Is the Integration between Corn and Grass under Different Sowing Modalities a Viable Alternative for Silage?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Management
2.3. Ensiling and Assessment of Silage Samples
2.4. Fermentation Pattern in Ensiling
2.5. Dry-Matter Losses in Ensilage
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antoniazzi, M.S.; Lanzanova, M.E.; Silva, D.M.; Weber, F.H.; Lanzanova, L.S. Integrated crop livestock-forest system as an alternative for Family farming: A case study in Três Passos/RS. Extensão Em Foco 2022, 27, 211–230. [Google Scholar]
- Mendes, I.C.; Marchão, R.L.; Reis, F.B., Jr.; Chaer, G.M.; Salton, J.C.; Vilela, L.; Oliveira, M.I.L.; Tomazi, M.; Benites, V.M. Saúde do Solo em Sistemas de Integração Lavoura Pecuária. In Manejo do Solo em Sistemas Integrados de Produção, 1st ed.; Martins, A.G., Batista, A.H., Wendling, B., Pereira, M.G., Santos, W.O., Eds.; Atena: Ponta Grossa, Brazil, 2022; pp. 189–223. [Google Scholar]
- Dias, L.C.P.; Pimenta, F.M.; Santos, A.B.; Costa, M.H.; Ladle, R.J. Patterns of land use, extensification and intensification of Brazilian agriculture. Glob. Change Biol. 2016, 22, 2887–2903. [Google Scholar] [CrossRef] [PubMed]
- Borghi, E.; Gontijo Neto, M.M.; Resende, R.M.S.; Almeida, R.G.; Macedo, M.C.M. Recuperação de pastagens degradadas. In Agricultura de Baixo Carbono: Tecnologias e Estratégias de Implantação, 1st ed.; Oliveira, I.R., Nobre, M.M., Eds.; Embrapa: Brasília, Brazil, 2018; Volume 4, pp. 105–138. [Google Scholar]
- Ribeiro, M.G.; Costa, K.A.; Souza, W.F.; Cruvinel, W.S.; Silva, J.T.; Santos, D.R., Jr. Silage quality of sorghum and Urochloa brizantha cultivars monocropped or intercropped in diferent planting systems. Acta Scientiarum. Anim. Sci. 2017, 39, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Souza, W.F.; Costa, K.A.P.; Guarnieri, A.; Severiano, E.C.; Silva, J.T.; Teixeira, D.A.A.; Oliveira, S.S.; Dias, M.B.C. Production and quality of the silage of corn intercropped with Paiaguas palisadegrass in different forage systems and maturity stages. Braz. J. Anim. Sci. 2019, 48, 16. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, A.H.; Macedo, M.C.M.; Kichel, A.N.; Almeida, R.G.de. Degradação, recuperação e renovação de pastagens. Embrapa Gado de Corte. Documentos 2012, 189, 46. [Google Scholar]
- Garcia, C.M.P.; Andreotti, M.; Tarsitano, M.A.A.; Teixeira Filho, M.C.M.; Lima, A.E.S.; Buzetti, S. Economic analysis of grain yield of maize intercropped with forage plants of the genera Brachiaria and Panicum in no-tillage system. Rev. Ceres 2012, 59, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Leonel, F.P.; Pereira, J.C.; Costa, M.G.; Marco Junior, P.; Silva, C.J.; Lara, L.A. The intercrop between signal grass and corn: Productive performance of the cultures, nutritional characteristics and silage quality. Braz. J. Anim. Sci. 2009, 38, 166–176. [Google Scholar]
- Peyraud, J.; Delagarde, R. Managing variations in dairy cow nutrient supply under grazing. Animal 2013, 7, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Macêdo, A.J.S.; César Neto, J.M.; Silva, M.A.; Santos, E.M. Potentialities and limitations of forage plants for silage: Review. Braz. J. Hyg. Anim. Sanity 2021, 15, 17. [Google Scholar] [CrossRef]
- Klein, J.L.; Viana, A.F.P.; Martini, P.M.; Adams, S.M.; Guzatto, C.; Bona, R.A.; Rodrigues, L.S.; Alves Filho, D.C.; Brondani, I.L. Productive performance of maize hybrids for the production of silage using the whole plant. Braz. J. Maize Sorghum 2018, 17, 101–110. [Google Scholar]
- Ribeiro, A.C.; Guimarães, P.T.G.; Alvarez, V.V.H. Recomendações para o Uso de Corretivos e Fertilizantes em Minas Gerais. 5 Aproximação, 1st ed.; CFSEMG: Viçosa, Brazil, 1999; p. 359. [Google Scholar]
- Fancelli, A.L.; Dourado Neto, D. Produção de Milho, 1st ed.; Agropecuária: Guaíba, Brazil, 2000; p. 360. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemist: Washington, DC, USA, 1990. [Google Scholar]
- Kung, L., Jr. Preparation of Silage Water Extracts for Chemical Analyses. Standard Operating Procedure; University of Delaware—Ruminant Nutrition Laboratory: Newark, DE, USA, 1996; p. 32. [Google Scholar]
- Silva, D.J.; Queiroz, A.C. Análise de Alimentos: Métodos Químicos e Biológicos, 2nd ed; UFV: Viçosa, Brazil, 2002; p. 178. [Google Scholar]
- Mizubuti, I.Y.; Pinto, A.P.; Pereira, E.S.; Ramos, B.M. Métodos Laboratoriais de Avaliação de Alimentos Para Animais, 1st ed.; EDUEL: Londrina, Brazil, 2009; p. 228. [Google Scholar]
- Jobim, C.C.; Nussio, L.G.; Reis, R.A.; Schmidt, P. Methodological advances in evaluation of preserved forage quality. Braz. J. Anim. Sci. 2007, 36, 101–119. [Google Scholar]
- Ferreira, D.F. Sisvar: A computer analysis system to fixed effects Split plot type designs. Braz. J. Biom. 2019, 37, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Coblentz, W.K.; Muck, R.E.; Borchardt, M.A.; Spencer, S.K.; Jokela, W.E.; Bertram, M.G.; Coffey, K.P. Effects of dairy slurry on silage fermentation characteristics and nutritive value of alfafa. J. Dairy Sci. 2014, 97, 7197–7211. [Google Scholar] [CrossRef] [Green Version]
- Chioderoli, C.A.; Mello, L.M.M.; Grigolli, P.J.; Silva, J.O.R.; Cesarin, A.L. Consortium of pasture with fall corn in no tillage under center pivot. Eng. Agrícola 2010, 30, 1101–1109. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.P.; Andreotti, M.; Pascoaloto, I.M.; Costa, N.R.; Augusto, J.G. Influence of spacing and consortia in bromatological quality of maize. Rev. Espac. 2017, 38, 16–27. [Google Scholar]
- Pires, D.A.A.; Rocha Junior, V.R.; Sales, E.C.J.; Reis, S.T.; Jayme, D.G.; Cruz, S.S.; Lima, L.O.B.; Tolentino, D.C.; Esteves, B.L.C. Characteristics of silages of five winter sorghum genotypes. Braz. J. Maize Sorghum 2013, 12, 68–77. [Google Scholar]
- Kung, L.; Shaver, R. Interpretation and use of silage fermentation analysis reports. Focus Forage 2001, 3, 5. [Google Scholar]
- Oliveira, M.R.; Neumann, M.; Ueno, R.K.; Neri, J.; Marafon, F. Evaluation of losses in maize silage at different maturation stages. Braz. J. Maize Sorghum 2013, 12, 319–325. [Google Scholar]
- Paula, P.R.P.; Neiva Junior, A.P.; Souza, W.L.; Abreu, M.J.I.; Teixeira, R.M.A.; Cappelle, E.R.; Tavares, V.B. Chemical composition of BRS Capiaçu elephant grass silage with cornmeal inclusion. PUBVET 2020, 14, 1–11. [Google Scholar]
- Dijkstra, J.; Oenema, O.; van Groenigen, J.W.; Spek, J.W.; van Vuuren, A.M.; Bannink, A. Diet effects on urine composition of cattle and N2O emissions. Animal 2013, 7, 292–302. [Google Scholar] [CrossRef]
- Guimarães, A.K.V.; Pinto, J.C.; Faquin, V.; Castro, E.M.; Boldrin, P.F.; Faria, M.R.; Marinho, J.V.N. Morfology, nutritional value and anatomy Brachiaria brizantha under phosphorus doses and cutting ages. Conjecturas 2021, 21, 14. [Google Scholar]
- Martins, L.F.; Prado, D.M.B.; Gomes, G.R.; Teixeira, A.M.; Oliveira, L.N.; Gonçalves, L.C.; Oliveira, F.S. Nutricional value of fresh elephantgrass harvested at different regrowth ages. Braz. J. Vet. Anim. Sci. 2020, 72, 1881–1890. [Google Scholar]
Treatment | Yield (kg ha−1) * | Grass Participation in the Mass (%) | |
---|---|---|---|
Corn | Grass | ||
Monocropped corn | 71,185.5 | – | – |
Marandu, SR + IR | 63,195.4 | 4652.8 | 7.4 |
Marandu, SR + IRF | 66,000.0 | 3547.4 | 5.4 |
Marandu, S2IR | 60,230.3 | 3416.5 | 5.7 |
Marandu, 7DAE | 69,566.1 | 88.1 | 0.1 |
Marandu, 14DAE | 67,250.3 | 30.7 | 0.1 |
Mombasa, SR + IR | 64,583.3 | 11,750.0 | 18.2 |
Mombasa, SR + IRF | 62,773.7 | 15,722.2 | 18.8 |
Mombasa, S2IR | 63,941.4 | 8187.5 | 12.8 |
Mombasa, 7DAE | 67,601.9 | 345.8 | 0.5 |
Mombasa, 14DAE | 70,456.8 | 42.3 | 0.1 |
Treatments | BC eq. mg. NaOH 100 g−1 of DM | pH | NH3-N % of TN | Dry Matter (%) | |
---|---|---|---|---|---|
FORDM | SILDM | ||||
Monocropped corn | 1.81 | 3.80 | 2.13 | 31.39 | 31.16 |
Marandu, SR + IR | 1.59 | 3.81 | 2.61 | 31.63 | 28.77 |
Marandu, SR + IRF | 1.77 | 3.83 | 2.20 | 31.63 | 30.22 |
Marandu, S2IR | 1.81 | 3.82 | 3.68 * | 31.13 | 30.26 |
Marandu, 7DAE | 1.87 | 3.79 | 3.39 * | 32.16 | 29.57 |
Marandu, 14DAE | 1.82 | 3.81 | 3.02 * | 31.16 | 30.27 |
Mombasa, SR + IR | 2.20 * | 3.82 | 1.73 | 30.82 | 26.62 |
Mombasa, SR + IRF | 1.86 | 3.81 | 2.38 | 30.85 | 30.21 |
Mombasa, S2IR | 2.09 | 3.81 | 2.45 | 31.25 | 30.09 |
Mombasa, 7DAE | 1.85 | 3.80 | 3.17 * | 30.18 | 30.57 |
Mombasa, 14DAE | 2.23 * | 3.80 | 2.22 | 31.20 | 30.22 |
HSD 1 | 0.38 | 0.15 | 0.50 | 2.55 | 0.97 |
CV 2(%) | 9.77 | 2.03 | 9.40 | 4.00 | 5.03 |
Dry-Matter Losses | DMR (%) | ||||
GL % of DM | EL kg t−1 of green matter | ||||
Monocropped corn | 2.07 | 51.04 | 90.57 | ||
Marandu, SR + IR | 1.79 | 51.95 | 76.69 * | ||
Marandu, SR + IRF | 1.78 | 48.71 | 88.12 | ||
Marandu, S2IR | 2.33 | 34.21 | 91.57 | ||
Marandu, 7DAE | 2.09 | 57.44 | 84.25 | ||
Marandu, 14DAE | 2.32 | 34.87 | 91.17 | ||
Mombasa, SR + IR | 2.01 | 43.82 | 87.39 | ||
Mombasa, SR + IRF | 2.19 | 35.42 | 90.08 | ||
Mombasa, S2IR | 2.35 | 49.28 | 86.82 | ||
Mombasa, 7DAE | 2.24 | 48.35 | 91.51 | ||
Mombasa, 14DAE | 2.26 | 41.29 | 90.39 | ||
HSD 1 | 0.91 | 24.90 | 11.64 | ||
CV 2(%) | 20.97 | 27.01 | 6.47 |
Sowing Modalities | Grass Cultivars Intercropped | Means | |
---|---|---|---|
Marandu | Mombasa | ||
SR + IR | 1.59 aB | 2.02 abA | 1.89 |
SR + IRF | 1.77 aA | 1.86 abA | 1.82 |
S2IR | 1.81 aB | 2.09 abA | 1.95 |
7DAE | 1.87 aA | 1.85 bA | 1.86 |
14DAE | 1.82 aB | 2.23 aA | 2.03 |
Means | 1.77 | 2.04 | – |
CV 1(%) | 9.49 |
Variables | pH | Dry Matter (%) | Dry-Matter Losses | DMR (%) | ||
---|---|---|---|---|---|---|
FORDM | SILDM | GL * (% of DM) | EL (kg t−1 of GM **) | |||
Marandu | 3.81 | 31.54 | 29.82 | 2.06 | 45.44 | 86.36 |
Mombasa | 3.81 | 30.86 | 30.14 | 2.21 | 43.63 | 89.24 |
Sowing Modalities | ||||||
SR + IR | 3.81 | 31.23 | 29.19 | 1.90 | 47.89 | 82.04 |
SR + IRF | 3.82 | 31.24 | 30.21 | 1.98 | 42.06 | 89.10 |
S2IR | 3.81 | 31.19 | 30.17 | 2.34 | 41.75 | 89.20 |
7DAE | 3.80 | 31.17 | 30.07 | 2.16 | 52.89 | 87.88 |
14DAE | 3.81 | 31.18 | 30.25 | 2.29 | 38.08 | 90.78 |
CV 1(%) | 2.13 | 3.75 | 5.24 | 21.75 | 25.63 | 6.60 |
Sowing Modalities | Grass Cultivars Intercropped | Means | |
---|---|---|---|
Marandu | Mombasa | ||
SR + IR | 2.61 cdA | 1.73 cB | 2.17 |
SR + IRF | 2.20 dA | 2.38 bA | 2.29 |
S2IR | 3.68 aA | 2.45 bB | 3.07 |
7DAE | 3.39 abA | 3.17 aA | 3.28 |
14DAE | 3.02 bcA | 2.22 bcB | 2.62 |
Means | 2.98 | 2.39 | – |
CV 1(%) | 9.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, D.M.; Peixoto, W.M.; de Abreu, J.G.; dos Reis, R.H.P.; de Sousa, F.G.; Balbinot, E.; Klein, V.A.C.; Costa, R.P. Is the Integration between Corn and Grass under Different Sowing Modalities a Viable Alternative for Silage? Animals 2023, 13, 425. https://doi.org/10.3390/ani13030425
Herrera DM, Peixoto WM, de Abreu JG, dos Reis RHP, de Sousa FG, Balbinot E, Klein VAC, Costa RP. Is the Integration between Corn and Grass under Different Sowing Modalities a Viable Alternative for Silage? Animals. 2023; 13(3):425. https://doi.org/10.3390/ani13030425
Chicago/Turabian StyleHerrera, Dayenne Mariane, Wender Mateus Peixoto, Joadil Gonçalves de Abreu, Rafael Henrique Pereira dos Reis, Fabiano Gama de Sousa, Ernando Balbinot, Vanderley Antônio Chorobura Klein, and Ricardo Pereira Costa. 2023. "Is the Integration between Corn and Grass under Different Sowing Modalities a Viable Alternative for Silage?" Animals 13, no. 3: 425. https://doi.org/10.3390/ani13030425