High-Dose Vitamin E Supplementation Can Alleviate the Negative Effect of Subacute Ruminal Acidosis in Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Feed Samples and Analysis
2.3. Milk Collection and Analysis
2.4. Blood Samples and Analysis
2.5. Rumen Fermentation Parameters
2.6. Metabolic Profile Analyses of Serum
2.7. Microflora Analyses of Rumen
2.8. Statistical Analysis
3. Results
3.1. Dry Matter Intake, Milk Yield, and Milk Composition
3.2. Ruminal Fermentation Parameters
3.3. Blood Indicators
3.4. LC/MS Analysis of Serum
3.5. Richness, Diversity Estimates, and Rumen Bacteria Composition
3.6. Correlations between Blood Metabolome and Rumen Microbiome
4. Discussion
4.1. Dry Matter Intake, Milk Yield, and Milk Composition
4.2. Rumen Fermentation Parameters
4.3. Blood Indicators
4.4. Blood Metabolites
4.5. Rumen Bacterial Populations
4.6. Correlations between Blood Metabolome and Rumen Microbiome
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krause, K.M.; Oetzel, G.R. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Anim. Feed. Sci. Technol. 2006, 126, 215–236. [Google Scholar] [CrossRef]
- Esaúl, J.; Itza-Ortiz, M.F.; Gwendolyne, P.M.; Carrera-Chávez, J. Ruminal acidosis: Strategies for its control. Austral. J. Vet. Sci. 2017, 49, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Gozho, G.N.; Plaizier, J.C.; Krause, D.O.; Kennedy, A.D.; Wittenberg, K.M. Subacute Ruminal Acidosis Induces Ruminal Lipopolysaccharide Endotoxin Release and Triggers an Inflammatory Response. J. Dairy Sci. 2005, 88, 1399–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.Q.; Xu, X.F.; Zou, Y.; Yang, Z.S.; Li, S.L.; Cao, Z.J. Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp. J. Anim. Sci. Biotechnol. 2013, 4, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Memon, M.A.; Dai, H.; Wang, Y.; Xu, T.; Shen, X. Efficacy of sodium butyrate in alleviating mammary oxidative stress induced by sub-acute ruminal acidosis in lactating goats. Microb. Pathog. 2019, 137, 103781. [Google Scholar] [CrossRef]
- Niki, E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: In vitro and in vivo evidence. Free Radical. Bio. Med. 2014, 66, 3–12. [Google Scholar] [CrossRef]
- Moghimi-Kandelousi, M.H.; Alamouti, A.A.; Imani, M.; Zebeli, Q. A meta-analysis and meta-regression of the effects of vitamin E supplementation on serum enrichment, udder health, milk yield, and reproductive performance of transition cows. J. Dairy Sci. 2020, 103, 6157–6166. [Google Scholar] [CrossRef]
- Schäfers, S.; Meyer, U.; von Soosten, D.; Krey, B.; Hüther, L.; Tröscher, A.; Pelletier, W.; Kienberger, H.; Rychlik, M.; Dänicke, S. Influence of vitamin E on organic matter fermentation, ruminal protein and fatty acid metabolism, protozoa concentrations and transfer of fatty acids. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1111–1119. [Google Scholar] [CrossRef]
- Pottier, J.; Focant, M.; Debier, C.; De Buysser, G.; Goffe, C.; Mignolet, E.; Froidmont, E.; Larondelle, Y. Effect of dietary vitamin E on rumen biohydrogenation pathways and milk fat depression in dairy cows fed high-fat diets. J. Dairy Sci. 2006, 89, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Enjalbert, F.; Videau, Y.; Nicot, M.C.; Troegeler-Meynadier, A. Effects of induced subacute ruminal acidosis on milk fat content and milk fatty acid profile. J. Anim. Physiol. Anim. Nutr. 2010, 92, 284–291. [Google Scholar] [CrossRef]
- Chances In Official Methods Of Analysis. J. Aoac Int. 1990, 73, 189–191. [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, C.; Broderick, G.A. Effect of processing high moisture ear corn on ruminal fermentation and milk yield. J. Dairy Sci. 1997, 80, 3298–3307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Z.J.; Li, S.L.; Xing, J.J.; Ma, M.; Wang, L.L. Effects of maize grain and lucerne particle size on ruminal fermentation, digestibility and performance of cows in midlactation. J. Anim. Physiol. Anim. Nutr. 2008, 92, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.J.; Schultz, A.W.; Wang, J.; Johnson, C.H.; Yannone, S.M.; Patti, G.J.; Siuzdak, G. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat. Protoc. 2013, 8, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Wang, X.; Yuan, S.; Wang, Y.; Shen, J. Flammulina velutipes polysaccharide improves C57BL/6 mice gut health through regulation of intestine microbial metabolic activity. Int. J. Biol. Macromol. 2021, 167, 1308–1318. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.A.; Yang, S.A.; Qr, C.; Yan, Y.A.; Xia, W.A.; Dl, A.; Cai, Y.; Zhang, X. The microbiome and metabolome of Napier grass silages prepared with screened lactic acid bacteria during ensiling and aerobic exposure. Anim. Feed. Sci. Technol. 2020, 269, 114673. [Google Scholar] [CrossRef]
- Walters, W.; Hyde, E.R.; Berg-Lyons, D.; Ackermann, G.; Humphrey, G.; Parada, A.; Gilbert, J.; Jansson, J.; Caporaso, G.; Fuhrman, J.; et al. Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. mSystems 2016, 1, e00009–e00015. [Google Scholar] [CrossRef] [Green Version]
- Malik, I.; Batra, T.; Das, S.; Kumar, V. Light at night affects gut microbial community and negatively impacts host physiology in diurnal animals: Evidence from captive zebra finches. Microbiol. Res. 2020, 241, 126597. [Google Scholar] [CrossRef]
- Urbanek, A.K.; Rybak, J.; Wróbel, M.; Leluk, K.; Mirończuk, A. A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste. Environ Pollut. 2020, 262, 114281. [Google Scholar] [CrossRef]
- Filippis, F.D.; Parente, E.; Zotta, T.; Ercolini, D. A comparison of bioinformatic approaches for 16S rRNA gene profiling of food bacterial microbiota. Int. J. Food Microbiol. 2017, 265, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; Mcdonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.; Burkepile, D.; Thurber, R.V.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Malekkhahi, M.; Tahmasbi, A.M.; Naserian, A.A.; Danesh-Mesgaran, M.; Kleen, J.L.; AlZahal, O.; Ghaffari, M.H. Effects of supplementation of active dried yeast and malate during sub-acute ruminal acidosis on rumen fermentation, microbial population, selected blood metabolites, and milk production in dairy cows. Anim. Feed. Sci. Technol. 2016, 213, 29–43. [Google Scholar] [CrossRef]
- Allen, M.S. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J. Dairy Sci. 2000, 83, 1598–1624. [Google Scholar] [CrossRef]
- Aditya, S.; Humer, E.; Pourazad, P.; Khiaosa-Ard, R.; Huber, J.; Zebeli, Q. Intramammary infusion of Escherichia coli lipopolysaccharide negatively affects feed intake, chewing, and clinical variables, but some effects are stronger in cows experiencing subacute rumen acidosis. J. Dairy Sci. 2017, 100, 1363–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandri, E.C.; Levesque, J.; Marco, A.; Couture, Y.; Gervais, R.; Rico, D.E. Transient reductions in milk fat synthesis and their association with the ruminal and metabolic profile in dairy cows fed high-starch, low-fat diets. Animal 2020, 14, 2523–2534. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Ropp, J.K.; Grandeen, K.L.; Abedi, S.; Etter, R.P.; Melgar, A.; Foley, A.E. Effect of carbohydrate source on ammonia utilization in lactating dairy cows. J. Anim. Sci. 2005, 83, 408–421. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Nagata, R.; Ohkubo, A.; Ohtani, N.; Kushibiki, S.; Ichijo, T.; Sato, S. Changes in ruminal and reticular pH and bacterial communities in Holstein cattle fed a high-grain diet. BMC Vet. Res. 2018, 14, 310. [Google Scholar] [CrossRef]
- Han, G.; Gao, X.; Duan, J.; Zhang, H.; Gu, S. Effects of yeasts on rumen bacterial flora, abnormal metabolites, and blood gas in sheep with induced subacute ruminal acidosis. Anim. Feed. Sci. Technol. 2021, 280, 115042. [Google Scholar] [CrossRef]
- Stefańska, B.; Komisarek, J.; Nowak, W. Non-Invasive Indicators Associated with Subacute Ruminal Acidosis in Dairy Cows. Ann. Anim. Sci. 2020, 20, 1325–1338. [Google Scholar] [CrossRef]
- Xu, T.; Tao, H.; Chang, G.; Zhang, K.; Xu, L.; Shen, X. Lipopolysaccharide derived from the rumen down-regulates stearoyl-CoA desaturase 1 expression and alters fatty acid composition in the liver of dairy cows fed a high-concentrate diet. BMC Vet. Res. 2015, 11, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Lecompte, J.C.; Kroeker, A.D.; Ceballos-Marquez, A.; Li, S.; Plaizier, J.C.; Gomez, D.E. Evaluation of the systemic innate immune response and metabolic alterations of nonlactating cows with diet-induced subacute ruminal acidosis. J. Dairy Sci. 2014, 97, 7777–7787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, X.; Zhao, W.; Neethirajan, S.; Duffield, T. Microfluidic biosensor for β-Hydroxybutyrate (βHBA) determination of subclinical ketosis diagnosis. J. Nanobiotechnol. 2015, 13, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach, K.; Heuwieser, W.; McArt, J. Comparison of 4 electronic handheld meters for diagnosing hyperketonemia in dairy cows. J. Dairy Sci. 2016, 99, 9136–9142. [Google Scholar] [CrossRef] [Green Version]
- Oetzel, G.R. Herd-level ketosis–diagnosis and risk factors. Preconference Semin. C 2007, 7, 67–91. [Google Scholar]
- Kessel, S.; Stroehl, M.; Meyer, H.; Hiss, S.; Sauerwein, H.; Schwarz, F.; Bruckmaier, R.M. Individual variability in physiological adaptation to metabolic stress during early lactation in dairy cows kept under equal conditions. J. Dairy Sci. 2008, 86, 2903–2912. [Google Scholar] [CrossRef]
- Kleen, J.; Cannizzo, C. Incidence, prevalence and impact of SARA in dairy herds. Anim. Feed. Sci. Technol. 2012, 172, 4–8. [Google Scholar] [CrossRef]
- Bishop, D.K.; Wettemann, R.P.; Spicer, L.J. Body energy reserves influence the onset of luteal activity after early weaning of beef cows. J. Anim. Sci. 1994, 72, 2703–2708. [Google Scholar] [CrossRef] [Green Version]
- Aschenbach, J.R.; Zebeli, Q.; Patra, A.K.; Greco, G.; Amasheh, S.; Penner, G.B. Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow. J. Dairy Sci. 2019, 102, 1866–1882. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.L.; Liu, Y.H.; Liu, C.; Qi, M.P.; Liu, R.N.; Zhu, X.F.; Zhou, Q.-G.; Chen, Y.-Y.; Guo, A.-Z.; Hu, C.-M. Indirubin Inhibits LPS-Induced Inflammation via TLR4 Abrogation Mediated by the NF-kB and MAPK Signaling Pathways. Inflammation 2017, 40, 1–12. [Google Scholar] [CrossRef]
- Jie, Y.; Ren, W.; Huang, X.; Deng, J.; Li, T.; Yin, Y. Potential Mechanisms Connecting Purine Metabolism and Cancer Therapy. Front. Immunol. 2018, 9, 1697. [Google Scholar] [CrossRef]
- Alejandro, B.; Kingston-Smith, A.H.; Newbold, C.J. An Integrated Multi-Omics Approach Reveals the Effects of Supplementing Grass or Grass Hay with Vitamin E on the Rumen Microbiome and Its Function. Front. Microbiol. 2016, 7, 905. [Google Scholar] [CrossRef] [Green Version]
- Mao, S.Y.; Zhang, R.Y.; Wang, D.S.; Zhu, W.Y. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing. Anaerobe 2013, 24, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Sml, A.; Xmz, A.; Ylz, A.; Wmk, A.; Yjc, A.; Li, L.A.; Dai, F.-Y. Intestinal morphology, immunity and microbiota response to dietary fibers in largemouth bass, Micropterus salmoide. Fish Shellfish Immun. 2020, 103, 135–142. [Google Scholar] [CrossRef]
- Mu, Y.; Qi, W.; Zhang, T.; Zhang, J.; Mao, S. Multi-omics Analysis Revealed Coordinated Responses of Rumen Microbiome and Epithelium to High-Grain-Induced Subacute Rumen Acidosis in Lactating Dairy Cows. mSystems 2022, 7, e0149021. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Jin, W.; Feng, P.F.; Liu, J.H.; Mao, S.Y. High-grain diet feeding altered the composition and functions of the rumen bacterial community and caused the damage to the laminar tissues of goats. Animal 2018, 12, 2511–2520. [Google Scholar] [CrossRef]
- Rye, P.T.; LaMarr, W.A. Measurement of glycolysis reactants by high-throughput solid phase extraction with tandem mass spectrometry: Characterization of pyrophosphate-dependent phosphofructokinase as a case study. Anal. Biochem. 2015, 482, 40–47. [Google Scholar] [CrossRef]
- Kraatz, M.; Wallace, R.J.; Svensson, L. Olsenella umbonata sp. nov., a microaerotolerant anaerobic lactic acid bacterium from the sheep rumen and pig jejunum, and emended descriptions of Olsenella, Olsenella uli and Olsenella profusa. Int. J. Syst. Evol. Microbiol. 2011, 61, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Meng, Q.; Zhou, B.; Zhou, Z. Effect of ensiled mulberry leaves and sun-dried mulberry fruit pomace on the fecal bacterial community composition in finishing steers. BMC Microbiol. 2017, 17, 97. [Google Scholar] [CrossRef] [Green Version]
- Hui, S.; Ghergurovich, J.M.; Morscher, R.J.; Jang, C.; Teng, X.; Lu, W.; Esparza, L.A.; Reya, T.; Zhan, L.; Guo, J.Y.; et al. Glucose feeds the TCA cycle via circulating lactate. Nature 2017, 551, 115–118. [Google Scholar] [CrossRef]
Items | Dietary Treatment 1 | ||
---|---|---|---|
CON | HG | HGE | |
Ingredient composition, % | |||
Whole plant corn silage | 24.32 | 16.78 | 16.78 |
Alfalfa hay | 13.75 | 9.69 | 9.69 |
Oats hay | 11.45 | 8.32 | 8.32 |
Ground corn | 17 | 17.12 | 17.12 |
Ground wheat | 0 | 15.19 | 15.19 |
Ground barley | 3 | 3.03 | 3.03 |
Soybean meal | 13.41 | 13.5 | 13.5 |
Whole cotton seed | 5.23 | 5.27 | 5.27 |
Wet brewer’s grains | 4.93 | 4.14 | 4.14 |
Cane molasses | 2.65 | 2.67 | 2.67 |
Rumen bypass fat | 0.39 | 0.4 | 0.4 |
Premix 2 | 0.84 | 0.84 | 0.84 |
Calcium hydrogen phosphate | 0.36 | 0.36 | 0.36 |
Limestone | 1.12 | 1.13 | 1.13 |
Sodium bicarbonate | 0.81 | 0.82 | 0.82 |
KCl | 0.07 | 0.07 | 0.07 |
MgO | 0.31 | 0.31 | 0.31 |
NaCl | 0.36 | 0.36 | 0.36 |
Nutrient levels 3 | |||
NEL, MJ/kg | 6.67 | 6.97 | 6.97 |
CP | 16.62 | 16.63 | 16.63 |
NDF | 35.81 | 29.22 | 29.22 |
ADF | 22.6 | 17.41 | 17.41 |
EE | 4.43 | 4.25 | 4.25 |
Starch | 21.97 | 31.28 | 31.28 |
Ca | 0.89 | 0.82 | 0.82 |
P | 0.39 | 0.41 | 0.41 |
Item 1 | Dietary Treatments 2 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
CON | HG | HGE | CON vs. HG | HG vs. HGE | ||
DMI, kg/d | 21.4 | 19.4 | 22.2 | 0.28 | <0.01 | <0.01 |
Milk yield, kg/d | 32.9 | 29.4 | 32.9 | 1.16 | 0.23 | 0.24 |
3.5%FCM, kg/d | 36.6 | 26.9 | 32.9 | 1.20 | <0.01 | <0.01 |
ECM, kg/d | 36.0 | 28.0 | 33.3 | 1.09 | <0.01 | 0.02 |
Feed efficiency | 1.7 | 1.4 | 1.5 | 0.05 | <0.01 | 0.32 |
Milk fat, % | 4.2 | 3.2 | 3.6 | 0.2 | 0.05 | 0.33 |
Milk protein, % | 3.1 | 3.3 | 3.2 | 0.28 | <0.01 | 0.12 |
Lactose, % | 4.5 | 4.8 | 4.6 | 0.41 | 0.01 | 0.13 |
Total milk solid, % | 12.9 | 12.4 | 12.5 | 0.24 | 0.44 | 0.87 |
Milk fat yield, kg/d | 1.4 | 0.9 | 1.2 | 0.06 | <0.01 | 0.02 |
Milk protein yield, kg/d | 1.0 | 1.0 | 1.1 | 0.04 | 0.60 | 0.43 |
Lactose yield, kg/d | 1.5 | 1.4 | 1.5 | 0.05 | 0.60 | 0.42 |
Total solids production, kg/d | 4.2 | 3.6 | 4.1 | 0.13 | 0.03 | 0.11 |
MUN, mg/dL | 13.7 | 11.3 | 11.7 | 0.43 | 0.02 | 0.68 |
NUE, g/g | 0.3 | 0.3 | 0.3 | 0.01 | 0.59 | 0.55 |
Item | Dietary Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
CON | HG | HGE | CON vs. HG | HG vs. HGE | ||
T-AOC, mM | 0.8 | 0.7 | 0.8 | 0.01 | <0.01 | 0.03 |
MDA, nmol/mL | 5.0 | 8.0 | 6.1 | 0.19 | <0.01 | <0.01 |
LPS, U/L | 398.7 | 397.2 | 444.7 | 10.46 | 0.95 | 0.06 |
SOD, U/mL | 148.7 | 98.5 | 128.1 | 3.30 | <0.01 | <0.01 |
CAT, U/mL | 100.9 | 75.9 | 90.0 | 2.12 | <0.01 | <0.01 |
GSH-Px, U/mL | 845.8 | 657 | 740.7 | 15.86 | 0.05 | 0.01 |
Item 1 | Dietary Treatments 2 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
CON | HG | HGE | CON vs. HG | HG vs. HGE | ||
Maximum ruminal pH | 6.9 | 6.5 | 6.7 | 0.07 | 0.01 | 0.26 |
Minimum ruminal pH | 6.0 | 5.5 | 5.6 | 0.08 | 0.01 | 0.39 |
Mean ruminal pH | 6.4 | 6.1 | 6.2 | 0.10 | 0.23 | 0.72 |
0 h | 6.9 | 6.5 | 6.7 | 0.07 | 0.01 | 0.26 |
3 h | 6.4 | 5.7 | 5.8 | 0.09 | <0.01 | 0.27 |
6 h | 6.0 | 5.5 | 5.6 | 0.08 | 0.01 | 0.39 |
9 h | 6.4 | 6.1 | 6.0 | 0.09 | 0.26 | 0.70 |
12 h | 6.6 | 6.5 | 6.6 | 0.08 | 0.47 | 0.46 |
NH3-N, mg/100 mL | 11.1 | 8.4 | 11.7 | 0.58 | 0.03 | 0.01 |
LPS, EU/mL | 19.7 | 26.8 | 20.0 | 0.56 | <0.01 | <0.01 |
HIS, ng/mL | 20.6 | 25.1 | 22.1 | 0.39 | <0.01 | <0.01 |
LA, mmol/L | 0.1 | 0.1 | 0.1 | 0.01 | 0.29 | 0.47 |
Item 1 | Dietary Treatments 2 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
CON | HG | HGE | CON vs. HG | HG vs. HGE | ||
Acetate, ng/uL | 54.9 | 66.6 | 60.5 | 1.48 | <0.01 | <0.01 |
Propionate, ng/uL | 17.0 | 28.8 | 26.4 | 2.41 | 0.04 | 0.63 |
Butyrate, ng/uL | 12.6 | 19.9 | 14.4 | 1.26 | 0.01 | 0.04 |
Isobutyrate, ng/uL | 0.8 | 0.9 | 1.0 | 0.04 | 0.54 | 0.10 |
Valerate, ng/uL | 1.4 | 2.4 | 2.1 | 0.17 | 0.01 | 0.49 |
Isovalerate, ng/uL | 1.2 | 1.5 | 1.9 | 0.15 | 0.48 | 0.24 |
TVFA, ng/uL | 87.9 | 120.0 | 106.4 | 4.21 | <0.01 | 0.01 |
A/P | 3.2 | 2.5 | 2.4 | 0.19 | 0.13 | 0.88 |
Molar ratio, % | ||||||
Acetate | 62.5 | 55.6 | 57.1 | 1.19 | 0.01 | 0.52 |
Propionate | 19.3 | 23.8 | 24.5 | 1.54 | 0.26 | 0.85 |
Butyrate | 14.4 | 16.7 | 13.7 | 0.86 | 0.30 | 0.18 |
Item 1 | Dietary Treatments 2 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
CON | HG | HGE | CON vs. HG | HG vs. HGE | ||
ALB, g/L | 48.5 | 48.5 | 48.5 | 0.33 | 0.96 | 0.99 |
TP, g/L | 78.1 | 77.6 | 78.2 | 0.58 | 0.72 | 0.65 |
ALB/GLB | 1.7 | 1.7 | 1.6 | 0.01 | 0.40 | 0.28 |
GLB, g/L | 29.6 | 29.1 | 29.7 | 0.31 | 0.47 | 0.40 |
GLU, mmol/L | 4.3 | 3.9 | 4.0 | 0.08 | 0.02 | 0.67 |
LDH, U/L | 775.2 | 789.7 | 820.2 | 16.26 | 0.72 | 0.45 |
TC, mmol/L | 3.9 | 3.4 | 3.5 | 0.09 | 0.03 | 0.71 |
TG, mmol/L | 0.1 | 0.1 | 0.1 | 0.002 | 0.85 | 0.09 |
UREA, mmol/L | 4.3 | 3.3 | 4.5 | 0.11 | <0.01 | <0.01 |
NEFA, mmol/L | 0.3 | 0.4 | 0.4 | 0.005 | 0.01 | 0.83 |
BHBA, mmol/L | 2.3 | 2.6 | 2.6 | 0.06 | 0.01 | 0.82 |
INS, μIU/mL | 36.8 | 30.7 | 39.8 | 2.71 | 0.36 | 0.18 |
GC, pg/mL | 194.6 | 205.8 | 185.2 | 3.67 | 0.21 | 0.02 |
Item 1 | Dietary Treatments 2 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
CON | HG | HGE | CON vs. HG | HG vs. HGE | ||
IL-1β, pg/mL | 185.9 | 319.6 | 267.8 | 10.11 | <0.01 | 0.01 |
IL-6, pg/mL | 134.8 | 171.8 | 141.9 | 3.36 | <0.01 | <0.01 |
IL-10, pg/mL | 46.2 | 49.5 | 46.6 | 1.31 | 0.33 | 0.39 |
TLR4, ng/mL | 10.6 | 10.6 | 10.0 | 0.39 | 0.97 | 0.57 |
TNF-α, pg/mL | 130.8 | 178.6 | 157.7 | 3.67 | <0.01 | <0.01 |
Hp, ng/mL | 260.6 | 335.5 | 313.8 | 6.21 | <0.01 | 0.07 |
SAA, ug/mL | 8.8 | 10.3 | 9.2 | 0.19 | <0.01 | 0.01 |
CRP, mg/L | 7.2 | 9.1 | 8.4 | 0.18 | <0.01 | 0.06 |
LBP, ng/mL | 578.4 | 582.2 | 628.0 | 14.84 | 0.92 | 0.21 |
Endotoxin, EU/mL | 12.0 | 17.0 | 13.6 | 0.32 | <0.01 | <0.01 |
HIS, ng/mL | 11.6 | 15.7 | 13.5 | 0.25 | <0.01 | <0.01 |
LA, mmol/L | 0.2 | 0.2 | 0.2 | 0.01 | 0.13 | 0.69 |
Item | Dietary Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
CON | HG | HGE | CON vs. HG | HG vs. HGE | ||
T-AOC, mM | 0.7 | 0.6 | 0.6 | 0.01 | <0.01 | 0.98 |
MDA, nmol/mL | 10.7 | 14.1 | 12.3 | 0.31 | <0.01 | 0.01 |
LPS, U/L | 905.0 | 949.4 | 889.5 | 19.69 | 0.36 | 0.22 |
SOD, U/mL | 330.1 | 269.0 | 304.6 | 5.02 | <0.01 | <0.01 |
CAT, U/mL | 243.0 | 207.3 | 220.0 | 3.39 | <0.01 | 0.08 |
GSH-Px, U/mL | 1153.3 | 868.9 | 1037.7 | 22.87 | <0.01 | <0.01 |
Item 1 | Dietary Treatments 2 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
CON | HG | HGE | CON vs. HG | HG vs. HGE | ||
Good’s_coverage/% | 99.6 | 99.6 | 99.6 | <0.01 | 1 | 0.55 |
OTU | 1471.4 | 1385.0 | 1311.9 | 21.43 | 0.08 | 0.14 |
ACE | 1573.4 | 1489.3 | 1422.5 | 24.41 | 0.10 | 0.19 |
Chao1 | 1568.8 | 1480.8 | 1412.0 | 24.52 | 0.08 | 0.16 |
Shannon | 8.6 | 8.1 | 7.4 | 0.14 | <0.01 | <0.01 |
Simpson | 1.0 | 1.0 | 1.0 | <0.01 | 0.08 | <0.01 |
Treatments | A 1 | Observed-Delta 2 | Expected-Delta 3 | Significance 4 |
---|---|---|---|---|
CON-HG | 0.1 | 0.5 | 0.5 | <0.01 |
HG-HGE | 0.1 | 0.4 | 0.4 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Guo, Y.; Zhang, J.; Deng, M.; Xian, Z.; Xiong, H.; Liu, D.; Sun, B. High-Dose Vitamin E Supplementation Can Alleviate the Negative Effect of Subacute Ruminal Acidosis in Dairy Cows. Animals 2023, 13, 486. https://doi.org/10.3390/ani13030486
Wu Z, Guo Y, Zhang J, Deng M, Xian Z, Xiong H, Liu D, Sun B. High-Dose Vitamin E Supplementation Can Alleviate the Negative Effect of Subacute Ruminal Acidosis in Dairy Cows. Animals. 2023; 13(3):486. https://doi.org/10.3390/ani13030486
Chicago/Turabian StyleWu, Zibin, Yongqing Guo, Jiahao Zhang, Ming Deng, Zhenyu Xian, Haoming Xiong, Dewu Liu, and Baoli Sun. 2023. "High-Dose Vitamin E Supplementation Can Alleviate the Negative Effect of Subacute Ruminal Acidosis in Dairy Cows" Animals 13, no. 3: 486. https://doi.org/10.3390/ani13030486
APA StyleWu, Z., Guo, Y., Zhang, J., Deng, M., Xian, Z., Xiong, H., Liu, D., & Sun, B. (2023). High-Dose Vitamin E Supplementation Can Alleviate the Negative Effect of Subacute Ruminal Acidosis in Dairy Cows. Animals, 13(3), 486. https://doi.org/10.3390/ani13030486