Characterization of the Fecal and Mucosa-Associated Microbiota in Dogs with Chronic Inflammatory Enteropathy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dogs
2.1.1. Healthy Control (HC) Dogs
2.1.2. IBD Dogs
2.2. Sample Collection, Upper GI Endoscopy, and Histopathological Evaluation
2.3. DNA Extraction
2.4. Library Preparation and Sequencing
2.5. Bioinformatic Analysis
2.6. Statistical Analysis
3. Results
3.1. Dogs
3.2. Endoscopic and Histopathological Evaluation
3.3. 16S-rRNA Sequencing
3.3.1. Duodenal Biopsy Specimens
3.3.2. Fecal Microbiota Communities
3.3.3. Duodenal Biopsies vs. Fecal Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Washabau, R.J.; Day, M.J.; Willard, M.D.; Hall, E.J.; Jergens, A.E.; Mansell, J.; Minami, T.; Bilzer, T.W.; WSAVA International Gastrointestinal Standardization Group. Endoscopic, biopsy, and histopathologic guidelines for the evaluation of gastrointestinal inflammation in companion animals. J. Vet. Intern. Med. 2010, 24, 10–26. [Google Scholar] [CrossRef]
- Allenspach, K.; Culverwell, C.; Chan, D. Long-term outcome in dogs with chronic enteropathies: 203 cases. Vet. Rec. 2016, 178, 368. [Google Scholar] [CrossRef] [Green Version]
- Dandrieux, J.R. Inflammatory bowel disease versus chronic enteropathy in dogs: Are they one and the same? J. Small Anim. Pract. 2016, 57, 589–599. [Google Scholar] [CrossRef]
- Jergens, A.E.; Heilmann, R.M. Canine chronic enteropathy—Current state-of-the-art and emerging concepts. Front. Vet. Sci. 2022, 9, 923013. [Google Scholar] [CrossRef]
- Kathrani, A. Dietary and Nutritional Approaches to the Management of Chronic Enteropathy in Dogs and Cats. Vet. Clin. North. Am. Small Anim. Pract. 2021, 51, 123–136. [Google Scholar] [CrossRef]
- Cerquetella, M.; Rossi, G.; Suchodolski, J.S.; Schmitz, S.S.; Allenspach, K.; Rodríguez-Franco, F.; Furlanello, T.; Gavazza, A.; Marchegiani, A.; Unterer, S.; et al. Proposal for rational antibacterial use in the diagnosis and treatment of dogs with chronic diarrhoea. J. Small Anim. Pract. 2020, 61, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Dandrieux, J.R.S.; Mansfield, C.S. Chronic Enteropathy In Canines: Prevalence, Impact And Management Strategies. Vet. Med. 2019, 10, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Kathrani, A.; Werling, D.; Allenspach, K. Canine breeds at high risk of developing inflammatory bowel disease in the south-eastern UK. Vet. Rec. 2011, 169, 635. [Google Scholar] [CrossRef] [Green Version]
- Peiravan, A.; Bertolini, F.; Rothschild, M.F.; Simpson, K.W.; Jergens, A.E.; Allenspach, K.; Werling, D. Genome-wide association studies of inflammatory bowel disease in German shepherd dogs. PLoS ONE 2018, 13, e0200685. [Google Scholar] [CrossRef]
- Park, J.H.; Peyrin-Biroulet, L.; Eisenhut, M.; Shin, J.I. IBD immunopathogenesis: A comprehensive review of inflammatory molecules. Autoimmun. Rev. 2017, 16, 416–426. [Google Scholar] [CrossRef]
- Lewis, J.D.; Abreu, M.T. Diet as a Trigger or Therapy for Inflammatory Bowel Diseases. Gastroenterology 2017, 152, 398–414. [Google Scholar] [CrossRef]
- Eissa, N.; Kittana, H.; Gomes-Neto, J.C.; Hussein, H. Mucosal immunity and gut microbiota in dogs with chronic enteropathy. Res. Vet. Sci. 2019, 122, 156–164. [Google Scholar] [CrossRef]
- Mondo, E.; Marliani, G.; Accorsi, P.A.; Cocchi, M.; Di Leone, A. Role of gut microbiota in dog and cat’s health and diseases. Open Vet. J. 2019, 9, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Redfern, A.; Suchodolski, J.; Jergens, A. Role of the gastrointestinal microbiota in small animal health and disease. Vet. Rec. 2017, 181, 370. [Google Scholar] [CrossRef]
- Suchodolski, J.S. Companion animals symposium: Microbes and gastrointestinal health of dogs and cats. J. Anim. Sci. 2011, 89, 1520–1530. [Google Scholar] [CrossRef] [Green Version]
- Pilla, R.; Suchodolski, J.S. The Role of the Canine Gut Microbiome and Metabolome in Health and Gastrointestinal Disease. Front. Vet. Sci. 2020, 6, 498. [Google Scholar] [CrossRef] [Green Version]
- Barko, P.C.; McMichael, M.A.; Swanson, K.S.; Williams, D.A. The Gastrointestinal Microbiome: A Review. J. Vet. Intern. Med. 2018, 32, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Suchodolski, J.S. Diagnosis and interpretation of intestinal dysbiosis in dogs and cats. Vet. J. 2016, 215, 30–37. [Google Scholar] [CrossRef]
- Vázquez-Baeza, Y.; Hyde, E.R.; Suchodolski, J.S.; Knight, R. Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks. Nat. Microbiol. 2016, 1, 16177. [Google Scholar] [CrossRef]
- Guard, B.C.; Honneffer, J.B.; Jergens, A.E.; Jonika, M.M.; Toresson, L.; Lawrence, Y.A.; Webb, C.B.; Hill, S.; Lidbury, J.A.; Steiner, J.M.; et al. Longitudinal assessment of microbial dysbiosis, fecal unconjugated bile acid concentrations, and disease activity in dogs with steroid-responsive chronic inflammatory enteropathy. J. Vet. Intern. Med. 2019, 33, 1295–1305. [Google Scholar] [CrossRef]
- Suchodolski, J.S. Analysis of the gut microbiome in dogs and cats. Vet. Clin. Pathol. 2022, 50 (Suppl. 1), 6–17. [Google Scholar] [CrossRef]
- Suchodolski, J.S.; Markel, M.E.; Garcia-Mazcorro, J.F.; Unterer, S.; Heilmann, R.M.; Dowd, S.E.; Kachroo, P.; Ivanov, I.; Minamoto, Y.; Dillman, E.M.; et al. The fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel disease. PLoS ONE 2012, 7, e51907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minamoto, Y.; Otoni, C.C.; Steelman, S.M.; Büyükleblebici, O.; Steiner, J.M.; Jergens, A.E.; Suchodolski, J.S. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes 2015, 6, 33–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minamoto, Y.; Minamoto, T.; Isaiah, A.; Sattasathuchana, P.; Buono, A.; Rangachari, V.R.; McNeely, I.H.; Lidbury, J.; Steiner, J.M.; Suchodolski, J.S. Fecal short-chain fatty acid concentrations and dysbiosis in dogs with chronic enteropathy. J. Vet. Intern. Med. 2019, 33, 1608–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilla, R.; Guard, B.C.; Blake, A.B.; Ackermann, M.; Webb, C.; Hill, S.; Lidbury, J.A.; Steiner, J.M.; Jergens, A.E.; Suchodolski, J.S. Long-Term Recovery of the Fecal Microbiome and Metabolome of Dogs with Steroid-Responsive Enteropathy. Animals 2021, 11, 2498. [Google Scholar] [CrossRef]
- Hou, Y.; Dong, L.; Lu, X.; Shi, H.; Xu, B.; Zhong, W.; Ma, L.; Wang, S.; Yang, C.; He, X.; et al. Distinctions between Fecal and Intestinal Mucosal Microbiota in Subgroups of Irritable Bowel Syndrome. Dig. Dis. Sci. 2022, 67, 5580–5592. [Google Scholar] [CrossRef]
- Montoya-Alonso, J.A.; Morchón, R.; Costa-Rodríguez, N.; Matos, J.I.; Falcón-Cordón, Y.; Carretón, E. Current Distribution of Selected Vector-Borne Diseases in Dogs in Spain. Front. Vet. Sci. 2020, 7, 564429. [Google Scholar] [CrossRef]
- Allenspach, K.; Wieland, B.; Gröne, A.; Gaschen, F. Chronic enteropathies in dogs: Evaluation of risk factors for negative outcome. J. Vet. Intern. Med. 2007, 21, 700–708. [Google Scholar] [CrossRef]
- Gaschen, F.P.; Merchant, S.R. Adverse food reactions in dogs and cats. Vet. Clin. N. Am. Small Anim. Pract. 2011, 41, 361–379. [Google Scholar] [CrossRef]
- Marks, S.L.; Laflamme, D.P.; McAloose, D. Dietary trial using a commercial hypoallergenic diet containing hydrolyzed protein for dogs with inflammatory bowel disease. Vet. Ther. 2002, 3, 109–118. [Google Scholar]
- Jergens, A.E.; Schreiner, C.A.; Frank, D.E.; Niyo, Y.; Ahrens, F.E.; Eckersall, P.D.; Benson, T.J.; Evans, R. A scoring index for disease activity in canine inflammatory bowel disease. J. Vet. Intern. Med. 2003, 17, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Slovak, J.E.; Wang, C.; Sun, Y.; Otoni, C.; Morrison, J.; Deitz, K.; LeVine, D.; Jergens, A.E. Development and validation of an endoscopic activity score for canine inflammatory bowel disease. Vet. J. 2015, 203, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Allenspach, K.A.; Mochel, J.P.; Du, Y.; Priestnall, S.L.; Moore, F.; Slayter, M.; Rodrigues, A.; Ackermann, M.; Krockenberger, M.; Mansell, J.; et al. Correlating Gastrointestinal Histopathologic Changes to Clinical Disease Activity in Dogs with Idiopathic Inflammatory Bowel Disease. Vet. Pathol. 2019, 56, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Kalenyak, K.; Isaiah, A.; Heilmann, R.M.; Suchodolski, J.S.; Burgener, I.A. Comparison of the intestinal mucosal microbiota in dogs diagnosed with idiopathic inflammatory bowel disease and dogs with food-responsive diarrhea before and after treatment. FEMS Microbiol. Ecol. 2018, 94, fix173. [Google Scholar] [CrossRef]
- Bergeron, C.C.; Costa, M.C.; de Souza, L.B.; Sauvé, F. Description of the bacterial microbiota of anal sacs in healthy dogs. Can. J. Vet. Res. 2021, 85, 12–17. [Google Scholar] [PubMed]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Wagner, H. Vegan: Community Ecology Package; R Package Version 2.4–4.2. 2017. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 30 November 2022).
- Vázquez-Baeza, Y.; Pirrung, M.; Gonzalez, A.; Knight, R. EMPeror: A tool for visualizing high-throughput microbial community data. Gigascience 2013, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Honneffer, J.B.; Steiner, J.M.; Lidbury, J.A.; Suchodolski, J.S. Variation of the microbiota and metabolome along the canine gastrointestinal tract. Metabolomics 2017, 13, 26. [Google Scholar] [CrossRef]
- Suchodolski, J.S.; Dowd, S.E.; Wilke, V.; Steiner, J.M.; Jergens, A.E. 16S rRNA gene pyrosequencing reveals bacterial dysbiosis in the duodenum of dogs with idiopathic inflammatory bowel disease. PLoS ONE 2012, 7, e39333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omori, M.; Maeda, S.; Igarashi, H.; Ohno, K.; Sakai, K.; Yonezawa, T.; Horigome, A.; Odamaki, T.; Matsuki, N. Fecal microbiome in dogs with inflammatory bowel disease and intestinal lymphoma. J. Vet. Med. Sci. 2017, 76, 1840–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchodolski, J.S.; Xenoulis, P.G.; Paddock, C.G.; Steiner, J.M.; Jergens, A.E. Molecular analysis of the bacterial microbiota in duodenal biopsies from dogs with idiopathic inflammatory bowel disease. Vet. Microbiol. 2010, 142, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Zhan, L.; Lu, X.; Song, J.; Zhong, Y.; Wang, Y.; Yang, Y.; Fan, Z.; Jiang, X.; Sun, R. Characteristics of Gastric Microbiota in GK Rats with Spontaneous Diabetes: A Comparative Study. Diabetes Metab. Syndr. Obes. 2020, 13, 1435–1447. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Guo, L.; Xu, G.; Li, Z.; Appiah, M.O.; Yang, L.; Lu, W. Quercetin Reduces Inflammation and Protects Gut Microbiota in Broilers. Molecules 2022, 27, 3269. [Google Scholar] [CrossRef]
- Chen, X.; Xu, J.; Wang, H.; Luo, J.; Wang, Z.; Chen, G.; Jiang, D.; Cao, R.; Huang, H.; Luo, D.; et al. Profiling the differences of gut microbial structure between schizophrenia patients with and without violent behaviors based on 16S rRNA gene sequencing. Int. J. Legal. Med. 2021, 135, 131–141. [Google Scholar] [CrossRef]
- Calalang, J.; Cheung, H.; Lichimo, K.; So, B. Identifying breed, dietary, and reproductive factors affecting the gut microbiome of dogs with inflammatory bowel disease. Undergrad. J. Exp. Microbiol. Immunol. 2021, 26, 1–13. [Google Scholar]
- Organski, A.C.; Jorgensen, J.S.; Cross, T.-W.L. Involving the life inside: The complex interplay between reproductive axis hormones and gut microbiota. Curr. Opin. Endocr. Metab. Res. 2021, 20, 100284. [Google Scholar] [CrossRef]
- Deschamps, C.; Humbert, D.; Zentek, J.; Denis, S.; Priymenko, N.; Apper, E.; Blanquet-Diot, S. From Chihuahua to Saint-Bernard: How did digestion and microbiota evolve with dog sizes. Int. J. Biol. Sci. 2022, 18, 5086. [Google Scholar] [CrossRef]
- Garcia-Mazcorro, J.F.; Dowd, S.E.; Poulsen, J.; Steiner, J.M.; Suchodolski, J.S. Abundance and short-term temporal variability of fecal microbiota in healthy dogs. Microbiologyopen 2012, 1, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Handl, S.; Dowd, S.E.; Garcia-Mazcorro, J.F.; Steiner, J.M.; Suchodolski, J.S. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol. Ecol. 2011, 76, 301–310. [Google Scholar] [CrossRef] [PubMed]
- AlShawaqfeh, M.K.; Wajid, B.; Minamoto, Y.; Markel, M.; Lidbury, J.A.; Steiner, J.M.; Serpedin, E.; Suchodolski, J.S. A dysbiosis index to assess microbial changes in fecal samples of dogs with chronic inflammatory enteropathy. FEMS Microbiol. Ecol. 2017, 93, fix136. [Google Scholar] [CrossRef] [Green Version]
- Félix, A.P.; Souza, C.M.M.; de Oliveira, S.G. Biomarkers of gastrointestinal functionality in dogs: A systematic review and meta-analysis. Anim. Feed Sci. Technol. 2021, 283, 115183. [Google Scholar] [CrossRef]
- Rossi, G.; Pengo, G.; Caldin, M.; Palumbo Piccionello, A.; Steiner, J.M.; Cohen, N.D.; Jergens, A.E.; Suchodolski, J.S. Comparison of microbiological, histological, and immunomodulatory parameters in response to treatment with either combination therapy with prednisone and metronidazole or probiotic VSL# 3 strains in dogs with idiopathic inflammatory bowel disease. PLoS ONE 2014, 9, e94699. [Google Scholar] [CrossRef]
- Mackei, M.; Talabér, R.; Müller, L.; Sterczer, Á.; Fébel, H.; Neogrády, Z.; Mátis, G. Altered Intestinal Production of Volatile Fatty Acids in Dogs Triggered by Lactulose and Psyllium Treatment. Vet. Sci. 2022, 9, 206. [Google Scholar] [CrossRef]
- Markel, M.; Berghoff, N.; Unterer, S.; Oliveira-Barros, L.; Grellet, A.; Allenspach, K.; Toresson, L.; Barr, J.; Heilmann, R.; Garcia-Mazcorro, J.F.; et al. Characterization of fecal dysbiosis in dogs with chronic enteropathies and acute hemorrhagic diarrhea. J. Vet. Intern. Med. 2012, 26, 765–766. [Google Scholar]
- Isaiah, A.; Parambeth, J.C.; Steiner, J.M.; Lidbury, J.A.; Suchodolski, J.S. The fecal microbiome of dogs with exocrine pancreatic insufficiency. Anaerobe 2017, 45, 50–58. [Google Scholar] [CrossRef]
- White, R.; Atherly, T.; Guard, B.; Rossi, G.; Wang, C.; Mosher, C.; Webb, C.; Hill, S.; Ackermann, M.; Sciabarra, P.; et al. Randomized, controlled trial evaluating the effect of multi-strain probiotic on the mucosal microbiota in canine idiopathic inflammatory bowel disease. Gut Microbes 2017, 8, 451–466. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Guan, L.L. Metatranscriptomic Profiling Reveals Linkages between the Active Rumen Microbiome and Feed Efficiency in Beef Cattle. Appl. Environ. Microbiol. 2017, 83, e00061-17. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.E.; Kim, H.R.; Jeong, J.Y.; So, K.M.; Lee, S.; Ji, S.Y.; Kim, M.; Lee, H.J.; Lee, S.; Kim, K.H.; et al. Impact of Breed on the Fecal Microbiome of Dogs under the Same Dietary Condition. J. Microbiol. Biotechnol. 2019, 29, 1947–1956. [Google Scholar] [CrossRef]
- Sung, C.H.; Marsilio, S.; Chow, B.; Zornow, K.A.; Slovak, J.E.; Pilla, R.; Lidbury, J.A.; Steiner, J.M.; Park, S.Y.; Hong, M.P.; et al. Dysbiosis index to evaluate the fecal microbiota in healthy cats and cats with chronic enteropathies. J. Feline Med. Surg. 2022, 24, e1–e12. [Google Scholar] [CrossRef] [PubMed]
- Pilla, R.; Suchodolski, J.S. The Gut Microbiome of Dogs and Cats, and the Influence of Diet. Vet. Clin. N. Am. Small Anim. Pract. 2021, 51, 605–621. [Google Scholar] [CrossRef]
- Pilla, R.; Gaschen, F.P.; Barr, J.W.; Olson, E.; Honneffer, J.; Guard, B.C.; Blake, A.B.; Villanueva, D.; Khattab, M.R.; AlShawaqfeh, M.K.; et al. Effects of metronidazole on the fecal microbiome and metabolome in healthy dogs. J. Vet. Intern. Med. 2020, 34, 1853–1866. [Google Scholar] [CrossRef]
- Garcia-Mazcorro, J.F.; Suchodolski, J.S.; Jones, K.R.; Clark-Price, S.C.; Dowd, S.E.; Minamoto, Y.; Markel, M.; Steiner, J.M.; Dossin, O. Effect of the proton pump inhibitor omeprazole on the gastrointestinal bacterial microbiota of healthy dogs. FEMS Microbiol. Ecol. 2012, 80, 624–636. [Google Scholar] [CrossRef]
- Bresciani, F.; Minamoto, Y.; Suchodolski, J.S.; Galiazzo, G.; Vecchiato, C.G.; Pinna, C.; Biagi, G.; Pietra, M. Effect of an extruded animal protein-free diet on fecal microbiota of dogs with food responsive enteropathy. J. Vet. Intern. Med. 2018, 32, 1903–1910. [Google Scholar] [CrossRef] [Green Version]
- Jarett, J.K.; Kingsbury, D.D.; Dahlhausen, K.E.; Ganz, H.H. Best Practices for Microbiome Study Design in Companion Animal Research. Front. Vet. Sci. 2021, 8, 644836. [Google Scholar] [CrossRef] [PubMed]
Variables | HC (n = 12) | IBD (n = 34) | p-Value |
---|---|---|---|
Age (years; mean ± SD) | 5.31 ± 3.09 | 6.05 ± 3.47 | 0.519 |
Sex (male/female) | 7/5 | 15/19 | 0.487 |
Fertile status (spayed or neutered/entire) | 8/4 | 21/13 | 1.000 |
Breed (pure/mixed) | 7/5 | 24/10 | 0.436 |
Weight (kg); median [range]) | 13.85 [4.50–32.80] | 11.80 [2.30–44] | 0.763 |
BCS (1–9); median [range]) | 5.50 [5–7] | 4.00 [2–7] | 0.001 * |
Living with other pets (yes/no) | 7/5 | 10/24 | 0.093 |
Habitat (indoor/50–50/outdoor) | 8/0/4 | 25/7/2 | 0.025 * |
CIBDAI (median [range]) | 0 [0] | 6.5 [3–10] | <0.0001 * |
CCECAI (median [range]) | 0 [0] | 7 [3–12] | <0.0001 * |
Duodenal biopsies/fecal samples | 7/12 | 30/34 | na |
Evaluation | Mean ± SD | |||
---|---|---|---|---|
Macroscopic | ∑ Values (Range) | HC (n = 12) | IBD (n = 34) | p–Value |
WSAVA [1] | Esophagus (0–27) | 0.08 ± 0.29 | 1.62 ± 1.60 | <0.0001 * |
Stomach (0–33) | 2.70 ± 1.83 | 5.44 ± 2.18 | 0.001 * | |
Duodenum (0–33) | 4.67 ± 2.84 | 8.32 ± 2.69 | 0.0002 * | |
Slovak et al. [32] | Quantitative stomach (0–6) | 0.5 ± 0.53 | 1.79 ± 1.01 | <0.0001 * |
Quantitative duodenum (0–8) | 2.08 ± 1.08 | 3.44 ±1.31 | 0.002 * | |
Qualitative stomach (0–3) | 0.5 ± 0.53 | 1.59 ± 0.74 | <0.0001 * | |
Qualitative duodenum (0–4) | 1.67 ± 0.78 | 2.38 ± 0.82 | 0.001 * | |
Histopathologic | ∑ Values (Range) | HC (n = 12) | IBD (n = 34) | p-Value |
WSAVA [1] | Stomach (0–27) | 3.71 ± 2.29 | 4.59 ± 11.88 | 0.301 |
Duodenum (0–27) | 4.73 ± 2.45 | 11.88 ± 3.76 | <0.0001 * | |
Allenspach et al. [33] | Stomach (0–15) | 2.86 ± 1.21 | 3.29 ± 1.34 | 0.430 |
Duodenum (0–18) | 3.91 ± 1.92 | 9.18 ± 2.83 | <0.0001 * |
Relative Abundance % (Min–Max) of Sequences | |||
---|---|---|---|
Phylum/Class/Order/Family/Genus | HC (n = 7) | IBD (n = 30) | p-Value |
Actinobacteria | 4.86 (0.24–13.85) | 8.23 (0.00–19.16) | 0.362 |
Actinobacteria | 4.60 (0.23–13.85) | 3.84 (0.00–17.87) | 0.362 |
Actinomycetales | 0.57 (0.00–3.19) | 0.46 (0.00–5.90) | 0.518 |
Actinomycetaceae | 0.57 (0.00–3.19) | 0.46 (0.00–5.90) | 0.518 |
Actinomyces | 0.57 (0.00–3.19) | 0.46 (0.00–5.90) | 0.518 |
Bifidobacteriales | 2.78 (0.00–13.85) | 2.28 (0.00–12.10) | 1.000 |
Bifidobacteriaceae | 2.78 (0.00–13.85) | 2.28 (0.00–12.10) | 1.000 |
Bifidobacterium | 2.78 (0.00–13.85) | 2.28 (0.00–12.1) | 1.000 |
Corynebacteriales | 1.09 (0.00–6.48) | 0.42 (0.00–3.06) | 0.746 |
Rubrobacteria | 0.18 (0.00–1.06) | 0.03 (0.00–0.64) | 0.002 * |
Rubrobacterales | 0.18 (0.00–1.06) | 0.03 (0.00–0.64) | 0.002 * |
Rubrobacteriaceae | 0.18 (0.00–1.06) | 0.03 (0.00–0.64) | 0.002 * |
Rubrobacter | 0.18 (0.00–1.06) | 0.03 (0.00–0.64) | 0.002 * |
Bacteroidetes | 6.83 (0.00–20.52) | 6.81 (0.00–34.39) | 0.954 |
Bacteroidia | 6.74 (0.00–20.52) | 6.80 (0.00–34.39) | 1.000 |
Bacteroidales | 1.05 (0.00–3.72) | 2.85 (0.00–34.16) | 0.331 |
Flavobacteriales | 5.67 (0.00–20.52) | 3.79 (0.00–33.84) | 0.493 |
Weeksellaceae | 5.46 (0.00–19.83) | 3.66 (0.00–3.67) | 0.419 |
Chryseobacterium | 2.30 (0.00–11.29) | 3.44 (0.00–33.67) | 0.884 |
Cyanobacteria | 1.86 (0.00–6.48) | 0.44 (0.00–5.73) | 0.010 * |
Vampirivibrionia | 0.58 (0.00–1.82) | 0.04 (0.00–0.83) | 0.005 * |
Obscuribacterales | 0.58 (0.00–1.82) | 0.04 (0.00–0.83) | 0.005 * |
Obscuribacteraceae | 0.58 (0.00–1.82) | 0.04 (0.00–0.83) | 0.005 * |
Firmicutes | 26.89 (0.38–60.64) | 39.82 (1.02–99.71) | 0.323 |
Bacilli | 16.57 (0.11–60.19) | 21.06 (0.08–57.44) | 0.362 |
Bacillales | 4.47 (0.00–14.81) | 5.75 (0.00–27.36) | 0.786 |
Bacillaceae | 4.47 (0.00–14.81) | 5.75 (0.00–27.36) | 0.786 |
Anaerobacillus | 2.82 (0.00–10.41) | 2.41 (0.00–5.90) | 0.953 |
Bacillus | 1.65 (0.00–6.48) | 3.28 (0.00.18.24) | 0.389 |
Lactobacillales | 8.39 (0.03–30.13) | 11.97 (0.00–40.64) | 0.522 |
Lactobacillaceae | 4.85 (0.00–30.13) | 3.15 (0.00–24.66) | 0.905 |
Lactobacillus | 4.85 (0.00–30.13) | 3.15 (0.00–24.66) | 0.905 |
Streptococcaceae | 2.14 (0.00–7.14) | 6.73 (0.00–23.12) | 0.340 |
Streptococcus | 2.14 (0.00–7.14) | 6.73 (0.00–23.12) | 0.340 |
Staphylococcales | 3.64 (0.00–15.26) | 0.785 (0.00–4.29) | 0.202 |
Gemellaceae | 0.54 (0.00–2.38) | 0.28 (0.00–2.52) | 0.275 |
Gemella | 0.54 (0.00–2.38) | 0.28 (0.00–2.52) | 0.275 |
Staphylococcaceae | 3.11 (0.00–15.26) | 0.50 (0.00–4.29) | 0.134 |
Staphylococcus | 3.10 (0.00–15.26) | 0.50 (0.00–4.29) | 0.256 |
Clostridia | 9.87 (0.10–26.19) | 18.64 (0.00–99.63) | 0.627 |
Clostridiales | 3.35 (0.00–21.03) | 3.49 (0.00–56.33) | 0.767 |
Clostridiaceae | 3.35 (0.00–21.03) | 3.49 (0.00–56.33) | 0.767 |
Clostridium sensu stricto 1 | 0.39 (0.00–1.50) | 3.33 (0.00–52.55) | 0.899 |
Lachnospirales | 1.42 (0.00–4.63) | 9.28 (0.00–32.81) | 0.284 |
Lachnospiraceae | 1.37 (0.00–4.63) | 9.24 (0.00–32.81) | 0.319 |
Peptostreptococcales–Tissierellales | 3.67 (0.00–14.02) | 5.53 (0.00–92.26) | 0.876 |
Peptostreptococcaceae | 2.95 (0.00–14.02) | 5.44 (0.00–92.26) | 0.740 |
Romboutsia | 2.25 (0.00–14.02) | 3.37 (0.00–92.26) | 0.407 |
Proteobacteria | 57.14 (15.83–77.81) | 40.54 (0.27–6.65) | 0.222 |
Alphaproteobacteria | 7.61 (0.58–23.33) | 6.46 (0.00–30.02) | 0.574 |
Caulobacterales | 1.92 (0.00–9.93) | 0.59 (0.00–3.80) | 0.441 |
Caulobacteraceae | 1.92 (0.00–9.93) | 0.59 (0.00–3.80) | 0.441 |
Phenylobacterium | 1.92 (0.00–9.93) | 0.59 (0.00–3.73) | 0.441 |
Rhizobiales | 2.45 (0.07–8.12) | 2.22 (0.00–11.47) | 0.402 |
Beijerinckiaceae | 1.03 (0.00–5.00) | 0.72 (0.00–5.54) | 0.885 |
Methylobacterium–Methylorubrum | 0.72 (0.00–4.78) | 0.57 (0.00–5.54) | 0.327 |
Rhizobiaceae | 0.76 (0.00–2.56) | 0.92 (0.00–6.56) | 0.885 |
Xanthobacteraceae | 0.60 (0.00–1.14) | 0.54 (0.00–4.66) | 0.163 |
Bradyrhizobium | 0.41 (0.00–1.02) | 0.25 (0.00–3.99) | 0.059 |
Sphingomonadales | 2.20 (0.37–6.35) | 3.22 (0.00–17.17) | 0.472 |
Sphingomonadaceae | 2.20 (0.37–6.35) | 3.22 (0.00–5.29) | 0.472 |
Sphingomonas | 2.00 (0.00–6.35) | 1.37 (0.00–14.44) | 0.132 |
Gammaproteobacteria | 49.53 (13.41–73.79) | 34.08 (0.27–86.29) | 0.135 |
Burkholderiales | 6.00 (1.46–12.16) | 4.25 (0.00–18.54) | 0.180 |
Alcaligenaceae | 0.62 (0.00–1.90) | 0.85 (0.00–4.73) | 0.950 |
Burkholderiaceae | 0.79 (0.00–2.48) | 0.98 (0.00–10.67) | 0.639 |
Comamonadaceae | 1.99 (0.00–9.76) | 1.01 (0.00–4.08) | 0.352 |
Delftia | 1.05 (0.00–5.30) | 0.74 (0.00–4.08) | 0.485 |
Neisseriaceae | 1.68 (0.03–8.20) | 0.63 (0.00–5.32) | 0.004 * |
Conchiformibius | 1.30 (0.00–5.80) | 0.41 (0.00–5.10) | 0.003 * |
Enterobacterales | 2.78 (0.00–18.12) | 3.35 (0.00–15.84) | 0.534 |
Enterobacteriaceae | 2.78 (0.00–18.12) | 3.30 (0.00–15.84) | 0.534 |
Escherichia–Shigella | 1.92 (0.00–12.43) | 2.68 (0.00–15.84) | 0.471 |
Pasteurellales | 3.26 (0.00–21.77) | 1.65 (0.00–18.07) | 0.383 |
Pasteurellaceae | 3.26 (0.00–21.77) | 1.65 (0.00–18.07) | 0.383 |
Pseudomonadales | 28.70 (3.17–56.64) | 14.33 (0.00–51.53) | 0.071 |
Pseudomonadaceae | 26.38 (0.00–56.64) | 12.85 (0.00–51.53) | 0.174 |
Pseudomonas | 26.38 (0.00–56.64) | 12.85 (0.00–51.53) | 0.167 |
Xanthomonadales | 8.49 (0.00–24.44) | 10.16 (0.00–37.02) | 1.000 |
Xanthomonadaceae | 8.49 (0.00–24.44) | 10.16 (0.00–37.02) | 1.000 |
Stenotrophomonas | 8.36 (0.00–24.44) | 9.94 (0.00–36.91) | 0.968 |
Variables | Grouping | Pseudo–F | p-Value | |
---|---|---|---|---|
Clinical condition | HC vs. IBD | 1.07 | 0.358 | |
Age | Young (<4)/adult (4–8)/senior (>8) | 1.18 | 0.346 | |
Sex | Male/female | 0.60 | 0.650 | |
Fertile status | Spayed or neutered/entire | 3.22 | 0.034 * | |
Breed | Pure-breed/mixed-breed | 1.03 | 0.393 | |
Weight | Small (<10 Kg)/medium-size (10–20 Kg)/large-size (>20 Kg) | 2.58 | 0.014 * | |
BCS | Low (1–4)/normal (5)/high (6–9) | 0.57 | 0.750 | |
Living with other pets | Yes/no | 0.58 | 0.663 | |
Habitat | Indoor/50–50/outdoor | 0.64 | 0.680 | |
Clinical onset–diagnosis | NA/more than a year/less than a year | 1.24 | 0.317 | |
Clinical activity indexes | ||||
CIBDAI [31] | NA, clinically insignificant, mild, moderate, severe | 0.72 | 0.679 | |
CCECAI [28] | NA, clinically insignificant, mild, moderate, severe | 0.67 | 0.769 | |
Endoscopic indexes | ||||
Slovak et al. [32] | Stom. Quan. | Scores (0–4) | 1.01 | 0.455 |
Stom. Qual. | Scores (0–3) | 1.26 | 0.284 | |
Duod. Quan. | Scores (0–6) | 0.45 | 0.946 | |
Duod. Qual. | Scores (0–4) | 0.60 | 0.759 | |
WSAVA [1] | Esophagus | Scores (0–6) | 1.13 | 0.354 |
Stomach | Scores (0–12) | 0.98 | 0.500 | |
Duodenum | Scores (0–15) | 0.66 | 0.864 | |
Histopathological indexes | ||||
WSAVA [1] | Stomach | Scores (0–8) | 2.49 | 0.007 * |
Duodenum | Scores (0–18) | 1.84 | 0.046 * | |
Abbreviated [33] | Stomach | Scores (0–6) | 2.08 | 0.037 * |
Duodenum | Scores (0–14) | 1.73 | 0.035 * |
Relative Abundance % (Min–Max) of Sequences | |||
---|---|---|---|
Phylum/Class/Order/Family/Genus | HC (n = 12) | IBD (n = 34) | p-Value |
Actinobacteria | 3.87 (0.02–10.25) | 6.29 (0.26–25.33) | 0.216 |
Actinobacteria | 0.89 (0.00–4.89) | 0.90 (0.00–9.42) | 0.910 |
Actinomycetales | 0.02 (0.00–0.10) | 0.27 (0.00–4.04) | 0.105 |
Actinomycetaceae | 0.02 (0.00–0.10) | 0.27 (0.00–4.04) | 0.105 |
Actinomyces | 0.01 (0.00–0.07) | 0.13 (0.00–1.38) | 0.058 |
Corynebacteriales | 0.11 (0.00–0.56) | 0.47 (0.00–8.11) | 0.150 |
Corynebacteriaceae | 0.11 (0.00–0.56) | 0.47 (0.00–8.11) | 0.150 |
Corynebacterium | 0.11 (0.00–0.56) | 0.47 (0.00–8.11) | 0.150 |
Coriobacteriia | 2.97 (0.00–7.21) | 5.39 (0.06–25.17) | 0.165 |
Coriobacteriales | 2.97 (0.00–7.21) | 5.39 (0.06–25.17) | 0.165 |
Coriobacteriaceae | 2.78 (0.00–7.21) | 5.19 (0.06–25.17) | 0.173 |
Collinsella | 2.78 (0.00–7.21) | 5.19 (0.06–25.17) | 0.173 |
Eggerthellaceae | 0.19 (0.00–0.76) | 0.18 (0.00–0.70) | 0.380 |
Slackia | 0.18 (0.00–0.68) | 0.15 (0.00–0.70) | 0.262 |
Bacteroidetes | 13.72 (0.05–38.83) | 8.69 (0.00–26.66) | 0.150 |
Bacteroidia | 13.72 (0.05–38.83) | 8.69 (0.00–26.66) | 0.150 |
Bacteroidales | 13.72 (0.05–38.83) | 8.69 (0.00–26.66) | 0.150 |
Bacteroidaceae | 4.80 (0.02–18.53) | 4.66 (0.00–26.66) | 0.608 |
Bacteroides | 4.80 (0.02–18.53) | 4.66 (0.00–26.66) | 0.608 |
Prevotellaceae | 8.76 (0.01–32.38) | 3.59 (0.00–23.53) | 0.005 * |
Alloprevotella | 1.65 (0.00–4.49) | 1.75 (0.00–18.84) | 0.068 |
Prevotella | 6.45 (0.00–25.95) | 1.75 (0.00–15.42) | 0.002 * |
Prevotellaceae Ga6A1 group | 0.65 (0.00–3.85) | 0.10 (0.00–1.48) | 0.006 * |
Campylobacterota | 2.66 (0.00–21.06) | 5.49 (0.00–40.48) | 0.940 |
Campylobacteria | 2.66 (0.00–21.06) | 5.49 (0.00–40.48) | 0.940 |
Campylobacterales | 2.66 (0.00–21.06) | 5.49 (0.00–40.48) | 0.940 |
Helicobacteraceae | 2.06 (0.00–21–06) | 4.10 (0.00–37.48) | 0.990 |
Helicobacter | 2.06 (0.00–21–06) | 4.10 (0.00–37.48) | 0.990 |
Firmicutes | 68.24 (47.44–92.90) | 68.84 (36.09–98.49) | 0.754 |
Bacilli | 16.91 (2.40–56.31) | 14.71 (1.33–97.87) | 0.774 |
Erysipelotrichales | 5.76 (1.61–12.24) | 3.23 (0.00–11.15) | 0.019 * |
Erysipelatoclostridiaceae | 2.43 (0.33–9.68) | 1.31 (0.00–7.02) | 0.062 |
Candidatus Stoquefichus | 0.13 (0.00–0.41) | 0.01 (0.00–0.30) | <0.001 * |
Catenibacterium | 1.75 (0.00–9.64) | 0.77 (0.00–6.26) | 0.557 |
Erysipelatoclostridium | 0.35 (0.00–0.92) | 0.45 (0.00–4.13) | 0.269 |
Erysipelotrichaceae UCG–003 | 0.20 (0.00–1.00) | 0.08 (0.00–1.57) | 0.061 |
Erysipelotrichaceae | 3.33 (0.93–6.91) | 1.90 (0.00–9.07) | 0.011 * |
Allobaculum | 1.70 (0.00–6.73) | 0.48 (0.00–3.95) | 0.003 * |
Faecalitalea | 0.09 (0.00–0.23) | 0.34 (0.00–2.83) | 0.535 |
Holdemanella | 0.60 (0.00–2.08) | 0.92 (0.00–8.93) | 0.283 |
Turicibacter | 0.43 (0.00–3.04) | 0.15 (0.00–1.65) | 0.426 |
Lactobacillales | 10.78 (0.01–48.68) | 11.14 (0.03–97.13) | 0.189 |
Enterococcaceae | 0.10 (0.00–0.92) | 4.48 (0.00–96.56) | 0.003 * |
Enterococcus | 0.10 (0.00–0.92) | 4.48 (0.00–96.56) | 0.003 * |
Lactobacillaceae | 9.50 (0.00–48.45) | 1.19 (0.00–17.37) | 0.141 |
Lactobacillus | 9.50 (0.00–48.45) | 1.19 (0.00–17.37) | 0.141 |
Streptococcaceae | 1.19 (0.00–10.72) | 5.43 (0.00–38.85) | 0.021 * |
Streptococcus | 1.18 (0.00–10.72) | 5.42 (0.00–38.71) | 0.021 * |
Staphylococcales | 0.01 (0.00–0.04) | 0.29 (0.00–5.15) | 0.057 |
Clostridia | 43.31 (26.83–66.44) | 45.58 (0.43–81.79) | 0.754 |
Clostridiales | 1.08 (0.00–4.21) | 3.52 (0.02–26.67) | 0.643 |
Clostridiaceae | 1.08 (0.00–4.21) | 3.52 (0.02–26.67) | 0.643 |
Clostridium sensu stricto 1 | 1.07 (0.00–4.21) | 3.40 (0.01–23.97) | 0.574 |
Lachnospirales | 21.82 (11.44–37.87) | 27.61 (0.19–67.31) | 0.402 |
Lachnospiraceae | 21.82 (11.44–37.87) | 27.59 (0.19–67.31) | 0.416 |
Blautia | 12.59 (6.68–22.93) | 12.85 (0.00–48.68) | 0.476 |
Lachnoclostridium | 0.51 (0.00–2.07) | 1.99 (0.00–27.09) | 0.489 |
Lachnospiraceae NK4A136 group | 0.22 (0.00–0.49) | 0.13 (0.00–1.38) | 0.015 * |
Roseburia | 0.14 (0.00–1.29) | 0.88 (0.00–11.61) | 0.158 |
[Ruminococcus] gnavus group | 0.66 (0.26–9.87) | 0.47 (0.02–17.48) | 0.767 |
[Ruminococcus] torques group | 1.54 (0.00–3.95) | 1.16 (0.00–5.94) | 0.101 |
Sellimonas | 0.27 (0.00–0.73) | 0.17 (0.00–2.66) | 0.042 * |
Tyzzerella | 0.39 (0.00–1.49) | 0.69 (0.00–5.51) | 0.521 |
Oscillospirales | 4.40 (0.02–12.67) | 2.76 (0.00–15.46) | 0.037 * |
Butyricicoccaceae | 0.35 (0.00–1.30) | 0.45 (0.00–7.64) | 0.147 |
Butyricicoccus | 0.09 (0.00–0.46) | 0.13 (0.00–1.74) | 0.230 |
Oscillospiraceae | 0.47 (0.00–3.60) | 0.01 (0.00–1.60) | 0.143 |
UCG–005 | 0.40 (0.00–2.82) | 0.03 (0.00–0.90) | <0.001 * |
Ruminococcaceae | 3.58 (0.02–8.78) | 2.21 (0.00–14.87) | 0.070 |
Faecalibacterium | 3.15 (0.00–7.82) | 1.36 (0.00–11.16) | 0.028 * |
Fournierella | 0.18 (0.00–0.73) | 0.05 (0.00–0.45) | 0.034 * |
Peptostreptococcales–Tissierellales | 15.69 (3.61–47.54) | 11.56 (0.12–19.06) | 0.124 |
Peptostreptococcaceae | 15.40 (3.61–47.51) | 11.32 (0.12–36.98) | 0.143 |
Peptoclostridium | 11.10 (0.01–23.95) | 9.05 (0.00–33.51) | 0.536 |
Peptostreptococcus | 0.06 (0.00–0.50) | 0.20 (0.00–3.07) | 0.216 |
Romboutsia | 0.81 (0.00–3.16) | 0.72 (0.00–4.48) | 0.102 |
Negativicutes | 8.01 (0.004–25.21) | 8.55 (0.00–35.98) | 0.276 |
Acidaminococcales | 1.64 (0.00–4.34) | 0.58 (0.00–9.67) | 0.001 * |
Acidaminococcaceae | 1.64 (0.00–4.34) | 0.58 (0.00–9.67) | 0.001 * |
Phascolarctobacterium | 1.64 (0.00–4.34) | 0.58 (0.00–9.67) | 0.001 * |
Veillonellales–Selenomonadales | 6.37 (0.004–20.87) | 7.97 (0.00–35.97) | 0.335 |
Selenomonadaceae | 6.36 (0.004–20.87) | 7.59 (0.00–35.90) | 0.311 |
Megamonas | 6.36 (0.004–20.87) | 7.59 (0.00–35.90) | 0.311 |
Fusobacteria | 9.49 (0.64–21.23) | 5.97 (0.00–24.58) | 0.052 |
Fusobacteriia | 9.49 (0.64–21.23) | 5.97 (0.00–24.58) | 0.052 |
Fusobacteriales | 9.49 (0.64–21.23) | 5.97 (0.00–24.58) | 0.052 |
Fusobacteriaceae | 9.49 (0.64–21.23) | 5.97 (0.00–24.58) | 0.052 |
Fusobacterium | 9.49 (0.64–21.23) | 5.97 (0.00–24.58) | 0.052 |
Proteobacteria | 2.03 (0.09–8.52) | 4.66 (0.02–30.79) | 0.311 |
Gammaproteobacteria | 2.03 (0.09–8.52) | 4.66 (0.02–30.79) | 0.311 |
Aeromonadales | 0.94 (0.00–6.96) | 0.11 (0.00–1.61) | 0.026 * |
Succinivibrionaceae | 0.94 (0.00–6.96) | 0.11 (0.00–1.61) | 0.026 * |
Anaerobiospirillum | 0.80 (0.00–6.96) | 0.06 (0.00–1.42) | 0.231 |
Succinivibrio | 0.15 (0.00–0.78) | 0.05 (0.00–1.43) | 0.031 * |
Burkholderiales | 0.72 (0.00–1.54) | 0.53 (0.00–3.27) | 0.086 |
Sutterellaceae | 0.72 (0.00–1.54) | 0.52 (0.00–3.27) | 0.075 |
Parasutterella | 0.06 (0.00–0.24) | 0.02 (0.00–0.21) | 0.074 |
Sutterella | 0.66 (0.00–1.52) | 0.50 (0.00–3.06) | 0.275 |
Enterobacterales | 0.36 (0.00–1.96) | 3.95 (0.00–30.45) | 0.027 * |
Enterobacteriaceae | 0.24 (0.00–1.95) | 3.91 (0.00–30.45) | 0.008 * |
Escherichia–Shigella | 0.24 (0.00–1.95) | 3.87 (0.00–30.45) | 0.011 * |
Variables | Grouping | Pseudo–F | p–Value | |
---|---|---|---|---|
Clinical condition | HC vs. IBD | 4.83 | 0.006 * | |
Age | Young (<4)/adult (4–8)/senior (>8) | 0.88 | 0.471 | |
Sex | Male/female | 2.13 | 0.112 | |
Fertile status | Spayed or neutered/entire | 1.19 | 0.312 | |
Breed | Pure-breed/mixed-breed | 2.68 | 0.055 | |
Weight | Small (<10 Kg)/medium-size (10–20 Kg)/large-size (>20 Kg) | 2.34 | 0.048 * | |
BCS | Low (1–4)/normal (5)/higher (6–9) | 1.08 | 0.398 | |
Living with other pets | Yes/no | 3.35 | 0.031 * | |
Habitat | Indoor/50–50/outdoor | 0.61 | 0.674 | |
Clinical onset–diagnosis | NA/more than a year/less than a year | 2.65 | 0.037 * | |
Clinical activity indexes | ||||
CIBDAI [31] | NA, clinically insignificant, mild, moderate, severe | 2.07 | 0.029 * | |
CCECAI [28] | NA, clinically insignificant, mild, moderate, severe, very severe | 1.18 | 0.316 | |
Endoscopic indexes | ||||
Slovak et al. [32] | Stom. Quan. | Scores (0–4) | 1.62 | 0.111 |
Stom. Qual. | Scores (0–3) | 1.10 | 0.353 | |
Duod. Quan. | Scores (0–6) | 0.86 | 0.598 | |
Duod. Qual. | Scores (0–4) | 0.49 | 0.893 | |
WSAVA [1] | Esophagus | Scores (0–6) | 0.83 | 0.619 |
Stomach | Scores (0–12) | 1.20 | 0.256 | |
Duodenum | Scores (0–15) | 0.79 | 0.775 | |
Histopathological indexes | ||||
WSAVA [1] | Stomach | Scores (0–8) | 0.93 | 0.559 |
Duodenum | Scores (0–18) | 1.26 | 0.180 | |
Abbreviated [33] | Stomach | Scores (0–6) | 0.33 | 0.985 |
Duodenum | Scores (0–14) | 1.07 | 0.382 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Regañón, D.; García-Sancho, M.; Villaescusa, A.; Sainz, Á.; Agulla, B.; Reyes-Prieto, M.; Rodríguez-Bertos, A.; Rodríguez-Franco, F. Characterization of the Fecal and Mucosa-Associated Microbiota in Dogs with Chronic Inflammatory Enteropathy. Animals 2023, 13, 326. https://doi.org/10.3390/ani13030326
Díaz-Regañón D, García-Sancho M, Villaescusa A, Sainz Á, Agulla B, Reyes-Prieto M, Rodríguez-Bertos A, Rodríguez-Franco F. Characterization of the Fecal and Mucosa-Associated Microbiota in Dogs with Chronic Inflammatory Enteropathy. Animals. 2023; 13(3):326. https://doi.org/10.3390/ani13030326
Chicago/Turabian StyleDíaz-Regañón, David, Mercedes García-Sancho, Alejandra Villaescusa, Ángel Sainz, Beatriz Agulla, Mariana Reyes-Prieto, Antonio Rodríguez-Bertos, and Fernando Rodríguez-Franco. 2023. "Characterization of the Fecal and Mucosa-Associated Microbiota in Dogs with Chronic Inflammatory Enteropathy" Animals 13, no. 3: 326. https://doi.org/10.3390/ani13030326
APA StyleDíaz-Regañón, D., García-Sancho, M., Villaescusa, A., Sainz, Á., Agulla, B., Reyes-Prieto, M., Rodríguez-Bertos, A., & Rodríguez-Franco, F. (2023). Characterization of the Fecal and Mucosa-Associated Microbiota in Dogs with Chronic Inflammatory Enteropathy. Animals, 13(3), 326. https://doi.org/10.3390/ani13030326