, 132, 1720s–1724s. [Google Scholar] [CrossRef]
- Khoo, C.; Cunnick, J.; Friesen, K.; Gross, K.L.; Wedekind, K.; Jewell, D.E. The role of supplementary dietary antioxidants on immune response in puppies. Vet. Ther. Res. Appl. Vet. Med. 2005, 6, 43–56. [Google Scholar]
- Gil, A. Effects of the addition of nucleotides to an adapted milk formula on the microbial pattern of feces in at term newborn infants. J. Clin. Nutr. Gastroenterol. 1986, 1, 127–132. [Google Scholar]
- Paineau, D.; Respondek, F.; Menet, V.; Sauvage, R.; Bornet, F.; Wagner, A. Effects of short-chain fructooligosaccharides on faecal bifidobacteria and specific immune response in formula-fed term infants: A randomized, double-blind, placebo-controlled trial. J. Nutr. Sci. Vitaminol. 2014, 60, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Singhal, A.; Kennedy, K.; Lanigan, J.; Clough, H.; Jenkins, W.; Elias-Jones, A.; Stephenson, T.; Dudek, P.; Lucas, A. Dietary nucleotides and early growth in formula-fed infants: A randomized controlled trial. Pediatrics 2010, 126, e946–e953. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, A.; Fontana, L.; Angulo, A.J.; Gil, Á.; López-Pedrosa, J.M. Exogenous nucleosides alter the intracellular nucleotide pool in hepatic cell cultures. Implications in cell proliferation and function. Clin. Nutr. 2003, 22, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Algya, K.M.; Cross, T.L.; Leuck, K.N.; Kastner, M.E.; Baba, T.; Lye, L.; de Godoy, M.R.C.; Swanson, K.S. Apparent total-tract macronutrient digestibility, serum chemistry, urinalysis, and fecal characteristics, metabolites and microbiota of adult dogs fed extruded, mildly cooked, and raw diets1. J. Anim. Sci. 2018, 96, 3670–3683. [Google Scholar] [CrossRef]
- Brunengraber, D.Z.; McCabe, B.J.; Kasumov, T.; Alexander, J.C.; Chandramouli, V.; Previs, S.F. Influence of diet on the modeling of adipose tissue triglycerides during growth. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E917–E925. [Google Scholar] [CrossRef]
- Imaizumi, K.; Nakatsu, Y.; Sato, M.; Sedarnawati, Y.; Sugano, M. Effects of Xylooligosaccharides on Blood Glucose, Serum and Liver Lipids and Cecum Short-chain Fatty Acids in Diabetic Rats. Agric. Biol. Chem. 1991, 55, 199–205. [Google Scholar] [CrossRef]
- Lyu, Y.; Debevere, S.; Bourgeois, H.; Ran, M.; Broeckx, B.J.G.; Vanhaecke, L.; Wiele, T.V.d.; Hesta, M. Dose-Dependent Effects of Dietary Xylooligosaccharides Supplementation on Microbiota, Fermentation and Metabolism in Healthy Adult Cats. Molecules 2020, 25, 5030. [Google Scholar] [CrossRef]
- Lahti, L.; Salonen, A.; Kekkonen, R.A.; Salojärvi, J.; Jalanka-Tuovinen, J.; Palva, A.; Orešič, M.; De Vos, W.M. Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data. PeerJ 2013, 1, e32. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, I.; Flodmark, C.; Räihä, N.; Tacconi, M.; Visentin, M.; Minoli, I.; Moro, G.; Warm, A. The influence of dietary nucleotides on erythrocyte membrane fatty acids and plasma lipids in preterm infants. Acta Paediatr. 1997, 86, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Siahanidou, T.; Mandyla, H.; Papassotiriou, I.; Anagnostakis, D. Serum Lipids in Preterm Infants Fed a Formula Supplemented With Nucleotides. J. Pediatr. Gastroenterol. Nutr. 2004, 38, 56–60. [Google Scholar] [CrossRef] [PubMed]
Control Batch 1 | Control Batch 2 | Test | |
---|---|---|---|
Dry matter (g/100 g) | 94.08 | 94.80 | 94.35 |
Moisture (g/100 g) | 5.92 | 5.20 | 5.65 |
Protein (g/100 g) | 32.00 | 32.60 | 30.90 |
Fat (g/100 g) | 18.00 | 17.30 | 18.20 |
Ash (g/100 g) | 6.50 | 7.10 | 6.70 |
Calcium (g/4184 kJ (1000 kcal)) | 3.06 | 3.44 | 3.10 |
Phosphorus (g/4184 kJ (1000 kcal)) | 2.38 | 2.53 | 2.46 |
Calcium: Phosphorus ratio | 1.29 | 1.36 | 1.26 |
Sodium (g/4184 kJ (1000 kcal)) | 1.04 | 1.24 | 1.22 |
Chloride (g/4184 kJ (1000 kcal)) | 2.12 | 2.29 | 2.04 |
Potassium (g/4184 kJ (1000 kcal)) | 1.63 | 1.73 | 1.84 |
Magnesium (mg/4184 kJ (1000 kcal)) | 213.00 | 248.37 | 231.00 |
Iron (mg/4184 kJ (1000 kcal)) | 39.73 | 45.74 | 45.25 |
Copper (mg/4184 kJ (1000 kcal)) | 3.46 | 3.30 | 3.61 |
Manganese (mg/4184 kJ (1000 kcal)) | 16.07 | 21.17 | 15.76 |
Zinc (mg/4184 kJ (1000 kcal)) | 42.70 | 39.84 | 35.41 |
Iodine (mg/4184 kJ (1000 kcal)) | 1.15 | 1.00 | 1.05 |
Selenium (µg/4184 kJ (1000 kcal)) | 99.46 | 88.53 | 97.13 |
Vitamin A (µg/4184 kJ (µg/1000 kcal)) | 2317 | 2228 | 2700 |
Vitamin D3 (µg/4184 kJ (µg/1000 kcal)) | 6.93 | 7.87 | 7.75 |
Vitamin E (mg/4184 kJ (mg/1000 kcal)) | 49.80 | 57.50 | 109.60 |
Thiamin (mg/4184 kJ (1000 kcal)) | 6.79 | 3.32 | 5.63 |
Riboflavin (mg/4184 kJ (1000 kcal)) | 12.64 | 14.66 | 12.07 |
Pantothenic acid (mg/4184 kJ (1000 kcal)) | 23.10 | 25.08 | 21.84 |
Niacin/nicotinic acid (mg/4184 kJ (1000 kcal)) | 74.53 | 45.25 | 59.51 |
Pyridoxine (mg/4184 kJ (1000 kcal)) | 6.94 | 5.88 | 5.61 |
Folic acid (µg/4184 kJ (1000 kcal)) | 2142 | 1898 | 1591 |
Cyanocobalamin (µg/4184 kJ (1000 kcal)) | 52.81 | 51.15 | 45.41 |
Choline (mg/4184 kJ (1000 kcal)) | 548 | 492 | 590 |
Linoleic acid (g/4184 kJ (1000 kcal)) | 8.72 | 8.68 | 8.97 |
Alpha-Linoleic acid (g/4184 kJ (1000 kcal)) | 0.91 | 0.73 | 0.81 |
Arachidonic acid (g/4184 kJ (1000 kcal)) | 0.23 | 0.21 | 0.23 |
Eicosapentenoic acid (g/4184 kJ (1000 kcal)) | 0.16 | 0.14 | 0.13 |
Docosahexaenoic acid (g/4184 kJ (1000 kcal)) | 0.10 | 0.10 | 0.10 |
Arginine (g/4184 kJ (1000 kcal)) | 4.12 | 4.38 | 3.89 |
Cystine (g/4184 kJ (1000 kcal)) | 1.08 | 1.13 | 0.96 |
Histidine (g/4184 kJ (1000 kcal)) | 1.49 | 1.57 | 1.46 |
Taurine (mg/4184 kJ (1000 kcal)) | 520.75 | 390.99 | 523.77 |
Isoleucine (g/4184 kJ (1000 kcal)) | 2.71 | 2.83 | 2.53 |
Leucine (g/4184 kJ (1000 kcal)) | 5.28 | 5.63 | 5.07 |
Lysine (g/4184 kJ (1000 kcal)) | 4.54 | 4.84 | 4.70 |
Methionine (g/4184 kJ (1000 kcal)) | 1.96 | 1.84 | 1.88 |
Phenylalanine (g/4184 kJ (1000 kcal)) | 3.26 | 3.37 | 2.98 |
Threonine (g/4184 kJ (1000 kcal)) | 2.64 | 2.75 | 2.61 |
Tryptophan (g/4184 kJ (1000 kcal)) | 0.73 | 0.71 | 0.61 |
Tyrosine (g/4184 kJ (1000 kcal)) | 2.14 | 2.24 | 1.97 |
Valine (g/4184 kJ (1000 kcal)) | 3.36 | 3.64 | 3.20 |
Alanine (g/4184 kJ (1000 kcal)) | 4.07 | 4.21 | 3.87 |
Aspartic acid (g/4184 kJ (1000 kcal)) | 5.11 | 5.21 | 5.01 |
Glutamic acid (g/4184 kJ (1000 kcal)) | 15.40 | 15.91 | 14.46 |
Glycine (g/4184 kJ (1000 kcal)) | 5.65 | 5.85 | 5.36 |
Proline (g/4184 kJ (1000 kcal)) | 6.17 | 6.69 | 5.68 |
Serine (g/4184 kJ (1000 kcal)) | 3.53 | 3.84 | 3.38 |
Parameter | Weeks | Control | Test | p | ||||
---|---|---|---|---|---|---|---|---|
n | Mean | 95% CI | n | Mean | 95% CI | |||
Total protein (g/L) | 10 | 15 | 53.72 | 52.40, 55.04 | 14 | 54.16 | 52.70, 55.62 | 0.649 |
12 | 13 | 54.72 | 53.37, 56.07 | 15 | 56.84 * | 55.39, 58.30 | 0.037 | |
14 | 13 | 55.04 | 53.67, 56.42 | 15 | 56.91 * | 55.47, 58.35 | 0.065 | |
18 | 18 | 58.99 * | 57.75, 60.24 | 11 | 59.53 * | 57.97, 61.09 | 0.587 | |
23 | 17 | 61.51 * | 60.23, 62.78 | 17 | 62.80 * | 61.40, 64.21 | 0.171 | |
27 | 18 | 62.23 * | 60.99, 63.48 | 14 | 62.69 * | 61.23, 64.14 | 0.632 | |
Albumin (g/L) | 10 | 15 | 30.93 | 30.03, 31.82 | 14 | 30.41 | 29.39, 31.43 | 0.439 |
12 | 13 | 30.55 | 29.64, 31.47 | 15 | 31.08 | 30.06, 32.09 | 0.435 | |
14 | 13 | 31.16 | 30.24, 32.09 | 15 | 30.96 | 29.95, 31.97 | 0.763 | |
18 | 18 | 32.44 * | 31.57, 33.30 | 11 | 32.54 * | 31.48, 33.61 | 0.875 | |
23 | 17 | 32.36 * | 31.48, 33.24 | 17 | 32.11 * | 31.11, 33.10 | 0.699 | |
27 | 18 | 33.18 * | 32.32, 34.05 | 14 | 33.35* | 32.34, 34.37 | 0.792 | |
Glucose (mmol/L) | 10 | 15 | 6.01 | 5.75, 6.29 | 14 | 5.66 | 5.39, 5.95 | 0.074 |
12 | 13 | 5.37 * | 5.13, 5.62 | 15 | 5.34 | 5.08, 5.61 | 0.883 | |
14 | 13 | 5.23 * | 4.997, 5.48 | 15 | 5.19 * | 4.95, 5.45 | 0.811 | |
18 | 18 | 5.04 * | 4.83, 5.25 | 11 | 5.02 * | 4.76, 5.29 | 0.898 | |
23 | 17 | 4.89 * | 4.68, 5.10 | 17 | 4.84 * | 4.61, 5.07 | 0.754 | |
27 | 18 | 4.87 * | 4.67, 5.08 | 14 | 4.82 * | 4.59, 5.06 | 0.738 | |
Inorganic phosphorus (mmol/L) | 10 | 15 | 2.70 | 2.59, 2.81 | 14 | 2.66 | 2.54, 2.79 | 0.660 |
12 | 13 | 2.53 * | 2.42, 2.64 | 15 | 2.53 | 2.41, 2.66 | 0.997 | |
14 | 13 | 2.62 | 2.51, 2.74 | 15 | 2.54 | 2.41, 2.66 | 0.311 | |
18 | 18 | 2.50 * | 2.40, 2.61 | 11 | 2.42 * | 2.29, 2.55 | 0.285 | |
23 | 17 | 2.35 * | 2.25, 2.46 | 17 | 2.35 * | 2.22, 2.47 | 0.911 | |
27 | 18 | 2.22 * | 2.12, 2.33 | 14 | 2.07 * | 1.95, 2.20 | 0.074 | |
Alanine aminotransferase (U/L) | 10 | 15 | 48.28 | 39.69, 58.72 | 14 | 35.12 | 28.11, 43.87 | 0.037 |
12 | 13 | 45.70 | 37.46, 55.75 | 15 | 35.77 | 28.63, 44.67 | 0.102 | |
14 | 13 | 53.28 | 43.59, 65.12 | 15 | 34.38 | 27.58, 42.86 | 0.006 | |
18 | 18 | 52.51 | 43.49, 63.41 | 11 | 37.65 | 29.87, 47.46 | 0.031 | |
23 | 17 | 51.07 | 42.16, 61.87 | 17 | 39.90 | 32.10, 49.59 | 0.090 | |
27 | 18 | 51.85 | 42.93, 62.62 | 14 | 44.40 | 35.58, 55.42 | 0.279 | |
Aspartate aminotransferase (U/L) | 10 | 15 | 22.47 | 19.78, 25.17 | 14 | 20.07 | 17.11, 23.03 | 0.231 |
12 | 13 | 23.64 | 20.86, 26.42 | 15 | 18.88 | 15.93, 21.83 | 0.022 | |
14 | 13 | 20.88 | 18.06, 23.71 | 15 | 18.91 | 16.01, 21.81 | 0.330 | |
18 | 18 | 22.41 | 19.90, 24.93 | 11 | 16.84 | 13.65, 20.04 | 0.008 | |
23 | 17 | 20.19 | 17.59, 22.78 | 17 | 18.28 | 15.46, 21.10 | 0.318 | |
27 | 18 | 21.19 | 18.66, 23.71 | 14 | 18.39 | 15.46, 21.33 | 0.152 | |
Calcium (mmol/L) | 10 | 15 | 2.65 | 2.61, 2.69 | 14 | 2.66 | 2.61, 2.70 | 0.840 |
12 | 13 | 2.58 * | 2.54, 2.62 | 15 | 2.64 | 2.60, 2.68 | 0.043 | |
14 | 13 | 2.63 | 2.59, 2.67 | 15 | 2.67 | 2.63, 2.71 | 0.198 | |
18 | 18 | 2.62 | 2.58, 2.65 | 11 | 2.65 | 2.61, 2.70 | 0.192 | |
23 | 17 | 2.60 | 2.56, 2.63 | 17 | 2.63 | 2.59, 2.67 | 0.236 | |
27 | 18 | 2.55 * | 2.52, 2.59 | 14 | 2.58 * | 2.54, 2.62 | 0.352 | |
Cholesterol (mmol/L) | 10 | 15 | 4.11 | 3.58, 4.65 | 14 | 4.49 | 3.87, 5.11 | 0.344 |
12 | 13 | 3.88 | 3.33, 4.42 | 15 | 4.41 | 3.79, 5.04 | 0.184 | |
14 | 13 | 3.76 | 3.22, 4.30 | 15 | 4.34 | 3.72, 4.96 | 0.152 | |
18 | 18 | 3.81 | 3.28, 4.34 | 11 | 4.46 | 3.83, 5.10 | 0.113 | |
23 | 17 | 3.62 * | 3.08, 4.15 | 17 | 4.30 | 3.68, 4.91 | 0.093 | |
27 | 18 | 3.71 | 3.18, 4.24 | 14 | 4.20 | 3.58, 4.82 | 0.218 | |
Urea (mmol/L) | 10 | 15 | 6.92 | 6.08, 7.76 | 14 | 8.08 | 7.11, 9.05 | 0.074 |
12 | 13 | 7.29 | 6.44, 8.13 | 15 | 8.25 | 7.28, 9.22 | 0.132 | |
14 | 13 | 7.10 | 6.25, 7.95 | 15 | 7.63 | 6.66, 8.60 | 0.396 | |
18 | 18 | 7.63 | 6.81, 8.45 | 11 | 7.96 | 6.96, 8.95 | 0.598 | |
23 | 17 | 7.79 * | 6.96, 8.62 | 17 | 8.01 | 7.04, 8.97 | 0.721 | |
27 | 18 | 7.36 | 6.53, 8.18 | 14 | 7.46 | 6.49, 8.43 | 0.868 | |
Triglycerides (mmol/L) | 10 | 15 | 0.38 | 0.32, 0.45 | 14 | 0.50 | 0.41, 0.60 | 0.036 |
12 | 13 | 0.40 | 0.34, 0.48 | 15 | 0.59 | 0.49, 0.71 | 0.005 | |
14 | 13 | 0.48 | 0.40, 0.57 | 15 | 0.58 | 0.48, 0.70 | 0.139 | |
18 | 18 | 0.45 | 0.39, 0.53 | 11 | 0.49 | 0.40, 0.60 | 0.606 | |
23 | 17 | 0.43 | 0.37, 0.51 | 17 | 0.53 | 0.45, 0.64 | 0.097 | |
27 | 18 | 0.45 | 0.38, 0.53 | 14 | 0.63 | 0.52, 0.76 | 0.009 | |
Alkaline phosphatase (U/L) | 10 | 15 | 121.5 | 100.3, 142.7 | 14 | 142.8 | 118.7, 166.9 | 0.181 |
12 | 13 | 133.8 | 112.3, 155.3 | 15 | 166.3 | 142.2, 190.4 | 0.048 | |
14 | 13 | 127.9 | 106.2, 149.6 | 15 | 158.9 | 135.0, 182.8 | 0.059 | |
18 | 18 | 120.0 | 99.6, 140.4 | 11 | 154.4 | 129.3, 179.5 | 0.038 | |
23 | 17 | 102.4 | 81.6, 123.2 | 17 | 120.6 | 97.0, 144.2 | 0.239 | |
27 | 18 | 92.0 * | 71.6, 112.5 | 14 | 119.0 | 95.0, 143.0 | 0.089 | |
Creatinine (µmol/L) | 10 | 15 | 58.57 | 52.51, 64.63 | 14 | 56.47 | 49.49, 63.45 | 0.640 |
12 | 13 | 60.08 | 53.94, 66.22 | 15 | 58.40 | 51.47, 65.34 | 0.710 | |
14 | 13 | 64.40 | 58.21, 70.59 | 15 | 59.31 | 52.43, 66.19 | 0.264 | |
18 | 18 | 73.48 * | 67.61, 79.35 | 11 | 73.25 * | 66.08, 80.42 | 0.959 | |
23 | 17 | 86.12 * | 80.16, 92.08 | 17 | 85.35 * | 78.55, 92.16 | 0.860 | |
27 | 18 | 91.66 * | 85.78, 97.54 | 14 | 92.35 * | 85.44, 99.26 | 0.874 | |
Sodium (mmol/L) | 10 | 15 | 147.7 | 147.0, 148.4 | 14 | 147.1 | 146.4, 147.9 | 0.298 |
12 | 13 | 148.0 | 147.3, 148.7 | 15 | 147.1 | 146.3, 147.9 | 0.100 | |
14 | 13 | 148.1 | 147.4, 148.9 | 15 | 148.1 | 147.3, 148.9 | 0.964 | |
18 | 18 | 149.0 * | 148.3, 149.7 | 11 | 149.6 * | 148.8, 150.5 | 0.240 | |
23 | 17 | 149.7 * | 149.0, 150.4 | 17 | 149.8 * | 149.0, 150.5 | 0.826 | |
27 | 18 | 150.0 * | 149.4, 150.7 | 14 | 150.0 * | 149.3, 150.8 | 0.985 | |
Potassium (mmol/L) | 10 | 15 | 5.12 | 4.97, 5.26 | 14 | 5.04 | 4.89, 5.19 | 0.468 |
12 | 13 | 4.82 * | 4.66, 4.97 | 15 | 5.04 | 4.89, 5.19 | 0.037 | |
14 | 13 | 4.87 | 4.72, 5.03 | 15 | 5.02 | 4.88, 5.17 | 0.166 | |
18 | 18 | 4.70 * | 4.54, 4.83 | 11 | 4.79 | 4.62, 4.96 | 0.397 | |
23 | 17 | 4.63 * | 4.49, 4.76 | 17 | 4.60 * | 4.46, 4.74 | 0.747 | |
27 | 18 | 4.53 * | 4.40, 4.66 | 14 | 4.46 * | 4.31, 4.62 | 0.537 | |
Chloride (mmol/L) | 10 | 15 | 115.5 | 114.8, 116.3 | 14 | 115.6 | 114.7, 116.4 | 0.935 |
12 | 13 | 115.4 | 114.6, 116.2 | 15 | 115.1 | 114.3, 116.0 | 0.620 | |
14 | 13 | 116.0 | 115.2, 116.8 | 15 | 115.0 | 114.2, 115.8 | 0.084 | |
18 | 18 | 115.7 | 115.0, 116.4 | 11 | 116.3 | 115.3, 117.2 | 0.318 | |
23 | 17 | 116.9 * | 116.1, 117.6 | 17 | 116.0 | 115.1, 116.8 | 0.098 | |
27 | 18 | 116.8 * | 116.0, 117.5 | 14 | 116.3 | 115.4, 117.1 | 0.384 | |
Globulin (g/L) | 10 | 15 | 22.81 | 21.65, 23.97 | 14 | 23.77 | 22.49, 25.05 | 0.268 |
12 | 13 | 24.18 | 22.99, 25.37 | 15 | 25.80 * | 24.52, 27.07 | 0.068 | |
14 | 13 | 23.89 | 22.68, 25.10 | 15 | 25.96 * | 24.70, 27.22 | 0.022 | |
18 | 18 | 26.56 * | 25.47, 27.65 | 11 | 27.02 * | 25.65, 28.40 | 0.592 | |
23 | 17 | 29.16 * | 28.04, 30.28 | 17 | 30.71 * | 29.48, 31.94 | 0.066 | |
27 | 18 | 29.07 * | 27.98, 30.16 | 14 | 29.35 * | 28.07, 30.62 | 0.740 |
Parameter | Control | Test | p | |||||
---|---|---|---|---|---|---|---|---|
Week | n | Median | IQR | n | Median | IQR | ||
Diet intake (g/day) | 10 | 20 | 44 | 33, 51 | 20 | 46 | 37, 51 | 0.852 |
12 | 20 | 55 * | 52, 59 | 20 | 57 * | 55, 60 | 0.134 | |
14 | 20 | 60 * | 55, 66 | 20 | 64 * | 58, 67 | 0.207 | |
18 | 20 | 65 * | 57, 68 | 20 | 62 * | 57, 66 | 0.702 | |
23 | 20 | 65 * | 61, 68 | 20 | 59 * | 57, 65 | 0.021 | |
27 | 20 | 63 * | 55, 70 | 20 | 56 * | 54, 63 | 0.027 | |
Calorie intake (kcal/day) | 10 | 20 | 177 | 134, 206 | 20 | 187 | 149, 207 | 0.807 |
12 | 20 | 223 * | 211, 239 | 20 | 232 * | 224, 244 | 0.101 | |
14 | 20 | 243 * | 221, 267 | 20 | 260 * | 236, 272 | 0.160 | |
18 | 20 | 263 * | 231, 276 | 20 | 252 * | 232, 268 | 0.862 | |
23 | 20 | 263 * | 248, 276 | 20 | 240 * | 231, 264 | 0.029 | |
27 | 20 | 256 * | 223, 285 | 20 | 228 * | 220, 256 | 0.037 | |
Calorie intake per metabolic bodyweight (kcal/kg bodyweight0.67) | 10 | 20 | 150 | 113, 179 | 20 | 163 | 130, 180 | 0.043 |
12 | 20 | 165 * | 154, 176 | 20 | 174 * | 166, 182 | 0.018 | |
14 | 20 | 164 * | 150, 172 | 20 | 172 * | 160, 183 | 0.016 | |
18 | 20 | 143 * | 132, 150 | 20 | 141 * | 130, 148 | 0.517 | |
23 | 20 | 126 * | 121, 135 | 20 | 120 * | 115, 125 | 0.093 | |
27 | 20 | 114 * | 107, 121 | 20 | 106 * | 102, 114 | 0.205 | |
Body condition score | 10 | 20 | 5 | 5, 5 | 20 | 5 | 5, 5 | 0.998 |
12 | 20 | 5 | 5, 5 | 20 | 5 | 5, 5 | 0.837 | |
14 | 20 | 5 | 5, 5 | 20 | 5 | 5, 6 | 0.313 | |
18 | 20 | 5 * | 5, 6 | 20 | 6 * | 6, 6 | 0.077 | |
23 | 20 | 5 * | 5, 6 | 20 | 6 * | 5, 6 | 0.219 | |
27 | 20 | 6 * | 5, 6 | 20 | 6 * | 6, 6 | 0.053 | |
Bodyweight (g) | 10 | 20 | 1320 | 1200, 1407 | 20 | 1247 | 1165, 1321 | 0.494 |
12 | 20 | 1599 * | 1467, 1704 | 20 | 1537 * | 1441, 1624 | 0.412 | |
14 | 20 | 1917 * | 1736, 2018 | 20 | 1816 * | 1712, 1932 | 0.441 | |
18 | 20 | 2514 * | 2215, 2596 | 20 | 2365 * | 2240, 2531 | 0.461 | |
23 | 20 | 3063 * | 2631, 3211 | 20 | 2845 * | 2687, 3099 | 0.414 | |
27 | 20 | 3401 * | 2927, 3674 | 20 | 3193 * | 2992, 3458 | 0.468 |
Parameter | Week | Control | Test | p | ||||
---|---|---|---|---|---|---|---|---|
n | Median | IQR | n | Median | IQR | |||
Calicivirus titre (log2) | 10 | 16 | 0.00 | 0.00, 0.00 | 13 | 0.00 | 0.00, 0.00 | 0.726 |
12 | 17 | 0.00 | 0.00, 0.00 | 20 | 0.00 | 0.00, 0.00 | 0.989 | |
14 | 15 | 6.83 * | 0.00, 7.06 | 17 | 0.00 | 0.00, 7.04 | 0.29 | |
18 | 19 | 9.40 * | 9.02, 10.00 | 18 | 9.80 * | 9.46, 10.20 | 0.712 | |
23 | 18 | 10.30 * | 9.65, 10.50 | 17 | 10.40 * | 9.68, 10.70 | 0.809 | |
27 | 19 | 9.65 * | 9.34, 10.30 | 16 | 10.40 * | 9.93, 10.70 | 0.166 | |
Herpesvirus titre (log2) | 10 | 16 | 0.00 | 0.00, 3.00 | 14 | 0.00 | 0.00, 0.00 | 0.088 |
12 | 19 | 0.00 | 0.00, 0.00 | 20 | 0.00 | 0.00, 0.00 | 0.659 | |
14 | 18 | 0.00 | 0.00, 0.00 | 18 | 0.00 | 0.00, 0.00 | 0.860 | |
18 | 19 | 0.00 | 0.00, 1.50 | 19 | 0.00 | 0.00, 0.00 | 0.317 | |
23 | 19 | 3.00 | 0.00, 4.00 | 18 | 4.00 * | 3.00, 5.90 | 0.051 | |
27 | 20 | 1.50 | 0.00, 4.00 | 17 | 4.58 * | 3.00, 5.00 | 0.007 | |
Parvovirus titre (log2) | 10 | 17 | 6.32 | 4.32, 7.32 | 15 | 5.32 | 4.82, 6.32 | 0.804 |
12 | 19 | 5.32 | 4.32, 6.32 | 20 | 4.32 | 3.32, 5.57 | 0.398 | |
14 | 18 | 4.32 * | 3.57, 5.07 | 18 | 3.32 * | 0.00, 5.07 | 0.640 | |
18 | 19 | 0.00 | 0.00, 5.82 | 19 | 4.32 | 3.32, 7.32 | 0.144 | |
23 | 19 | 6.32 | 6.32, 7.32 | 18 | 8.32 * | 7.32, 9.32 | 0.023 | |
27 | 20 | 6.82 | 6.07, 7.32 | 17 | 8.32 * | 6.32, 8.32 | 0.064 | |
IgA (µg/mL) | 10 | 12 | 38.5 | 33.1, 51.7 | 12 | 81.8 | 32.1, 177.0 | 0.102 |
12 | 15 | 56.1 | 49.3, 134.0 | 18 | 90.7 | 59.2, 178.0 | 0.145 | |
14 | 15 | 82.9 * | 57.9, 144.0 | 17 | 81.1 | 61.8, 184.0 | 0.466 | |
18 | 19 | 142.0 * | 89.7, 194.0 | 14 | 144.0 * | 70.7, 318.0 | 0.560 | |
23 | 18 | 220.0 * | 161.0, 280.0 | 17 | 146.0 * | 74.4, 281.0 | 0.631 | |
27 | 17 | 205.0 * | 92.1, 315.0 | 14 | 201.0 * | 119.0, 274.0 | 0.470 | |
IgG (µg/mL) | 10 | 12 | 2435 | 2124, 2805 | 12 | 2406 | 1813, 2830 | 0.849 |
12 | 15 | 3332 * | 2656, 4300 | 18 | 4028 * | 3454, 5663 | 0.360 | |
14 | 15 | 3464 * | 2731, 4260 | 17 | 4131 * | 3618, 6773 | 0.155 | |
18 | 19 | 5436 * | 4871, 6465 | 14 | 6296 * | 5140, 8668 | 0.888 | |
23 | 18 | 7574 * | 6062, 8836 | 17 | 9019 * | 6337, 11014 | 0.476 | |
27 | 18 | 7378 * | 6142, 9150 | 14 | 9039 * | 6032, 11900 | 0.653 | |
IgM (µg/mL) | 10 | 12 | 509 | 417, 699 | 12 | 625 | 539, 663 | 0.006 |
12 | 15 | 709 * | 486, 866 | 18 | 737 * | 669, 848 | 0.000 | |
14 | 15 | 616 | 477, 779 | 17 | 673 * | 624, 796 | 0.000 | |
18 | 19 | 620 * | 508, 787 | 14 | 769 * | 695, 920 | 0.000 | |
23 | 18 | 829 * | 713, 1005 | 17 | 972 * | 762, 1110 | 0.000 | |
27 | 18 | 752 * | 662, 902 | 14 | 981 * | 907, 1063 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atwal, J.; Joly, W.; Bednall, R.; Albanese, F.; Farquhar, M.; Holcombe, L.J.; Watson, P.; Harrison, M. Dietary Supplementation with Nucleotides, Short-Chain Fructooligosaccharides, Xylooligosaccharides, Beta-Carotene and Vitamin E Influences Immune Function in Kittens. Animals 2023, 13, 3734. https://doi.org/10.3390/ani13233734
Atwal J, Joly W, Bednall R, Albanese F, Farquhar M, Holcombe LJ, Watson P, Harrison M. Dietary Supplementation with Nucleotides, Short-Chain Fructooligosaccharides, Xylooligosaccharides, Beta-Carotene and Vitamin E Influences Immune Function in Kittens. Animals. 2023; 13(23):3734. https://doi.org/10.3390/ani13233734
Chicago/Turabian StyleAtwal, Jujhar, Willy Joly, Robyn Bednall, Fabio Albanese, Michelle Farquhar, Lucy J. Holcombe, Phillip Watson, and Matthew Harrison. 2023. "Dietary Supplementation with Nucleotides, Short-Chain Fructooligosaccharides, Xylooligosaccharides, Beta-Carotene and Vitamin E Influences Immune Function in Kittens" Animals 13, no. 23: 3734. https://doi.org/10.3390/ani13233734
APA StyleAtwal, J., Joly, W., Bednall, R., Albanese, F., Farquhar, M., Holcombe, L. J., Watson, P., & Harrison, M. (2023). Dietary Supplementation with Nucleotides, Short-Chain Fructooligosaccharides, Xylooligosaccharides, Beta-Carotene and Vitamin E Influences Immune Function in Kittens. Animals, 13(23), 3734. https://doi.org/10.3390/ani13233734