Effects of the In Ovo Administration of L-ascorbic Acid on the Performance and Incidence of Corneal Erosion in Ross 708 Broilers Subjected to Elevated Levels of Atmospheric Ammonia †
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Egg Incubation
2.2. Hatch Residue, Hatchability, and Posthatch Performance
2.3. Ammonia Exposure
2.4. Eye Corneal Evaluation
2.5. Statistical Analysis
3. Results
3.1. Hatch and Broiler Performance
3.2. Eye Lesion Scoring
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Y.F.; Li, S.Z.; Sun, Q.Z.; Yang, X.J. Effect of in ovo feeding of vitamin C on antioxidation and immune function of broiler chickens. Animals 2019, 13, 1927–1933. [Google Scholar] [CrossRef] [PubMed]
- Rund, B. Vitamin C plays a role in immunity. Poult. Dig. 1989, 48, 44–55. [Google Scholar]
- Van Hieu, T.; Guntoro, B.; Qui, N.H.; Quyen, N.T.K.; Al Hafiz, F.A. The application of ascorbic acid as a therapeutic feed additive to boost immunity and antioxidant activity of poultry in heat stress environment. Vet.World. 2022, 15, 685–693. [Google Scholar] [CrossRef]
- Shojadoost, B.; Yitbarek, A.; Alizadeh, M.; Kulkarni, R.R.; Astill, J.; Boodhoo, N.; Sharif, S. Centennial Review: Effects of vitamins A, D, E, and C on the chicken immune system. Poult. Sci. 2021, 100, 100930. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Conklin, P.L.; Loewus, F.A. Biosynthesis of Ascorbic Acid in Plants: A Renaissance. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 2001, 52, 437–467. [Google Scholar] [CrossRef]
- Ching, S.; Mahan, D.C.; Ottobre, J.S.; Dabrowski, K. Ascorbic acid synthesis in fetal and neonatal pigs and in pregnant and postpartum sows. J. Nutr. 2001, 131, 1997–2001. [Google Scholar] [CrossRef] [Green Version]
- Gan, L.; Fan, H.; Nie, W.; Yuming Guo, Y. Ascorbic acid synthesis and transportation capacity in old laying hens and the effects of dietary supplementation with ascorbic acid. J. Anim. Sci. Biotechnol. 1973, 9, 71. [Google Scholar] [CrossRef]
- Siegel, H.S. Effects of Behavioral and Physical Stressors on Immune Responses. In Biology of Stress in Farm Animals: An Integrative Approach; Wiepkema, P.R., Van Adrichem, P.W.M., Eds.; Martinus Nijhoff Publisher: Dordrecht, The Netherlands, 1987; pp. 39–54. [Google Scholar]
- Thaxton, P.; Siegel, H.S. Depression of secondary immunity by high environmental temperature. Poult. Sci. 1972, 51, 1519–1526. [Google Scholar] [CrossRef]
- Sykes, A.H. Vitamin C for poultry: Some recent research. In Proceedings of the Roche Symposium, London, UK; 1978; pp. 5–15. [Google Scholar]
- McDowell, L.R. (Ed.) Vitamins in Animal Nutrition: Comparative Aspects to Human Nutrition. In Vitamin A and E.; Academic Press: London, UK, 1989; pp. 93–131. [Google Scholar]
- Avakian, A.P. Understanding in ovo vaccination. Int. Hatch. Pract. 2006, 20, 15–17. [Google Scholar]
- Williams, C.J. in ovo vaccination and chick quality. Int. Hatch. Pract. 2011, 19, 7–13. [Google Scholar]
- Williams, C.J. in ovo vaccination for disease prevention. Int. J. Poult. Sci. 2007, 15, 7–9. [Google Scholar]
- Salmanzadeh, M. The effects of in ovo injection of glucose on hatchability, hatching weight and subsequent performance of newly hatched chicks. Rev. Bras. 2012, 14, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Fatemi, S.A.; Alqhtani, A.H.; Elliott, K.E.C.; Bello, A.; Zhang, H.; Levy, A.W.; Peebles, E.D. Improvement in the performance and inflammatory reaction of Ross 708 broilers in response to the in ovo injection of 25-hydroxyvitamin D3. Poult. Sci. 2021, 100, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.A.; Elliott, K.E.C.; Bello, A.; Zhang, H.; Peebles, E.D. Effects of the in ovo injection of vitamin D3 and 25-hydroxyvitamin D3 in Ross 708 broilers subsequently fed commercial or calcium and phosphorous-restricted diets: II. Immunity and small intestine morphology. Poult. Sci. 2021, 100, 101240. [Google Scholar] [CrossRef]
- Fatemi, S.A.; Macklin, K.S.; Zhang, L.; Mousstaaid, A.; Poudel, S.; Poudel, I.; Peebles, E.D. Improvement in the immunity- and vitamin D3-activity-related gene expression of coccidiosis-challenged Ross 708 broilers in response to the in ovo injection of 25-Hydroxyvitamin D3. Animals 2022, 12, 2517. [Google Scholar] [CrossRef]
- Fatemi, S.A.; Elliott, K.E.C.; Bello, A.; Macklin, K.S.; Peebles, E.D. Effects of the in ovo injection of vitamin D3 and 25-hydroxyvitamin D3 in Ross 708 broilers subsequently challenged with coccidiosis: II. Immunological and inflammatory responses and small intestine histomorphology. Animals 2022, 12, 1027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Elliott, K.E.C.; Durojaye, O.A.; Fatemi, S.A.; Peebles, E.D. Effects of in ovo-administration of L-ascorbic acid on broiler hatchability and its influence on the effects of pre-placement holding time on broiler quality characteristics. Poult. Sci. 2018, 97, 1941–1947. [Google Scholar] [CrossRef] [PubMed]
- Lillie, R.J. Air Pollutants Affecting the Performance of Domestic Animals. A Literature Review. Agricultural Handbook No. 380, 1970, United States Department of Agriculture. Available online: https://handle.nal.usda.gov/10113/CAT72349227 (accessed on 23 January 2023).
- Kristensen, H.H.; Wathes, C.M. Ammonia and poultry a review. Worlds Poult. Sci. J. 2000, 56, 235–245. [Google Scholar] [CrossRef]
- Elliott, H.A.; Collins, N.E. Factors affecting ammonia release in broiler houses. Trans. ASAE. 1982, 25, 413–418. [Google Scholar] [CrossRef]
- Charles, D.R.; Payne, C.G. The influence of graded levels of atmospheric ammonia on chickens, I: Effects on respiration and on the performance of broilers and replacement growing stock. Br. Poult. Sci. 1966, 7, 177–187. [Google Scholar] [CrossRef]
- Al Homidan, A.; Robertson, J.F.; Petchey, A.M. Review of the effect of ammonia and dust concentrations on broiler performance. Worlds Poult. Sci. J. 2003, 59, 340–349. [Google Scholar] [CrossRef]
- Miles, D.M.; Branton, S.L.; Lott, B.D. Atmospheric ammonia is detrimental to the performance of modern commercial broilers. Poult. Sci. 2004, 83, 1650–1654. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yan, F.F.; Hu, J.Y.; Wu, Y.; Tucker, C.M.; Green, A.R.; Cheng, H.W. Immune response of laying hens exposed to 30 ppm ammonia for 25 weeks. Int. J. Poult. Sci. 2017, 16, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.N.; Yan, F.F.; Hu, J.Y.; Chen, H.; Tucker, C.M.; Green, A.R.; Cheng, H.W. The effect of chronic ammonia exposure on acute-phase proteins, immunoglobulin, and cytokines in laying hens. Poult. Sci. 2017, 96, 1524–1530. [Google Scholar] [CrossRef]
- Anderson, D.P.; Cherms, F.L.; Hansen, R.P. Studies on measuring the environment of turkeys raised in confinement. Poult. Sci. 1964, 43, 305–318. [Google Scholar] [CrossRef]
- Olanrewaju, H.A.; Miller, W.W.; Maslin, W.R.; Thaxton, J.P.; Dozier 3rd, W.A.; Purswell, J.; Branton, S.L. Interactive effects of ammonia and light intensity on ocular, fear and leg health in broiler chickens. Int. J. Poult. Sci. 2007, 10, 762–769. [Google Scholar]
- David, B.; Mejdell, C.; Michel, V.; Lund, V.; Moe, R.O. Air quality in alternative housing systems may have an impact on laying hen welfare. Part II-ammonia. Animals 2015, 5, 886–896. [Google Scholar] [CrossRef] [Green Version]
- Blood, D.C.; Studdert, V.P. Bailliere’s Comprehensive Veterinary Dictionary; Bailliere Tindall: London, UK, 1993. [Google Scholar]
- Quarles, C.L.; Gentry, R.F.; Bressler, G.O. Bacterial contamination in poultry houses and its relationship to egg hatchability. Poult. Sci. 1970, 49, 60–66. [Google Scholar] [CrossRef]
- Kling, H.F.; Quarles, C.L. Effect of atmospheric ammonia and infectious bronchitis vaccination stress on Leghorn males. Poult. Sci. 1974, 53, 1161–1167. [Google Scholar] [CrossRef]
- Cho, Y.W.; Yoo, W.S.; Kim, S.J.; Chung, I.Y.; Seo, S.W.; Yoo, J.M. Efficacy of systemic vitamin C supplementation in reducing corneal opacity resulting from infectious keratitis. Medicine 2014, 93, e125. [Google Scholar] [CrossRef]
- Brubaker, R.F.; Bourne, W.M.; Bachman, L.A.; McLaren, J.W. Ascorbic acid content of human corneal epithelium. Invest. Ophthalmol. Vis. Sci. 2000, 41, 1681–1683. [Google Scholar] [PubMed]
- Zhang, H.; Elliott, K.E.C.; Durojaye, O.A.; Fatemi, S.A.; Schilling, M.W.; Peebles, E.D. Effects of in ovo injection of L-ascorbic acid on growth performance, carcass composition, plasma antioxidant capacity, and meat quality in broiler chickens. Poult. Sci. 2019, 98, 3617–3625. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.A.; Elliott, K.E.C.; Bello, A.; Durojaye, O.; Zhang, H.; Turner, B.; Peebles, E.D. The effects of in ovo-injected vitamin D3 sources on the eggshell temperature and early post-hatch performance of Ross 708 broilers. Poult. Sci. 2020, 99, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.A.; Elliott, K.E.C.; Bello, A.; Durojaye, O.; Zhang, H.; Turner, B.; Peebles, E.D. Effects of source and level of in ovo-injected vitamin D3 on the hatchability and serum 25-hydroxycholecalciferol concentrations of Ross 708 broilers. Poult. Sci. 2020, 99, 3877–3884. [Google Scholar] [CrossRef]
- Oliveria, G.S.; dos Santos, V.M.; Rodrigues, J.C.; Nascimento, S.T. Effects of different egg turning frequencies on incubation efficiency parameters. Poult. Sci. 2020, 99, 4417–4420. [Google Scholar] [CrossRef]
- Peebles, E.D.; Doyle, S.M.; Zumwalt, C.D.; Gerard., P.D.; Latour, M.A.; Boyle, C.R.; Smith, T.W. Breeder age influences embryogenesis in broiler hatching eggs. Poult. Sci. 2001, 80, 272–277. [Google Scholar] [CrossRef]
- Sokale, A.O.; Zhai, W.; Pote, L.M.; Williams, C.J.; Peebles, E.D. Effects of coccidiosis vaccination administered by in ovo injection on the hatchability and hatching chick quality of broilers. Poult. Sci. 2017, 96, 541–547. [Google Scholar] [CrossRef]
- Ernst, R.A.; Bradley, F.A.; Abbott, U.K.; Craig, R.M. Egg Candling and Breakout Analysis; ANR Publication: Berkeley, CA, USA, 2004; p. 8134. [Google Scholar]
- Aviagen. Ross 708 Pocket Guide; Aviagen Ltd.: Newbridge, UK, 2015; Available online: http://en.aviagen.com/assets/Tech_Center/BB_Resources_Tools/Pocket_Guides/Ross-Broiler-Pocket-Guide-2015-EN.pdf (accessed on 23 January 2023).
- Fatemi, S.A.; Elliott, K.E.C.; Bello, A.; Peebles, E.D. Effects of the in ovo injection of vitamin D3 and 25-hydroxyvitamin D3 in Ross 708 broilers subsequently challenged with coccidiosis. I. performance, meat yield and intestinal lesion. Poult. Sci. 2021, 100, 101382. [Google Scholar] [CrossRef]
- Miles, D.M.; Miller, W.W.; Branton, S.L.; Maslin, W.R.; Lott, B.D. Ocular responses to ammonia in broiler chickens. Avian Dis. 2006, 50, 45–49. [Google Scholar] [CrossRef]
- SAS Institute. SAS Proprietary Software Release 9.4; SAS Inst. Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Fatemi, S.A.; Elliott, K.E.C.; Bello, A.; Zhang, H.; Alqhtani, A.H.; Peebles, E.D. Effects of the in ovo injection of vitamin D3 and 25-hydroxyvitamin D3 in Ross 708 broilers subsequently fed commercial or calcium and phosphorous-restricted diets: I. performance, carcass characteristics, and incidence of woody breast myopathy. Poult. Sci. 2021, 100, 10122. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed.; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Peebles, E.D.; Brake, J. Relationship of dietary ascorbic acid to broiler breeder performance. Poult. Sci. 1985, 64, 2041–2048. [Google Scholar] [CrossRef]
- Mousstaaid, A.; Fatemi, S.A.; Elliott, K.E.C.; Alqhtani, A.H.; Peebles, E.D. Effects of the in ovo injection of L-ascorbic acid on broiler hatching performance. Animals 2022, 12, 1020. [Google Scholar] [CrossRef] [PubMed]
- Mousstaaid, A.; Fatemi, S.A.; Elliott, K.E.C.; Levy, A.W.; Miller, W.W.; Gerard, P.D.; Alqhtani, A.H.; Peebles, E.D. Effects of the in ovo and dietary supplementation of L-ascorbic acid on the growth performance, inflammatory response, and eye L-ascorbic acid concentrations in Ross 708 broiler chickens. Animals 2022, 12, 2573. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, S.; Duan, Y.; Ren, Z.; Yan, X.; Yang, X. Effects of in ovo feeding of vitamin C on post-hatch performance, immune status and DNA methylation-related gene expression in broiler chickens. Br. J. Nutr. 2020, 124, 903–911. [Google Scholar] [CrossRef]
- El-Kholy, M.S.; Ibrahim, Z.A.E.G.; El-Mekkawy, M.M.; Alagawany, M. Influence of in-ovo administration of some water-soluble vitamins on hatchability traits, growth, carcass traits and blood chemistry of Japanese quails. Ann. Anim. Sci. 2019, 19, 97–111. [Google Scholar] [CrossRef]
- Gross, W.B. Effects of ascorbic acid on stress and disease in chickens. Avian Dis. 1992, 36, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Dorairajan, T.; Lin, T.L. Effect of ascorbic acid supplementation on the immune response of chickens vaccinated and challenged with infectious bursal disease virus. Vet. Immunol. Immunopathol. 2000, 74, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Kennes, B.; Dumont, I.; Brohee, D.; Hubert, C.; Neve, P. Effect of vitamin C supplements on cell-mediated immunity in old people. Gerontology 1983, 29, 305–310. [Google Scholar] [CrossRef]
- Wang, Y.M.; Meng, Q.P.; Guo, Y.M.; Wang, Y.Z.; Wang, Z.; Yao, Z.L.; Shan, T.Z. Effect of atmospheric ammonia on growth performance and immunological response of broiler chickens. J Anim. Vet. Adv. 2010, 9, 2802–2806. [Google Scholar] [CrossRef]
- Wei, F.X.; Hu, X.F.; Xu, B.; Zhang, M.H.; Li, S.Y.; Sun, Q.Y.; Lin, P. Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers. Genet. Mol. Res. 2015, 14, 3160–3169. [Google Scholar] [CrossRef]
- Lohakare, J.D.; Ryu, M.H.; Hahn, T.W.; Lee, J.K.; Chae, B.J. Effects of supplemental ascorbic acid on the performance and immunity of commercial broilers. J. Appl. Poult. Res. 2005, 14, 10–19. [Google Scholar] [CrossRef]
- El-Senousey, H.K.; Chen, B.; Wang, J.Y.; Atta, A.M.; Mohamed, F.R.; Nie, Q.H. in ovo injection of ascorbic acid modulates antioxidant defense system and immune gene expression in newly hatched local Chinese yellow broiler chicks. Poult. Sci. 2018, 97, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Maggini, S. Vitamin C and immune function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.X.; Maria, T.C.; Zhou, B.; Xiao, F.L.; Wang, M.; Li, Y. Quercetin improves immune function in Arbor Acre broilers through activation of NF-κB signaling pathway. Poult. Sci. 2020, 99, 906–913. [Google Scholar] [CrossRef]
- Selim, S.A.; Gaafar, K.M.; El-ballal, S.S. Influence of in-ovo administration with vitamin E and ascorbic acid on the performance of Muscovy ducks. Emir. J. Food Agric. 2012, 24, 264–271. [Google Scholar]
- Wiernusz, C.J.; Teeter, R.G. Feeding effects on heat stressed broiler thermobalance. Poult. Sci. 1993, 72, 1917–1924. [Google Scholar] [CrossRef]
- Lin, H.E.; Deculypere, E.; Buyse, J. Acute heat stress induces oxidative stress in broiler chickens. Comp. Biochem. Phys. A. 2006, 144, 11–17. [Google Scholar] [CrossRef]
- Wheeler, E.F.; Weiss, R.W.J.; Weidenboerner, E. Evaluation of instrumentation for measuring aerial ammonia in poultry houses. J. Appl. Poult. Res. 2000, 9, 443–452. [Google Scholar] [CrossRef]
- Maxwell, M.H.; Robertson, G.W. UK survey of broiler ascites and sudden death syndromes in 1993. Br. Poult. Sci. 1998, 39, 203–215. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S.; Nikousefat, Z.; Selvaggi, M.; Laudadio, V.; Tufarelli, V. Effect of ascorbic acid in heat-stressed poultry. Worlds Poult. Sci. J. 2012, 68, 477–490. [Google Scholar] [CrossRef]
- Devi, G.S.; Prasad, M.H.; Saraswathi, I.; Raghu, D.; Rao, D.N.; Reddy, P.P. Free radicals antioxidant enzymes and lipid peroxidation in different types of leukemias. Clin. Chim. Acta 2000, 293, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.J. The role of free radicals and antioxidants. Nutrition 2000, 16, 716–718. [Google Scholar] [CrossRef] [PubMed]
- Cejka, C.; Cejkova, J. Oxidative stress to the cornea, changes in corneal optical properties, and advances in treatment of corneal oxidative injuries. Oxid. Med. Cell. Longev. 2015, 2015, 591530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrera, P.M.; Chihuailaf, R.H. Antioxidants and the integrity of ocular tissues. Vet. Med. Int. 2011, 2011, 905153. [Google Scholar] [CrossRef] [PubMed]
Commercial Diet | ||
---|---|---|
Starter (0 to 14 doa) | ||
Item | ||
Ingredient (%) | Pct | |
Yellow corn | 53.23 | |
Soybean meal | 38.23 | |
Animal fat | 2.6 | |
Dicalcium phosphate | 2.23 | |
Limestone | 1.27 | |
Salt | 0.34 | |
Choline chloride 60% | 1 | |
Lysine | 0.28 | |
DL-Methionine | 0.37 | |
L-threonine | 0.15 | |
Premix 1 | 0.251 | |
Coccidiostat 2 | 0.05 | |
Total | 100 | |
Calculated nutrients | ||
Crude protein | 23 | |
Calcium | 0.96 | |
Available phosphorus | 0.48 | |
Apparent metabolizable energy (AME; kcal/kg) | 3000 | |
Digestible Methionine | 0.51 | |
Digestible Lysine | 1.28 | |
Digestible Threonine | 0.86 | |
Digestible total sulfur amino acids (TSAA) | 0.95 | |
Sodium | 0.16 | |
Choline | 0.16 | |
Grower (15 to 35 doa) | ||
Item | ||
Ingredient (%) | Pct | |
Yellow corn | 57.13 | |
Soybean meal | 34.8 | |
Animal fat | 3.5 | |
Dicalcium phosphate | 2 | |
Limestone | 1.17 | |
Salt | 0.34 | |
Choline chloride 60% | 0.1 | |
Lysine | 0.21 | |
DL-Methionine | 0.32 | |
L-threonine | 0.16 | |
Premix | 0.25 | |
Coccidiostat | 0.05 | |
Total | 100 | |
Calculated nutrients | ||
Crude protein | 21.5 | |
Calcium | 0.87 | |
Available phosphorus | 0.435 | |
AME (kcal/kg) | 3100 | |
Digestible Methionine | 0.47 | |
Digestible Lysine | 1.15 | |
Digestible Threonine | 0.77 | |
Digestible TSAA | 0.87 | |
Sodium | 0.16 | |
Choline | 0.16 |
0 to 7 doa | 8 to 14 doa | 15 to 21 doa | 22 to 28 doa | 29 to 35 doa | |
---|---|---|---|---|---|
NH3 level (ppm) | 42.5 | 46.9 | 44.8 | 47.2 | 46.7 |
Standard deviation | 10.5 | 10.4 | 12.6 | 9.3 | 8.6 |
Treatment | 0 to 12 PEWL | 12 to 17 PEWL | 0 to 17 PEWL | HI | Late 1 | Pip 2 | Post-Pip 3 | Hatchling 4 | Hatchling BW (g) |
---|---|---|---|---|---|---|---|---|---|
----------------------------------------------%------------------------------------------------- | |||||||||
Non-injected 5 | 4.2 | 6.0 | 10.2 | 94.4 | 2.1 | 0.0 | 1.1 | 0.0 | 44.5 |
Saline 6 | 4.3 | 6.1 | 10.4 | 93.1 | 4.7 | 1.7 | 1.1 | 0.3 | 43.5 |
L-AA 12 7 | 4.3 | 6.1 | 10.4 | 94.8 | 4.4 | 0.0 | 1.1 | 0.3 | 43.7 |
L-AA 25 8 | 4.2 | 6.0 | 10.2 | 94.1 | 3.9 | 0.9 | 1.1 | 0.7 | 43.4 |
SEM 9 | 0.07 | 0.15 | 0.20 | 2.16 | 1.35 | 0.82 | 1.43 | 0.30 | 1.17 |
p-value | 0.453 | 0.545 | 0.576 | 0.888 | 0.243 | 0.159 | 0.136 | 0.504 | 0.730 |
7 doa | ------------------------ 0 to 7 doa 7-------------------------- | |||||
---|---|---|---|---|---|---|
Treatment | BW (g) | BWG 1 (g) | ADG 1 (g) | FI 1 (g) | ADFI 1 (g) | FCR 1 (g/g) |
Non-injected 2 | 112 | 65.3 | 9.3 | 101 | 14.5 | 1.56 a |
Saline 3 | 110 | 63.4 | 9.1 | 99 | 14.3 | 1.59 a |
L-AA 12 4 | 116 | 68.8 | 9.8 | 100 | 14.3 | 1.45 b |
L-AA 25 5 | 112 | 65.3 | 9.3 | 99 | 14.1 | 1.52 ab |
SEM 6 | 2.2 | 2.18 | 0.31 | 2.3 | 0.33 | 0.028 |
p-value | 0.152 | 0.134 | 0.134 | 0.806 | 0.813 | 0.029 |
14 doa BW | -----------------------8 to 14 doa 8------------------------ | |||||
BWG (g) | ADG (g) | FI (g) | ADFI (g) | FCR (g/g) | ||
Non-injected | 329 | 216 | 30.9 | 300 | 42.8 | 1.39 |
Saline | 324 | 213 | 30.5 | 297 | 42.4 | 1.39 |
L-AA 12 | 341 | 226 | 32.2 | 295 | 42.1 | 1.32 |
L-AA 25 | 331 | 218 | 31.2 | 302 | 43.1 | 1.38 |
SEM | 10.3 | 8.6 | 1.23 | 9.6 | 1.37 | 0.054 |
p-value | 0.441 | 0.541 | 0.547 | 0.889 | 0.891 | 0.475 |
21 doa BW | ----------------------15 to 21 doa 9------------------------ | |||||
BWG (g) | ADG (g) | FI (g) | ADFI (g) | FCR (g/g) | ||
Non-injected | 662 | 334 | 55.6 | 507 | 84.6 | 1.53 |
Saline | 644 | 320 | 53.4 | 507 | 84.5 | 1.59 |
L-AA 12 | 675 | 334 | 55.7 | 508 | 84.7 | 1.52 |
L-AA 25 | 670 | 340 | 56.7 | 513 | 85.6 | 1.53 |
SEM | 17.0 | 13.0 | 2.16 | 11.3 | 1.89 | 0.055 |
p-value | 0.308 | 0.475 | 0.480 | 0.933 | 0.932 | 0.569 |
28 doa BW | -----------------------22 to 28 doa 10------------------------ | |||||
BWG (g) | ADG (g) | FI (g) | ADFI (g) | FCR (g/g) | ||
Non-injected | 1225 a | 563 | 80 | 807 | 115 | 1.43 b |
Saline | 1152 b | 509 | 73 | 818 | 117 | 1.64 a |
L-AA 12 | 1226 a | 551 | 79 | 794 | 113 | 1.45 b |
L-AA 25 | 1193 ab | 522 | 75 | 816 | 117 | 1.58 ab |
SEM | 27.7 | 22.2 | 3.16 | 24.1 | 3.4 | 0.057 |
p-value | 0.048 | 0.080 | 0.081 | 0.737 | 0.737 | 0.050 |
35 doa BW | ------------------------29 to 35 doa 10----------------------- | |||||
BWG (g) | ADG (g) | FI (g) | ADFI (g) | FCR (g/g) | ||
Non-injected | 1956 | 731 | 104 | 1071 | 153 | 1.56 |
Saline | 1870 | 717 | 102 | 1109 | 158 | 1.78 |
L-AA 12 | 1867 | 642 | 92 | 1121 | 160 | 1.89 |
L-AA 25 | 1839 | 646 | 92 | 1121 | 160 | 1.77 |
SEM | 73.6 | 84.7 | 12.10 | 54.1 | 7.7 | 0.227 |
p-value | 0.436 | 0.615 | 0.616 | 0.767 | 0.768 | 0.531 |
0 to 14 doa 8 | ||||||
BWG (g) | ADG (g) | FI (g) | ADFI (g) | FCR (g/g) | ||
Non-injected | 281 | 20.1 | 401 | 28.6 | 1.42 | |
Saline | 277 | 19.8 | 397 | 28.3 | 1.44 | |
L-AA 12 | 294 | 21.0 | 394 | 28.2 | 1.35 | |
L-AA 25 | 284 | 20.3 | 401 | 28.6 | 1.41 | |
SEM | 10.1 | 0.66 | 11.0 | 0.75 | 0.046 | |
p-value | 0.378 | 0.365 | 0.912 | 0.914 | 0.275 | |
15 to 28 doa 10 | ||||||
BWG (g) | ADG (g) | FI (g) | ADFI (g) | FCR (g/g) | ||
Non-injected | 896 a | 69 | 1314 | 110 | 1.59 | |
Saline | 828 b | 64 | 1326 | 111 | 1.75 | |
L-AA 12 | 885 a | 68 | 1302 | 109 | 1.60 | |
L-AA 25 | 862 ab | 66 | 1330 | 111 | 1.68 | |
SEM | 17.4 | 1.9 | 32.1 | 2.68 | 0.046 | |
p-value | 0.050 | 0.058 | 0.830 | 0.830 | 0.087 | |
0 to 28 doa 10 | ||||||
BWG (g) | ADG (g) | FI (g) | ADFI (g) | FCR (g/g) | ||
Non-injected | 1178 a | 42.1 a | 1715 | 66 | 1.57 b | |
Saline | 1105 b | 39.5 b | 1722 | 66 | 1.69 a | |
L-AA 12 | 1179 a | 42.1 a | 1697 | 65 | 1.56 b | |
L-AA 25 | 1146 ab | 40.9 ab | 1730 | 67 | 1.63 ab | |
SEM | 27.5 | 0.98 | 38.7 | 1.49 | 0.053 | |
p-value | 0.045 | 0.041 | 0.845 | 0.851 | 0.050 | |
0 to 35 doa 10 | ||||||
BWG (g) | ADG (g) | FI (g) | ADFI (g) | FCR (g/g) | ||
Non-injected | 1839 | 53 | 2786 | 90 | 1.72 | |
Saline | 1822 | 52 | 2831 | 91 | 1.78 | |
L-AA 12 | 1821 | 52 | 2818 | 91 | 1.76 | |
L-AA 25 | 1792 | 51 | 2851 | 92 | 1.80 | |
SEM | 72.5 | 2.1 | 69.0 | 2.2 | 0.074 | |
p-value | 0.934 | 0.914 | 0.817 | 0.887 | 0.728 |
Treatment | BW (g) | AEYW 1 (g) | REYW 1 (%) |
---|---|---|---|
0 doa | |||
Non-injected 2 | 47.8 | 2.13 | 4.47 |
Saline 3 | 47.0 | 2.13 | 4.55 |
L-AA 12 4 | 46.6 | 2.07 | 4.45 |
L-AA 25 5 | 47.9 | 1.97 | 4.10 |
SEM 6 | 1.08 | 0.074 | 0.169 |
p-value | 0.546 | 0.102 | 0.056 |
7 doa | |||
Non-injected | 117 | 2.23 | 1.94 |
Saline | 103 | 2.13 | 2.11 |
L-AA 12 | 113 | 2.30 | 2.06 |
L-AA 25 | 108 | 2.13 | 2.01 |
SEM | 6.6 | 0.100 | 0.129 |
p-value | 0.201 | 0.280 | 0.618 |
14 doa | |||
Non-injected | 353 | 3.50 | 1.01 |
Saline | 362 | 3.53 | 0.99 |
L-AA 12 | 395 | 3.50 | 0.91 |
L-AA 25 | 373 | 3.40 | 0.94 |
SEM | 30.2 | 0.219 | 0.078 |
p-value | 0.543 | 0.936 | 0.577 |
21doa | |||
Non-injected | 667 | 4.60 | 0.71 |
Saline | 742 | 4.50 | 0.64 |
L-AA 12 | 766 | 4.73 | 0.63 |
L-AA 25 | 719 | 4.93 | 0.71 |
SEM | 63.4 | 0.280 | 0.063 |
p-value | 0.447 | 0.453 | 0.419 |
28 doa | |||
Non-injected | 1296 | 5.87 | 0.46 |
Saline | 1149 | 5.77 | 0.52 |
L-AA 12 | 1169 | 5.43 | 0.46 |
L-AA 25 | 1300 | 6.00 | 0.50 |
SEM | 91.0 | 0.324 | 0.043 |
p-value | 0.344 | 0.357 | 0.353 |
Treatment | BW | AP. Major 1 | AP. Minor 1 | ABR 1 | RP. Major 1 | RP. Minor 1 | RBR 1 |
---|---|---|---|---|---|---|---|
---------------------------g------------------------ | --------------------(%)------------------- | ||||||
Non-injected 1 | 1296 | 219 | 47.1 | 266 | 16.7 | 3.6 | 20.4 |
Saline 2 | 1149 | 187 | 40.7 | 228 | 16.0 | 3.5 | 19.5 |
L-AA 12 3 | 1169 | 208 | 44.4 | 252 | 16.7 | 3.6 | 20.4 |
L-AA 25 4 | 1300 | 220 | 47.2 | 268 | 17.1 | 3.7 | 20.8 |
SEM 5 | 91.0 | 23.3 | 4.15 | 27.2 | 0.93 | 0.15 | 1.03 |
p-value | 0.344 | 0.478 | 0.367 | 0.452 | 0.705 | 0.732 | 0.674 |
Treatment | Score 0 2 | Score 1 3 | |
---|---|---|---|
------------------(%)------------------ | |||
14 doa | |||
Non-injected 4 | 99.9 | 0.1 | |
Saline 5 | 97.2 | 2.8 | |
L-AA 12 6 | 95.8 | 4.2 | |
L-AA 25 7 | 100 | 0 | |
SEM 8 | 4.4 | 4.4 | |
21 doa | |||
Non-injected | 91.7 a | 8.3 b | |
Saline | 73.6 b | 26.4 a | |
L-AA 12 | 88.9 a | 11.1 b | |
L-AA 25 | 94.4 a | 5.6 b | |
SEM | 4.39 | 4.39 | |
28 doa | |||
Non-injected | 93.1 | 6.9 | |
Saline | 83.3 | 16.7 | |
L-AA 12 | 83.3 | 16.7 | |
L-AA 25 | 90.3 | 9.7 | |
SEM | 4.39 | 4.39 | |
35 doa | |||
Non-injected | 100 | 0 | |
Saline | 95.8 | 4.2 | |
L-AA 12 | 100 | 0 | |
L-AA 25 | 98.6 | 1.4 | |
SEM | 4.39 | 4.30 | |
p-values | |||
in ovo | 0.209 | 0.209 | |
Day | <0.0001 | <0.0001 | |
In ovo x Day | 0.003 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousstaaid, A.; Fatemi, S.A.; Elliott, K.E.C.; Levy, A.W.; Miller, W.W.; Olanrewaju, H.A.; Purswell, J.L.; Gerard, P.D.; Peebles, E.D. Effects of the In Ovo Administration of L-ascorbic Acid on the Performance and Incidence of Corneal Erosion in Ross 708 Broilers Subjected to Elevated Levels of Atmospheric Ammonia. Animals 2023, 13, 399. https://doi.org/10.3390/ani13030399
Mousstaaid A, Fatemi SA, Elliott KEC, Levy AW, Miller WW, Olanrewaju HA, Purswell JL, Gerard PD, Peebles ED. Effects of the In Ovo Administration of L-ascorbic Acid on the Performance and Incidence of Corneal Erosion in Ross 708 Broilers Subjected to Elevated Levels of Atmospheric Ammonia. Animals. 2023; 13(3):399. https://doi.org/10.3390/ani13030399
Chicago/Turabian StyleMousstaaid, Ayoub, Seyed Abolghasem Fatemi, Katie Elaine Collins Elliott, April Waguespack Levy, William Wadd Miller, Hammad A. Olanrewaju, Joseph L. Purswell, Patrick D. Gerard, and Edgar David Peebles. 2023. "Effects of the In Ovo Administration of L-ascorbic Acid on the Performance and Incidence of Corneal Erosion in Ross 708 Broilers Subjected to Elevated Levels of Atmospheric Ammonia" Animals 13, no. 3: 399. https://doi.org/10.3390/ani13030399
APA StyleMousstaaid, A., Fatemi, S. A., Elliott, K. E. C., Levy, A. W., Miller, W. W., Olanrewaju, H. A., Purswell, J. L., Gerard, P. D., & Peebles, E. D. (2023). Effects of the In Ovo Administration of L-ascorbic Acid on the Performance and Incidence of Corneal Erosion in Ross 708 Broilers Subjected to Elevated Levels of Atmospheric Ammonia. Animals, 13(3), 399. https://doi.org/10.3390/ani13030399