Next Article in Journal
Expression Profile of miRNA from High, Middle, and Low Stress-Responding Sheep during Bacterial Endotoxin Challenge
Next Article in Special Issue
What Influences the Prevalence and Intensity of Haemoparasites and Ectoparasites in an Insular Lizard?
Previous Article in Journal
Fattening Iberian Pigs Indoors vs. Outdoors: Production Performance and Market Value
Previous Article in Special Issue
The Intriguing Biogeographic Pattern of the Italian Wall Lizard Podarcis siculus (Squamata: Lacertidae) in the Tuscan Archipelago Reveals the Existence of a New Ancient Insular Clade
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Diet of the Insular Lizard, Podarcis lilfordi (Günther, 1874): Complementary Morphological and Molecular Approaches

1
Department of Biology, University of the Balearic Islands, Ctra. Valldemossa km 7′5, 07122 Palma de Mallorca, Spain
2
Department of Animal Biology, Universidad de Salamanca, 37071 Salamanca, Spain
*
Author to whom correspondence should be addressed.
Animals 2023, 13(3), 507; https://doi.org/10.3390/ani13030507
Submission received: 19 November 2022 / Revised: 17 January 2023 / Accepted: 23 January 2023 / Published: 1 February 2023
(This article belongs to the Special Issue Lizard Evolutionary Ecology in Islands)

Abstract

:

Simple Summary

Traditionally, the diets of lizards and other small vertebrates have been studied using invasive techniques, such as the analysis of gastric contents obtained by dissection or stomach-flushing. Nowadays, the morphological analysis of the remains contained in feces is commonly used. However, these techniques require a great deal of experience to identify prey remains, and some prey items may be left undetected in the analyses. Recently, the use of molecular techniques has made it possible to identify prey from feces, thus significantly expanding the diversity of identified prey. Despite this, the molecular analysis of diets also has limitations, since it does not allow an adequate quantification of the contribution of each prey type, and, on occasion, some prey may not leave traces of DNA detectable in the feces. For this reason, here we propose a study of the diet in which the two methods of fecal analysis are complementarily used: morphological identification and identification by means of DNA analysis.

Abstract

The diets of insular lizards are extremely varied, depending on the different environmental characteristics of each island population. This is particularly evident in the case of the populations of small coastal islets of the Balearic Islands, where the Balearic lizard, Podarcis lilfordi, is found. The study of trophic ecology carried out by means of traditional tools, such as morphological analysis of feces, has made it possible to detect numerous prey and nutritional elements. However, these methods are clearly insufficient, as some rare groups are not detected. It is also difficult to identify remains of marine subsidies or of foods contributed to these small islands by other predators, such as seabirds. The current study demonstrates the advantages of combining morphological diet analysis with the molecular study of individual feces samples obtained from the same populations. We obtained a greater diversity of prey groups using the combined methodologies, with each method identifying prey items that were not detected using the other method. Particularly, the study of diets at the molecular level identified plant species consumed by lizards that were, occasionally, not identified in morphological analyses. Conversely, the traditional morphological study of an equivalent number of fecal samples allowed for the identification of several prey groups that had not been detected in the molecular study. From this viewpoint, the advantages and disadvantages of each methodology are discussed.

1. Introduction

Lizard diets can be complex, and feeding habits are expected to vary among species depending on evolutionary history, microhabitat characteristics, and prey availability [1]. Most lizard species are generalist predators [2]. Traditionally, they were considered insectivores, although collectively they consume a much wider variety of food types, including plants [3]. Several of the available dietary studies of Podarcis species are based on morphological analyses of stomach contents from sacrificed lizards and/or from preserved specimens of herpetological collections [4]. Alternative methods for studying diet include stomach flushing [5,6] and direct observation of feeding [7]. The use of stomach contents obtained by dissection raises ethical problems, as it requires the sacrifice of specimens to be studied and, furthermore, is not desirable in protected species whose populations may be threatened. Similarly, stomach flushing can be considered an invasive and disruptive technique [8], undesirable for the study of protected species. For this reason, many current studies are carried out using feces obtained directly from lizards or from the environment, in some cases adding information obtained from direct observations [9]. This allows a detailed study of the diet, even with the identification of soft-bodied prey, such as insect larvae [10]. The major drawback of studying diet using fecal samples is that it requires a great deal of experience to identify animal prey and plant remains, such as seeds and pollen grains, and is, therefore, a time-consuming process restricted to specialists.
Some common prey of lizards go through different developmental stages (e.g., soft-bodied beetle larvae) and may not be identifiable at lower taxonomic levels; furthermore, digestive processes submit prey tissue to intense deterioration. Consequently, the absence of hard parts can make identification difficult [11]. In the case of vegetal matter, it is often necessary to employ microscopic techniques for staining plant tissues, further complicating the task of taxonomic identification.
Current DNA-based methods of taxonomic identification, such as metabarcoding, are useful for the study of trophic spectra [12]. The combination of different barcodes could contribute to a more effective taxonomic assignment. Prey-specific DNA sequences, recovered from gut or fecal samples, are usually short (100–400 bp approx.) and low-quality owing to DNA degradation during digestion [13,14]. When diet DNA is degraded, mini-barcodes are required [15]. Additionally, degraded prey DNA commonly is mixed with prevalent high-quality DNA from the predator [16]. Different methods to prevent DNA co-amplification exist. Molecular methods remove some limitations of traditional techniques, but present others, especially the requirement of technical expertise, economic cost, and availability of appropriate databases. For this reason, DNA-based analyses should be combined with conventional dietary analyses and ecological research to allow the effective taxonomic identification of prey [17].
In the present study, we applied the traditional morphological prey identification from fecal samples and metabarcoding identification from fresh feces to assess diet partitioning and feeding strategies in five populations of the Balearic lizard Podarcis lilfordi (Günther, 1874). The Balearic lizard is one of the two endemic species inhabiting the Balearic Islands. The species is only present in coastal islets around the Mallorca and Menorca islands, as well as in the Cabrera archipelago [18]. Because of its restricted distribution and the situation of several populations, the Balearic lizard is considered an endangered species ([18] and references therein). We selected this species for our study because our previous knowledge of its omnivorous diet, comprising a wide range of prey and vegetal matter [4,9,18,19].

2. Materials and Methods

2.1. Study Area and Sampling

For the metabarcoding identification, a total of 37 fresh fecal samples from P. lilfordi were collected during the summer of 2018 in the Balearic Islands. From the Cabrera archipelago, at the islet of Ses Bledes, 5 females and 1 male were sampled, and from the islets offshore Mallorca, 31 samples were taken from 15 females and 16 males: Caragol (3/5), Na Guardia (3/4), Na Moltona (5/3), and Na Pelada (4/4) (Figure 1). Lizards were captured by noosing and fresh droppings were directly obtained with a gentle abdominal massage and stored in absolute ethanol vials. Lizards were immediately released at the point of capture. The samples were preserved at 4 °C in the field; upon arrival to the laboratory, they were stored at −20 °C until DNA extraction [12].
Additionally, a total of 138 different individual feces samples, from the same season and localities as the molecular samples, were included in the morphological analysis. For these samples, we collected feces from individual lizards, as well as from the ground.

2.2. Molecular Study of the Diet

2.2.1. DNA Extraction and Library Preparation

Total DNA was extracted from individual samples using the Isolate Fecal DNA Kit (Bioline, London, UK) following the manufacturer’s protocol. Samples were submitted to the Roy J. Carver Biotechnology Center (University of Illinois, Ill., USA) for amplification in a microfluidic high-throughput multiplexed PCR platform (Fluidigm). For animal prey detection, we used mitochondrial cytochrome oxidase I (COI) for the following primer pairs: mlCOlintF/jgHCO2198 (5′-GGWACWGGWTGAACWGTWTAYCCYCC-3′/5′-TANACYTCNGGRTGNCCRAARAAYCA-3′ [20,21] and specific arthropod ArtF11/ArtR17 (5′-GGNKYNGGNACWGGATGAACWGTNTAYCCNCC-3′/5′-GGRTCAAAAAATGAWGTATTHARATTTCGRTCWGTTA-3′ [22]. To study the ingested plants, the following rbcL and psbA-trnH chloroplast markers were used: psbA3_f/trnHf_05 (5′-GTTATGCATGAACGTAATGCTC-3′/5′-CGCGCATGGTGGATTCACAATCC-3′; [23,24] and rbcLa_F/rbcLa_R (5′-ATGTCACCACAAACAGAGACTAAAGC-3′/5′-GTAAAATCAAGTCCACCRCG-3′ [25,26]. CS1 and CS2 Fluidigm universal tags and barcode labels specific to each sample and Illumina adapters i5 and i7 were used. The resulting amplicons were validated on a Fragment Analyzer (Agilent) using the HS NGS kit (DNF-474-33). Sequencing was conducted on an Illumina MiSeq v2 platform yielding 2 × 250 paired-end reads. Regarding animal prey, a blocking primer-targeting region within COI was used to minimize host amplification. For the design, we used COI sequences of the most commonly consumed prey reported from previous studies of Balearic lizards [9] available at Barcode of Life Data System (BOLD; http://www.boldsystems.org, accessed on 1 September 2022) and COI fragments of P. lilfordi available through the GenBank accession codes in [18].

2.2.2. Sequence Analyses and Taxonomic Assignment

Micca version 1.7.2 [27] was used for merging, trimming, filtering, and OTU picking (see [12] for more details). For the taxonomic assignment (Table 1), the resulting DNA sequences (OTUs) were joined into 98% similarity clusters with Usearch version 10.0.240_i86osx32 [28]. Consensus sequences (centroid) were defined for each cluster and were used to download, from public DNA databases (GenBank and rrnDB), the 1000 most similar sequences.
Individual centroids were analyzed using all the sequences forming the cluster and the 1000 most similar sequences. DNA matrices were aligned with MAFFT [29] and used for phylogenetic inference employing IQTREE [30]. Trees were explored in FigTree [31] to establish the systematic position of the diet sequence to the highest taxonomic rank according to bootstrap support values ≥ 70% [32]. Information from multiple markers targeting the same group of organisms (i.e., animals or plants) was merged following the multi-marker metabarcoding approach described in [33].
Finally, taxonomic assignments and current nomenclature from metabarcoding (Table 1) were checked with available information provided in the taxonomic literature of plants and invertebrates recorded in the Balearic Islands (List A1 (prey references) and List A2 (plant references) from Appendix A).

2.3. Morphological Study of the Diet

We analyzed fecal pellets under a binocular dissecting microscope. Diet reconstruction was based on a meticulous pellet analysis that is highly comparable to diet reconstructions based on gastric contents, with soft-bodied prey and, particularly, insect larvae being equally represented in fecal pellets and gut contents [10]. Each scat was spread in a thin layer of less than 0.5 mm over the entire surface of a Petri dish with some drops of 70% ethanol. Plant families were arranged according to Cronquist [34] and Bremer et al. [35]. Prey remains were visually identified up to their order or, in some cases, family level (Table 2). Prey number for each fecal pellet was conservatively estimated by counting only easily identifiable remains. We detected the consumption of plant remains in morphological analysis, but without any taxonomic assignment (see [9] for more details).

2.4. Diet Comparison

Because fecal pellet sample sizes were different between morphological and molecular analyses, we tested for the contribution of each prey type to the diet between molecular and morphological samples only, using a subset of 10 feces from larger morphological samples (Table 2). This subset was randomly extracted from each population sample. Because we could not estimate the quantitative contribution of each prey type from molecular samples, we compared only their presence [9] in the feces.
For the five populations, the presence of different prey types found with morphological and molecular methods (Table 2) of analysis were compared with a permutational multivariate analysis of variance (permutational MANOVA, [36]), using the ‘adonis’ function from ‘vegan’ R package [37]. The multivariate homogeneity of group dispersions (variances) was tested with the function ‘betadisper’, a multivariate analogue of Levene’s test for homogeneity of variances.
We estimated and compared diet diversities using the approach proposed by Pallmann et al. [38]. We converted “raw” Simpson or Shannon indices into “true” diversities, which belong to the same mathematical family. Thus, different measures of area were regarded as special cases of Hill’s general definition of diversity measures [39]. Two-tailed tests for integral Hill numbers were performed to compare diets obtained from the different analytical methods. This selection includes the transformed versions of the two following indices: the Shannon entropy index, Hsh (q→1), and the Simpson concentration index, Hsi (q = 2, [40]). We performed 5000 bootstrap replications to obtain reliable p-values [41]. Methods described here were implemented in the R package “simboot” [42] and are fully described in [38]; more details of dietary analysis can be found in [9].
The frequency of each prey type present in the fecal samples was compared with the Fisher exact tests. All calculations were performed in R version 4.0.3 [43].

3. Results

3.1. Morphological and Molecular Diet Compositions

In molecular analysis, a total of 57 prey taxa were identified corresponding to 17/5 orders and 27/6 families (Animals/Plants, respectively) (Table 1). The most common orders identified for animal components were Isopoda, Hymenoptera, Lepidoptera, and Coleoptera (Figure 2). Within order Hymenoptera, Formicidae was the only represented family, while Halophilosciidae was the most abundant of the Isopoda orders (Figure 3). In morphological analysis, we identified 9 different prey taxa in the random sample of 10 fecal pellets (Table 2). With regards to plant components, Caryophyllales (Figure A1) was the most abundant Order, represented by Amaranthaceae and Plumbaginaceae families (Figure 3).

3.2. Comparison of Morphological and Molecular Analytical Methods

Comparisons were made, taking into account only ten randomly-selected morphological molecular and molecular samples. Results are represented in Figure 2.
We found overall significant differences in diets from morphological and molecular analyses (adonis, F1,79 = 6.7728, p = 0.0009, with homogeneous variances, F1,79 = 0.022, p = 0.88). However, we obtained variable results from the comparison of subsamples from each population. At the Ses Bledes islet, we did not find significant differences in the presence of different taxa between the two samples of ten fecal pellets (Fisher Exact Test, p = 0.3038), because the diet comprised mainly ants (Table 1 and Table 2). Regardless, the detection of different prey items, using the two methodologies, was extremely different, with four groups of prey not detected by molecular analysis (Gastropoda, Pseudoscorpionida, Hymenoptera other than Formicidae, and carrion from dead birds) and three groups undetected in the morphological random subsamples (Araneae, Diptera, and Lepidoptera). A similar situation was observed in Caragol (Fisher Exact Test, p = 0.6233), where the diet was dominated by Isopoda, Coleoptera, and Formicidae (Table 1) and in Na Guardia, where a very diverse diet was detected, with a small presence of each prey type in both samples (Fisher Exact Test, p = 0.2841). In the case of the Moltona Islet, molecular and morphological results were very different, because of a higher detection of groups using the molecular approach (Fisher Exact Test, p = 0.01125). This was also the case for Na Pelada Islet samples (Fisher Exact Test, p = 6.86 × 10−5).
Trophic diversity was significantly higher in molecular samples (Shannon index for morphological samples, Hsh = 2.239 ± 0.011, and for molecular samples, Hsh = 2.451 ± 0.006, p < 0.001; Simpson index for morphological samples, Hsi = 0.837 ± 0.0005, and for molecular samples, Hsi = 0.878 ± 0.0002, p < 0.001).

4. Discussion

Previous literature suggests that the use of metabarcoding allows for greater precision in prey identification, as well as the taxonomic identification of plant elements in the organism’s diet [12]. Moreover, a molecular approach may lead to an increase in the number of identifiable prey items [12,44]. In our study, numerous prey items were identified at the Species level, while others were only identified at the Order or Family level using morphological methods of diet analysis (see also [12]). This was particularly true for some groups, such as Diptera, Hemiptera, Lepidoptera, and Coleoptera (Table 1 and Table 2). Moreover, molecular analysis allowed the discovery of groups not detected using morphological analysis, such as Psocoptera, Embioptera, or Neuroptera. We showed that, overall, diversities determined by molecular techniques were significantly higher than those determined using similar sample sizes of fecal pellets.
Nevertheless, the study of diet using molecular approaches also holds some limitations and disadvantages, particularly with respect to traditional morphological methods. For example, the use of metabarcoding prevents the identification of cannibalism [44], which occurs frequently in small Mediterranean islets [9]. Additionally, current molecular techniques do not yet allow us to establish the quantitative contribution to the diet of each prey type [44]. They only provide us with a snapshot of the diet of a species—we cannot estimate its diversity, biomass contribution, prey size distribution, and other dietary descriptors.
Unlike other studies, we did not assemble a reference collection of plant species and potential prey in the populations under study; we also note that these identifications are not always reliable. Identified taxa sometimes belong to Species or Genera that are not present in the western Mediterranean or the Balearic Islands. Consequently, a post hoc analysis of these preliminary identifications was necessary, using taxonomic literature. In addition, an increase in the number of prey taxa identified through metabarcoding did not always occur. In most populations, we identified some additional prey using molecular methods, while other prey, even at the order level, were only identified through morphological observation of fecal pellets, and did not appear in the molecular samples. Hence, it is clear that the ideal scenario is to employ both methodologies as complementary approaches to describe the diet of a species [44].
Some molecular findings were difficult to interpret. In the Na Moltona Islet, the presence of DNA from the genus Mus, was detected in lizard scats. The presence of the House mouse (or the Algerian mouse, Mus spretus) on this coastal islet with a long history of human presence [45] cannot be ruled out. In fact, these species have been reported from islands with larger surface areas in the Balearics, but could be absent from most of the coastal islets. If this is the situation, we can posit that DNA from this small mammal was obtained from pellets of such scavengers as the Yellow-footed gull, Larus michahellis (see similar results in [12]).
Other results of the molecular analysis deserve our attention, such as the frequent consumption of several species of crustaceans. In many cases, these are terrestrial isopods, well-known from the diet of P. lilfordi, and present in morphologically analyzed samples [9]. Such is the case with the genus Porcellio. This is also the case with Ligia italica, a very common marine isopod in the diet of this species of lacertid lizards (see, for example, [9]). The significance of these findings, apart from the specific identification, is the confirmation of lizard foraging in shore areas and the frequent consumption of marine subsidies [12]. In the Caragol islet sample, we detected the presence of DNA of true marine crustaceans, particularly Pachygrapsus marmoratus, an extremely common decapod from the shore waters of the Balearic Islands [46], which had already been detected as carrion food of P. lilfordi from Aire Island [9]. This foraging behavior was confirmed by the presence of Cymodoceaceae DNA in samples from the same islet (Table 1). The only species of this seagrass present on the coast of Mallorca is Cymodocea nodosa [47]. In fact, some individual lizards seem prone to forage in shore areas. In Caragol Islet, from a single molecular fecal sample, we detected the presence of P. marmoratus, L. italica, and the seagrass C. nodosa (Table 1).
Regarding the consumption of some plant species, the molecular results must also be interpreted with caution and contrasted with morphological and ecological data. The supposed consumption of the genus Pinus has been detected in three populations where there are no pines, although these populations are close to the coast of Mallorca Island, an area with abundant pine forests. Thus, access to the fruit seems unlikely and the needles do not seem appropriate as a nutritive element [9]. This result poses a problem of a more general nature, i.e., the possibility that the detection of DNA from some plant species may be due to the adherence of pollen grains to the outer surface of some fecal pellets. In our samples, this possibility can be ruled out since the droppings were obtained directly from captured individuals. However, pollen grains of plant species not directly consumed by lizards may be present on the outer surfaces of other prey items [12]. It is important to note that the metabarcoding of plants cannot distinguish between the different parts of a plant species, such as its leaves, pollen, or fruit.
On Guardia and Pelada islets, DNA from the genus Prunus, which includes several species of fruit trees, was detected in feces. There are no species of this genus on either of the two islets. We suspect that its presence in our samples of lizard feces was due to the provision of fruit by visitors to the islets.

5. Conclusions

We can conclude that the application of molecular techniques in the study of lizard diets is extremely useful in combination with the traditional morphological analysis of feces. Using molecular evidence, we confirmed some direct observations of food consumption and found new taxa not detected using morphological analysis. Moreover, we were able to establish the specific identification of carrion, marine subsidies, and several common preys, such as ants. This study has the potential to be instructive by drawing the attention to new food items [48].

Author Contributions

Conceptualization, I.A., A.P.-C., J.A.C., A.P., V.P.-M. and C.R.; methodology, I.A., A.P.-C., J.A.C., A.P., V.P.-M. and C.R.; formal analysis, I.A., A.P.-C. and V.P.-M.; investigation, I.A., A.P.-C., J.A.C., A.P., V.P.-M. and C.R.; data curation, I.A.and A.P.-C.; writing—original draft preparation, I.A., A.P.-C., J.A.C., A.P., V.P.-M. and C.R.; writing—review and editing, I.A., A.P.-C., J.A.C., A.P., V.P.-M. and C.R.; project administration, C.R.; funding acquisition, C.R. and V.P.-M. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Ministerio Español de Economia y Competitividad and European Regional Development Fund (ERDF), grant number CGL2015-68139 and I.A. was funded by FPI/2006/2017 and research funds from the Conselleria d’Educació, Cultura i Universitats (Govern de les Illes Balears, Spain), co-financed by the ERDF.

Institutional Review Board Statement

Lizards were studied thanks to special permits of scientific capture from the Servei de Proptecció d’Especies, Conselleria de Medi Ambient, Balearic Government, Spain. The study was conducted in accordance with the Declaration of Helsinki, and the rules of Ethics Committee of the University of Salamanca.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available on request from the corresponding author. Raw sequences are available in the Sequence Read Archive (SRA) database at NCBI under BioProject ID PRJNA703933.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Figure A1. Frequencies of occurrence of each order of plants in the diet composition of Podarcis lilfordi through molecular analysis.
Figure A1. Frequencies of occurrence of each order of plants in the diet composition of Podarcis lilfordi through molecular analysis.
Animals 13 00507 g0a1
Lists A1 and A2. Additional list of references employed to check the validity of molecular identifications from metabarcoding, according to the taxonomic literature of prey and plants of Balearic Islands.
Prey References
-
Alemany, A.; Leza, M.M.; Núñez, L.; Petro, B.; Closa, S.; Miranda, M.A. Estudio del impacto de los tratamientos contra la procesionaria del pino (Thaumetopoea pityocampa, Denn. y Schiff.) en Baleares. XXVI Grupo de Trabajo Fitosanitario, Govern de les Illes Balears, 2009.
-
Alonso-Zarazaga, M.A. Elenco sistemático de los Curculionoidea (Coleoptera) de la Península Ibérica e islas Baleares. Boletín de la Sociedad Entomológica Aragonesa (S.E.A.) 2018, 63, 3–44.
-
Altaba, C.R. XXVII. Els caragols i llimacs terrestres (Mollusca: Gastropoda). In: Alcover, J.A.; Ballesteros, E.: Fornós, J.J. (Eds.), Història Natural de l’Arxipèlag de Cabrera; CSIC–Editorial Moll, Palma, Spain, 1993, Monografies de la Societat d’Història Natural de les Balears, 2, pp. 409–426.
-
Anonymous. Balance fitosanitario–Baleares 2015. Direcció General d’Agricultura I Ramaderia, Conselleria de medi Ambient, Agricultura i Pesca, Govern de les Illes Balears, Palma, Spain, 2015.
-
AntWiki. Last updated 01/0/2021. Available at https://www.antwiki.org/ [02/09/2021].
-
Arbea, J.I. Los colémbolos de Aragón (Hexapoda: Collembola). Catalogus de la entomofauna aragonesa 2003, 29, 3–23.
-
Arbea, J.I.; Jordana, R. Colémbolos de las Islas Baleares (Insecta, Collembola). Redia 1990, 73, 187–200.
-
Bach, C.; Molero, R.; Gaju, M. Clase Insecta. Orden Microcoryphia. Revista IDE@-SEA 2015, 38, 1–12.
-
Bächli, G.; Báez, M. Drosophilidae. In: Catálogo de los Diptera de España, Portugal y Andorra (Insecta); Carles-Tolrá Hjorth-Andersen, M. (edit.) Monografías S.E.A., Zaragoza, Spain, 2002; 8, 161–162.
-
Bahillo de la Puebla, P.; López-Colón, J.I. Citas interesantes de cléridos de la Península Ibérica (Coleoptera, Cleridae). Zoologica baetica 1999, 10, 207–209.
-
Bahillo de la Puebla, P.; López-Colón, J.I. El género Opilo Latreille, 1802 en la Península Ibérica (Coleoptera, Cleridae). Boletín de la Asociación Española de Entomología 2000, 24 (1–2), 213–227.
-
Baldizzone, G. Contributions à la connaissance des Coleophoridae. XLII. Sur quelques Coleophoridae d’Espagne (Seconde partie: Espèces nouvelles pour la Faune espagnole, ou peu connues). Nota lepidopterrologica 1986, 9(1–2), 2–34.
-
Baldock, D. A provisional list of the wasps and bees of Mallorca, Balearic Islands, Spain (Hymenoptera aculeata: Chrysidoidea, Scolioidea, Vespoidea, Apoidea). Entomofauna 2014, 35, 333–404.
-
Baquero, E.; Jordana, R. Clase Collembola. Órdenes Poduromorpha, Entomobryomorpha, Neelipleona y Symphypleona. Revista IDE@-SEA 2015, 36, 1–11.
-
Baank, R.A. Fauna Europaea: Gastropoda. 2013, Fauna Europaea version 2017.06. https://fauna-eu.org [30/01/2021].
-
Barrientos, J.A.; Febrer, B. Arañas (Arachnida, Araneae) de Menorca (Islas Baleares, España). 2: “Adenda et corrigenda”. Descripción de tres especies nuevas. Revista Ibérica de Aracnología 2018, 33, 39–51.
-
Blanes-Dalmau, M.; Caballero-López, B.; Pujade-Villar, J. Estudi de les gales de la coŀlecció Vilarrúbia dipositada al Museu de Ciències Naturals de Barcelona. Butlletí de la Institució Catalana d’Història Natural 2017, 81, 137–173.
-
Bohn, H. Revision of the Loboptera species of Spain (Blattaria: Blattellidae). Entomologica Scandinavica 1990, 21, 369–403.
-
Bouaziz-Yahiatene, H.; Pfarrer, B.; Medjdoub-Bensaad, F.; Neubert, E. Revision of Massylaea Möllendorff, 1898 (Stylommatophora, Helicidae). ZooKeys 2017, 694, 109–133. https://doi.org/10.3897/zookeys.694.15001.
-
Boxshall, G. Fauna Europaea: Isopoda, Porcellionidae, Fauna Europaea version 2017.06. https://fauna-eu.org [29/01/2021].
-
Branco, V.V.; Morano E.; Cardoso, P. An update to the Iberian spider checklist (Araneae). Zootaxa 2019, 4614 (2), 201–254.
-
Cabanillas, D.; Parejo-Pulido, D. Primer registro de Lamyctes (Lamyctes) emarginatus (Newport, 1844) (Chilopoda: Lithobiomorpha: Henicopidae) en la Comunidad Autónoma de Extremadura y otras citas de la provincia de Badajoz (España). Boletín de la Sociedad Entomológica Aragonesa 2019, 64, 307–311.
-
Carles-Tolrá, M.; Báez, M. Stratiomyidae. In: Carles-Tolrá Hjorth-Andersen, M. (coord.) Catálogo de los Diptera de España, Portugal y Andorra (Insecta). Monografías S.E.A. 2002, 8, 113–114.
-
Carles-Tolrá, M.; Báez, M. Therevidae. In: Carles-Tolrá Hjorth-Andersen, M. (edit.) Catálogo de los Diptera de España, Portugal y Andorra (Insecta). Monografías S.E.A. 2002, 8, 117.
-
Cartes, J.E.; Abelló, P.; Torres, P. The occurrence of Hymenopenaeus debilis (Decapoda: Aristeidae: Solenocerinae) in Mediterranean waters: A case of pseudopopulations of Atlantic origin? Journal of the Marine Biological Association of the United Kingdom 2000, 80, 549–550.
-
Choi, E.H.; Hwang, U.W. First Record of Maritime Pseudoscorpion Garypus japonicus (Garypidae) from Korea. Animal Systematics, Evolution and Diversity 2009, 25, 261–264. https://doi.org/10.5635/KJSZ.2009.25.3.261.
-
Chueca, L.J.; Madeira, M.J.; Gómez-Moliner, B.J. Biogeography of the land snail genus Allognathus (Helicidae): Middle Miocene colonization of the Balearic Islands. Journal of Biogeography 2015, 42, 1845–1857.
-
Chueca, L.J.; Forés, M.; Gómez-Moliner, B.J. Actualización taxonómica y nomenclatural de las especies de Xerocrassa (Gastropoda: Geomitridae) endémicas de las islas Baleares. Iberus 2017, 35, 159–184.
-
Cifuentes, J. Los isópodos terrestres de Galicia, España (Crustacea: Isopoda, Oniscidea). Graellsia 2019, 75, e098. https://doi.org/10.3989/graellsia.2019.v75.243.
-
Cini, A.; Anfora, G.; Escudero-Colomar, L.A.; Grassi, A., Santosuosso, U.; Seljak, G.; Papini, A. Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. Journal of Pest Science 2014, 87, 559–566.
-
Cobo, F.; Soriano, O.; Báez, M. Chironomidae. In: Carles-Tolrá Hjorth-Andersen, M. (coord.) Catálogo de los Diptera de España, Portugal y Andorra (Insecta). Monografías S.E.A. 2002, 8, 35–44.
-
Collingwood, C.A.; Yarrow, H.H. A survey of Iberian Formicidae (Hymenoptera). Eos, Revista Española de Entomología 1969, 44, 53–101.
-
Cornara, D.; Garzo, E.; Morente, M.; Moreno, A.; Alba-Tercedor, J.; Fereres, A. EPG combined with micro-CT and video recording reveals new insights on the feeding behavior of Philaenus spumarius. PLoS ONE 2018, 13, e0199154. https://doi.org/10.1371/journal.pone.0199154.
-
Costas, M.; López, T.; Vázquez, M.A. Checklist de Fauna Ibérica. Superfamilia Lygaeoidea Schilling, 1829 (Insecta: Heteroptera) en la península ibérica, islas Baleares e islas Canarias. In: Ramos, M.A. and Sánchez, M. (eds.) Documentos Fauna Ibérica 2018, 7, 1–29.
-
Cruz-Suárez, A. Los Halophilosciidae Verhoeff, 1908 de la Península Ibérica e Islas Baleares (Isopoda: Oniscidea). Boletín de la Asociación Española de Entomología 1992, 16, 113–121.
-
Cruz-Suárez, A. El género Armadillidium Brandt, 1833 en la Península Ibérica y Baleares (Isopoda, Oniscidea, Armadillidiidae). Boletín de la Asociación Española de Entomología 1993, 17, 155–181.
-
Cruz, A. Redescripción de Agabiformius obtusus (Budde-Lund, 1909) y de Armadillo hirsutus Koch, 1856 (Isopoda: Oniscidea) de la Península Ibérica. Butlletí de la Institució Catalana d’Història Natural 1994, 62, 65–76.
-
De Moraes, F.J.; McMurtry, J.A.; Denmark, H.A.; Campos, C.B. A revised catalog of the mite family Phytoseiidae. Zootaxa 2004, 434, 1–494.
-
Delgado-Serra, S.; Viader, M.; Ruiz-Arrondo, I.; Miranda, M.A.; Barceló, C.; Bueno-Marí, R.; Hernández-Triana, L.M.; Miquel, M.; Lester, K.; Jurado-Rivera, J.A.; Paredes-Esquivel, C. Molecular Characterization of Mosquito Diversity in the Balearic Islands. Journal of Medical Entomology 2020, 217, 1–8. https://doi.org/10.1093/jme/tjaa217.
-
De Lillo, E. Fauna Europaea: Eriophyidae. In Fauna Europaea: Actinotrichida. Magowski, W. 2003, Fauna Europaea version 2017.06. https://fauna-eu.org [29/01/2021].
-
Denux, O.; Zagatti, P. Coleoptera families other than Cerambycidae, Curculionidae sensu lato, Chrysomelidae sensu lato and Coccinelidae. Chapter 8.5. In Alien terrestrial arthropods of Europe. Roques, A.; Kenis, M.; Lees, D.; Lopez-Vaamonde, C.; Rabitsch, W.; Rasplus, J.Y.; Roy, D. (Eds.) BioRisk 2010, 4, 315–406. https://doi.org/10.3897/biorisk.4.61.
-
Diéguez Fernández, J.M. Nuevas citas y catálogo de los Cantharidae y Dasytidae (Coleoptera) del área iberobalear. Heteropterus Revista de Entomología 2011, 11, 75–85.
-
Docavo, A. Contribución al conocimiento de los Braconidae de España. I. Nuevos hallazgos de géneros y especies. Entomophaga 1962, 7, 343–348.
-
Ebejer, M.J. Sorne Chloropidae (Diptera) from the Balearic Islands (Spain) with particular reference to Parc Natural de s’Albufera de Mallorca. Bolletí de la Societat d’Història Natural de les Balears 2006, 49, 173–184.
-
Eidmann, H. Die Ameisenfauna der Balearen. Zeitschrift für Morphologie und Ökologie der Tiere 1926, 6, 694–742.
-
Eidmann, H. Zur Kenntnis der Insektenfauna der balearischen Inseln. Entomologische Mitteilungen 1927, 16: 24–37.
-
Eiroa, E.; Báez, M. Tipulidae. In: Carles-Tolrá Hjorth-Andersen, M. (coord.) Catálogo de los Diptera de España, Portugal y Andorra (Insecta). Monografías S.E.A. 2002, 8, 79–81.
-
Ellis, W.N. Plant Parasites of Europe. Leafminers, galls and fungi. Available In https://bladmineerders.nl/ [27-01-2021].
-
Español, F. De re entomològica Contribució a l’Entomologia de les illes de Cabrera i Foradada (Balears). Butlletí de la Institució Catalana d’Història Natural 1935, 35, 251–253.
-
Español, F. Los Cléridos (Cleridae) de Cataluña e Islas Baleares (Col., Cleroidea). Publicaciones del Instituto de Biología Aplicada 1959, 30, 105–146.
-
Español, F. Coleoptera, Anobiidae. Fauna Ibérica, vol. 2. Madrid: Museo Nacional de Ciencias Naturales. CSIC; Madrid, Spain 1992, 192 pp.
-
FAO FishFinder. Species Fact Sheets. Pleoticus muelleri (Bate, 1888). In FAO Fisheries Division [online]. Rome. [31/01/2021]. 2021, Online at http://www.fao.org/fishery/species/3437/en.
-
Faraji, F.; Ueckermann, E.A. A new species of Mediolata Canestrini from Spain (Acari: Stigmaeidae), re-description of M. chanti and a key to the known species of Mediolata. Zootaxa 2006, 1151, 27–39.
-
Fet, V.; Soleglad, M.E. Morphology analysis supports presence of more than one species in the “Euscorpius carpathicus” complex (Scorpiones: Euscorpiidae). Euscorpius, Occasional Publications in Scorpiology 2002, 3.
-
Fischer S.; Patzner, R.A.; Müller, C.H.G.; Winkler, H.M. Studies on the ichthyofauna of the coastal waters of Ibiza (Balearic Islands, Spain). Rostocker Meeresbiologische Beiträge 2007, 18, 30–62.
-
Gabarra, R.; Arnó, J.; Riudavets, J. Drosophila suzukii: Biología y ecología. PHYTOMA España 2015, 269, 12–13.
-
Gadea, E. Nematofauna muscícola. In Història Natural de l’Arxipèlag de Cabrera; Alcover, J.A.; Ballesteros, E.; Fornós, J.J. (Eds.); CSIC–Editorial Moll, Palma, Spain, Monografies de la Societat d’Història Natural de les Balears 1993, 2, 269–272.
-
Gangwere, S.K.; Llorente, V. Distribution and habits of the Orthoptera (sens. lat.) of the Balearic Islands (Spain). Eos 1992, 68, 51–87.
-
Gantenbein, B.; Soleglad, M.E.; Fet, V. Euscorpius balearicus Caporiacco, 1950, stat. nov. (Scorpiones:Euscorpiidae): Molecular (allozymes and mtDNA) and morphological evidence for an endemic Balearic Islands species. Organisms Diversity and Evolution 2001, 1, 301–320.
-
García, L. Halophiloscia ischiana Verhoeff, 1933, un isòpode terrestre nou per a la fauna de Mallorca. Aubaïna 2000, 2, 18.
-
García, L. Armadillidium cruzi. In Bioatles. Palma: Servei de Protecció d’Especies, Conselleria de Medi Ambient, Palma, Spain, 2006.
-
García, L.; Cruz, A. XIX. Els isopòdes terrestres (Crustacea: Isopoda: Oniscidea). In, Història Natural de l’Arxipèlag de Cabrera; Alcover, J.A.; Ballesteros, E.; Fornós, J.J. (Eds.); CSIC–Editorial Moll, Palma, Spain, Monografies de la Societat d’Història Natural de les Balears 1993, 2, 323–332.
-
García, L.; Cruz, A. Els isòpodes terrestres (Crustacea: Isopoda: Oniscidea) de les iIles Balears: Catàleg d’especies. Bolletí de la Societat d’Història Natural de les Baleares 1996, 39, 77–99.
-
García, L.; Gross, A.; Riddiford, N. Armadillidium album, un isopode terrestre nou per a la fauna balear (Isopoda, Crinocheta, Armadillidiidae). Bolletí de la Societat d’Història Natural de les Baleares 2004, 46, 91–94.
-
García-Barros, E.; Romo, H.; Sarto i Monteys, V.; Munguira, M.L.; Baixeras, J.; Vives Moreno, A.; Yela García, J.L. Clase Insecta, Orden Lepidoptera. Revista IDE@-SEA 2006, 65: 1–21.
-
García-Romera, C.; Báez, M. Phoridae. In Catálogo de los Diptera de España, Portugal y Andorra (Insecta); Carles-Tolrá Hjorth-Andersen, M. (coord.). Monografías S.E.A. 2002, 8, 125–129.
-
García-Romera, C.; Barrientos, J.A. La fauna de Phoridae (Diptera) en el parque natural del Montseny (Cataluña, España). Citas nuevas para la Península Ibérica. Boletín de la Sociedad Entomológica Aragonesa, 2014, 54, 237–261.
-
Gasull, L. Las Helicella (Xeroplexa) de Baleares, Gasteropoda Pulmonata. Boletín de la Sociedad de Historia Natural de Baleares 1964, 10, 3–70.
-
Gasull, L. Algunos moluscos terrestres y de agua dulce de Baleares. Boletín de la Sociedad de Historia Natural de Baleares 1965, 11, 7–161.
-
GBIF.org. GBIF: The Global Biodiversity Information Facility. Available in https://www.gbif.org [22-01-2021].
-
Germann, C.; Torres, J.L.; Borovec, R. Confirmative records of Trachyphloeus nodipennis Chevrolat, 1860 for the Iberian Peninsula (Coleoptera: Curculionidae: Entiminae) with a key to the Spanish species of the nominal subgenus. Boletín de la SAE 2017, 27, 23–28.
-
Gnezdilov, V.M.; Holzinger, W.E.; Wilson, M.R. The Western Palaearctic Issidae (Hemiptera, Fulgoroidea): An Illustrated Checklist and Key to Genera and Subgenera. Proceedings of the Zoological Institute RAS 2014, 318 (1), 5–118.
-
Goldarazena, A. Clase Insecta, Orden Thysanoptera. Revista IDE@-SEA 2015, 52, 1–20.
-
Gómez, K. Citas nuevas o interesantes de hormigas (Hymenoptera: Formicidae) para la isla de Mallorca (Baleares, España). Boletín de la Sociedad Entomológica Aragonesa 2004, 34, 107–108.
-
Gómez, K.; Espadaler, X. La hormiga argentina (Linepithema humile) en las Islas Baleares. Listado preliminar de las Hormigas de las Islas Baleares. Documentos Técnicos de Conservación. Conselleria de Medi Ambient. Govern de les Illes Balears 2005, 13, 68 pp.
-
Gómez, K.; Espadaler, X. Exotic ants (Hymenoptera: Formicidae) in the Balearic Islands. Myrmecologische Nachrichten 2006, 8, 225–233.
-
González, M.A.; Terra, L.S.W.; García de Jalón, D.; Cobo, F. Lista faunística y bibliográfica de los Tricópteros (Trichoptera) de la Península Ibérica e Islas Baleares. Listas de la Flora y Fauna de las aguas continentales de la Península Ibérica, 1992, 11. Madrid: Asociación Española de Limnología. 200pp.
-
González Peña, C.F.; Vives i Noguera, E.; de Sousa Zuzarte, A.J. Nuevo catálogo de los Cerambycidae (Coleoptera) de la Península Ibérica, islas Baleares e islas atlánticas: Canarias, Açores y Madeira. Monografías S.E.A. 2007, 12, 1–211.
-
Govern Balear. La procesionaria del pino. Conselleria d’Agricultura i Pesca, Direcció General de Producció i Industries Agràries, Palma, Spain, 2011.
-
Gravestein, W.H. Twaalf nieuwe Hemiptera Heteroptera voor de fauna van Mallorca. Entomologische Berichten 1969, 29, 156–158.
-
Gravestein, W.H. Hemiptera Heteroptera new to the Baleares, in particular to the Island of Mallorca. Entomologische Berichten 1978, 38, 37–39.
-
Harbach, R.E. Genus Acartomyia Theobald, 1903. Mosquito Taxonomic Inventory. Available in http://mosquito-taxonomic-inventory.info/genus-acartomyia-theobald-1903-0#overlay-context=genus-acartomyia-theobald-1903-0 [05/02/2021].
-
Harvey, M.S.; Hillyer, M.J.; Carvajal, J.I.; Huey, J.A. Supralittoral pseudoscorpions of the genus Garypus (Pseudoscorpiones: Garypidae) from the Indo-West Pacific region, with a review of the subfamily classification of Garypidae. Invertebrate Systematics 2020, 34, 34–87. https://doi.org/10.1071/IS19029.
-
Heckman, C.W. Neuroptera (Including Megaloptera)., Springer, Switzerland, 2017 621pp.
-
Henry, T.J.; Dellapé, P.M.; Scudder, G.G.E. Resurrection of the Genera Crophius Stål and Mayana Distant from Synonymy Under Anomaloptera Amyot and Serville, Description of a New Genus, and a Key to the New World Oxycarenid Genera (Hemiptera: Heteroptera: Oxycarenidae). Proceedings- Entomological Society of Washington 2015, 117, 367–380.
-
Hodkinson, I.D.; Hollis, D. The psyllids (Homoptera: Psylloidea) of Mallorca. Entomologica Scandinavica 1981, 12, 65–77.
-
Hurtado L.A.; Lee E.J.; Mateos M.; Taiti S. Global Diversification at the Harsh Sea-Land Interface: Mitochondrial Phylogeny of the Supralittoral Isopod Genus Tylos (Tylidae, Oniscidea). PLoS ONE 2014, 9, e94081. https://doi.org/10.1371/journal.pone.0094081.
-
Iaciofano, D.; Lo Brutto, S. Re-description of Orchestia stephenseni Cecchini, 1928: Designation of neotype and senior synonym to Orchestia constricta A. Costa, 1853 (Crustacea: Amphipoda: Talitridae) by Reversal of Precedence. Zootaxa 2016, 4150 (1), 40–60.
-
Iberfauna. IBERFAUNA. El Banco de Datos de la Fauna Ibérica. Museo Nacional de Ciencias Naturales (CSIC). Available in http://iberfauna.mncn.csic.es/showficha.aspx?rank=T&idtax=9657 [27/01/2021].
-
Jaramillo, E.; Cifuentes, S.; Duarte, C.; Contreras, H. Relationships between bioturbation by Tylos spinulosus (Crustacea, Isopoda) and its distribution on sandy beaches of north-central Chile. Marine Ecology 2008, 29, 37–42.
-
Jordana, R.; Arbea, J.I. Clave de identificación de los géneros de colémbolos de España (Insecta: Collembola). Publicaciones de Biología de la Universidad de Navarra, Serie Zoológica 1989, 19, 1–16.
-
Jurado-Rivera, J.A.; Álvarez, G.; Caro, J.A.; Juan, C.; Pons, J.; Jaume, D. Molecular systematics of Haploginglymus, a genus of subterranean amphipods endemic to the Iberian Peninsula (Amphipoda: Niphargidae). Contributions to Zoology 2017, 86 (3), 239–260.
-
Karsholt, O.; Nieukerken, E.J. van. Lepidoptera. Fauna Europaea version 2017.06, https://fauna-eu.org [29/01/2021].
-
Kawachino, Y. Spawning record of Pythia cecillei (Philippi, 1847). Transactions of the Nagasaki Biological Society 2015, 76, 62–66.
-
Kazantsev, S. Fauna Europaea: Malthodes. In: Alonso-Zarazaga, M.A. 2013. Fauna Europaea: Coleoptera, Cantharidae. Fauna Europaea version 2017.06. https://fauna-eu.org [29/01/2021].
-
Kennedy, M.; Spencer, H.G. Classification of the cormorants of the world. Molecular Phylogenetics and Evolution 2014, 79, 249–257.
-
Klimov, P.B.; OConnor, B.; Ochoa, R.; Bauchan, G.R.; Redford, A.J.; Scher, J. Bee Mite ID: Bee-Associated Mite Genera of the World. USDA APHIS Identification Technology Program (ITP), Fort Collins, CO. [24-01-2021] Available in http://idtools.org/id/mites/beemites/index.php.
-
Kuschel, G. Curculionoidea (weevils) of New Caledonia and Vanuatu: Ancestral families and some Curculionidae. In:, Zoologia Neocaledonica 6. Biodiversity studies in New Caledonia; Grandcolas, P. (ed.); Mémoires du Muséum National d’Histoire Naturelle 2006, 197, 99–249.
-
Lomnicki, J. Une contribution à la connaissance de la faune des fourmis des îles Baléares. Polskie Pismo Entomologiczne-Bulletin Entomologique de la Pologne 1925, 4, 1–3.
-
Lowry, J.K.; Myers, A.A. New genera of Talitridae in the revised Superfamily Talitroidea Bulycheva 1957 (Crustacea, Amphipoda, Senticaudata). Zootaxa 2019, 4553 (1), 1–100.
-
Lucena-Moya, P.; Abraín, R.; Pardo, I.; Hermida, B.; Domínguez, M. Invertebrate species list of coastal lagoons in the Balearic Islands. Transitional Waters Bulletin 2010, 4 (1), 1–11.
-
Lundqvist, L. Fauna Europaea: Acari, Mesostigmata. 2013, Fauna Europaea version 2017.06. https://fauna-eu.org [29/01/2021].
-
Mahnert, V. XXII. Els pseudoscorpins (Arachnida, Pseudoscorpiones). In, Història Natural de l’Arxipèlag de Cabrera, Alcover, J.A., Ballesteros, E. and Fornós, J.J. (Eds.); CSIC–Editorial Moll, Palma, Spain; Monografies de la Societat d’Història Natural de les Balears 1993, 2, 355–360.
-
Malicky, L.H. Beschreibungen von neuen mediterranen Köcherfliegen und Bemerkungen zu bekannten (Trichoptera). Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomologen 1980, 32, 1–17.
-
Malo, J.; García-Avilés, J. Contribución al conocimiento de los quironómidos (Diptera, Chironomidae) de las Islas Baleares. Zoologica Baetica 1999, 10, 211–214.
-
Marcos-García, M.A.; Rojo, S.; Pérez-Bañón, C. Syrphidae. In: Catálogo de los Diptera de España, Portugal y Andorra (Insecta). Carles-Tolrá Hjorth-Andersen, M. (coord.); Monografías S.E.A. 2002, 8, 132–136.
-
Martín, J.L.; Izquierdo, I.; Oromí, P. The genus Loboptera in the Canary Islands; description of five new hypogean species. Vieraea 1999, 27, 255–286.
-
Martínez-Fernández, J.C. Un nuevo representante del género Blaps Fabricius, 1775 de la Península Ibérica: Blaps tichyi n. sp. (Coleoptera, Tenebrionidae). Boletín de la Sociedad Entomológica Aragonesa 2010, 47, 181–185.
-
Mastrantonio, V.; Porretta, D.; Bellini, R.; Nascetti, G.; Urbanelli, S. Molecular Systematics and Origin of the Mediterranean Sea Rock-Pool Mosquitoes of the Aedes mariae (Diptera: Culicidae) Complex. Annals of the Entomological Society of America 2015, 108: 593–599. https://doi.org/10.1093/aesa/sav031.
-
Mauriés, J.P.; Vicente, M.C. Miriápodos de Baleares. Boletín de la Sociedad de Historia Natural de Baleares 1976, 21, 33–46.
-
Meliá, A. Contribución al conocimiento de los pulgones (Homoptera, aphidoidea) sobre plantas agrícolas y forestales en España. Boletín de sanidad vegetal. Plagas 1986, 12, 335–342.
-
Mendoza-Roldan, J.A.; Colella, V.; Lia, R.P.; Nguyen, V.L.; Barros-Battesti, D.M.; Iatta, R.; Dantas-Torres, F.; Otranto, D. Borrelia burgdorferi (sensu lato) in ectoparasites and reptiles in southern Italy. Parasites & Vectors 2019, 12, 35 https://doi.org/10.1186/s13071-019-3286-1.
-
Menozzi, C.C. Zur Kenntnis der Ameisenfauna der Balearen. Zoologische Anzeiger 1926, 66(7–8), 180–182.
-
Michalska, K.; Skoracka, A.; Navia, D.; Amrine, J.W. Behavioural studies on eriophyoid mites: An overview. Experimental and Applied Acarology 2009, 51, 31–59. https://doi.org/10.1007/s10493-009-9319-2.
-
Miranda, M.A.; López-Mercadal, J.; Tugores, M.A.; Delgado, S.; Seguí, G.; Lalucat, J.; Gomila, M.; Ruíz, M.; Lester, K.; Kenyon, D.M.; Paredes-Esquivel, C. Recogida de datos e información en las Islas Baleares sobre la biología de vectores de Xylella fastidiosa. XLIX Foro INIA. 2019, Xylella fastidiosa en el contexto del cambio climático.
-
Monserrat, V.J. Catálogo de los Neurópteros de Baleares con nuevos datos sobre su fauna (Insecta, Neuroptera). Bolletí de la Societat d’Història Natural de les Baleares 2005, 48, 71–85.
-
Monserrat, V.J. Los crisópidos de la Península Ibérica y Baleares (Insecta, Neuropterida, Neuroptera: Chrysopidae). Graellsia 2016a, 72, e037. https://doi.org/10.3989/graellsia.2016.v72.143.
-
Monserrat, V.J. Los coniopterígidos de la Península Ibérica e Islas Baleares (Insecta: Neuropterida, Neuroptera: Coniopterygidae). Graellsia 2916b, 72, e047. http://dx.doi.org/10.3989/graellsia.2016.v72.157.
-
Monserrat, V.J.; Acevedo, F.; Pantaleoni, R.A. Nuevos datos sobre algunas especies de crisópidos de la Península Ibérica, Islas Baleares e Islas Canarias (Insecta, Neuroptera, Chrysopidae). Graellsia, 2014, 70, e002;. https://doi.org/10.3989/graellsia.2014.v70.100.
-
Montesanto, G.; Deidun, A.; Sciberras, A.; Sciberra, J.; Lombardo, B.M. Current distribution of two species of Tylos (Isopoda: Oniscidea) in the central Mediterranean and the influence of beach sand grain-size parameters. Journal of Crustacean Biology 2014, 34, 47–53. https://doi.org/10.1163/1937240X-00002206.
-
Moraza, M.L.; Irwin, N.R.; Godinho, R.; Baird, S.J.E.; Bellocq, J.G. A new species of Ophionyssus Mégnin (Acari: Mesostigmata: Macronyssidae) parasitic on Lacerta schreiberi Bedriaga (Reptilia: Lacertidae) from the Iberian Peninsula, and a world key to species. Zootaxa 2009, 2007, 58–68.
-
Moreno, A.G. Orden Astigmata. Revista IDE@-SEA 2015, 15, 1–19.
-
Myers, A.A.; Lowry, J.K. A revision of the genus Orchestia Leach, 1814 with the reinstatement of O. inaequalipes (K.H. Barnard, 1951), the designation of a neotype for Orchestia gammarellus (Pallas, 1776) and the description of three new species (Crustacea: Amphipoda: Talitridae: Talitrinae). Zootaxa 2020, 4808 (2): 201–250.
-
Nentwig, W.; Blick, T.; Bosmans, R.; Gloor, D.; Hänggi, A.; Kropf, C. Spiders of Europe. Version 01.2021. Online at https://www.araneae.nmbe.ch, [22-01-2021]. https://doi.org/10.24436/1.
-
Núñez, L. Plagas de frondosas en las Illes Balears. Servicio de Sanidad Forestal, Govern de les Illes Balears. Palma, Spain.
-
OConnor; B.M. Evolutionary ecology of Astigmatid mites. Annual Review of Entomology 1982, 27, 385–409.
-
Oosterbroek, P. Notes on western Palaearctic species of the Tipula (Yamatotipula) lateralis group, with the description of a new species from Turkey (Diptera: Tipulidae). European Journal of Entomology 1994, 91, 429–435.
-
Ouvrard, D. Psyl’list-The World Psylloidea Database; Available in http://www.hemiptera-databases.com/psyllist [08/12/2020]. https://doi.org/10.5519/0029634.
-
Palau, J.M. Algunas consideraciones sobre los embiópteros de Mallorca y, en especial, sobre el género Haploembia Verh. Bolletí de la Societat d’Història Natural de les Balears 1956, 2, 23–25.
-
Palau, J.M. Pequeño catálogo de hemípteros heterópteros de Mallorca. Boletín de la Sociedad de Historia Natural de Baleares 1959, 5, 7–11.
-
Palmer, M.; Petitpierre, E. XXVI. Els coleòpters de Cabrera: Llista faunística i perspectives d’estudi. In Història Natural de l’Arxipèlag de Cabrera; Alcover, J.A.; Ballesteros, E.; Fornós, J.J. (Eds.); CSIC–Editorial Moll, Monografies de la Societat d’Història Natural de les Balears 1993, 2, 383–407.
-
Pape, T.; González-Mora, D.; Peris, S.V.; Báez, M. Sarcophagidae. In Catálogo de los Diptera de España, Portugal y Andorra (Insecta); Carles-Tolrá Hjorth-Andersen, M. (coord.); Monografías S.E.A. 2002, 8, 218–221.
-
Peña, L.E. Nuevas especies del género Psammetichus Latr., (Coleoptera-Tenebrionidae) para Chile y Perú. Revista Chilena de Entomología 1973, 7, 137–144.
-
Perera, A.; Maia, J.P.M.C.; Jorge, F.; Harris, D.J. Molecular screening of nematodes in lacertid lizards from the Iberian Peninsula and Balearic Islands using 18S rRNA sequences. Journal of Helminthology 2012, 87, 189–194. https://doi.org/10.1017/S0022149x12000181.
-
Pérez-Íñigo, C. jr. Acari Oribatei, Poronota. Fauna Ibérica, vol. 3, Museo Nacional de Ciencias Naturales. CSIC, Madrid, Spain, 1993.
-
Petitpierre, E.; Sacarés, A.; Jurado-Rivera, J.A. Updated checklist of Balearic leaf beetles (Coleoptera: Chrysomelidae). Zootaxa 2017, 4272 (2), 151–177.
-
Pons, G.X. XX. Estudi preliminar sobre la fauna d’aranèids (Arachnida, Araneae). In, Història Natural de l’Arxipèlag de Cabrera; Alcover, J.A.; Ballesteros, E.; Fornós, J.J. (Eds); CSIC–Editorial Moll, Monografies de la Societat d’Història Natural de les Balears 1993, 2, 333–350.
-
Pons, G.X. Noves dades biogeografiques i taxonomiques sobre els escorpins (Arachnida; Scorpiones: Euscorpiidae) de les Illes Balears. Bolletí de la Societat d’Història Natural de les Baleares 2001, 44, 103–109.
-
Pons, G.X.; Palmer, M. Fauna endèmica de les illes Balears. Palma (Spain): Institut d’Estudis Baleàrics, Conselleria d’Obres Públiques, Ordenació del Territori i Medi Ambient (Dir. Gen. Medi Ambient). Societat d’Història Natural de les Balears. Palma, Spain, 1996, 307pp.
-
Pons, G.X; Palmer, M. Invertebrats endemics i Illes: (Tenebrionidae i Araneae) introduccions i extincions aIs illots de Cabrera (Illes BaIears). In: Alcover, J.A. (coord.), Ecologia de les illes. Mon. Soc. Hist. Nat. Balears 6/Mon. Inst. Est. Bal. 1999, 66, 105–122. Palma de Mallorca, Spain.
-
Pons, G.X.; Vadell, M. Biospeleologia de les cavitats de les Illes Balears: Invertebrats terrestres. Endins 2011, 35, 241–256.
-
Pons, G.X.; Jaume, D.; Damians, J. Fauna cavernícola de Mallorca/Cavernicolous Fauna of Mallorca. Endins 1995, 20, 125–144.
-
Pons, G.X.; Palmer, M.; García, Ll. Isópodos terrestres (Isopoda, Oniscidea) de las Islas Chafarinas (N África, Mediterráneo Occidental). Bolletí de la Societat d’Història Natural de les Baleares 1999, 42, 139–146.
-
Pont, A.C.; Báez, M. Muscidae. In: Carles-Tolrá Hjorth-Andersen, M. (coord.) Catálogo de los Diptera de España, Portugal y Andorra (Insecta). Monografías S.E.A. 2002, 8, 210–214.
-
Redondo, V.M.; Gastón, F.J.; Gimeno, R. Geometridae Ibericae; Apollo Books; Stenstrup; Denmark, 2009, 360p.
-
Remaudiére, G.; Nieto, J.M.; Mier, M.P. Nuevas aportaciones al conocimiento de la fauna española de pulgones (Hom. Aphidoidea). Boletín de la Asociación Española de Entomología 1986, 10, 313–333.
-
Requena, E. Noves dades sobre la distribució del genere Agdistis Hübner, [1825], a Catalunya (Lepidoptera: Pterophoridae). Butlleti-Societat Catalana de Lepidopterologia 1999, 84, 9–16.
-
Requena, E. Aproximació a la fauna dels gelèquids de Catalunya i Balears (Lepidoptera: Gelechiidae). Treballs de la Societat Catalana de Lepidopterologia 2009, 16, 5–77.
-
Ribera, I.; Melic, A. Clase Insecta. Orden Neuroptera s.s. (Planipennia). Revista IDE@-SEA, 2015, 58, 1–12.
-
Ribes, J. Hemípteros de Mallorca. Publicaciones del Instituto de Biología Aplicada 1965, 39, 71–95.
-
Ribes, J. XXIII. Els heteròpters. In Història Natural de l’Arxipèlag de Cabrera. Alcover, J.A.; Ballesteros, E.; Fornós, J.J. (Eds.); CSIC–Editorial Moll, Monografies de la Societat d’Història Natural de les Balears 1993, 2, 361–364.
-
Robertson, P.L. A revision of the genus Tyrophagus, with a discussion on its taxonomic position in the Acarina. Australian Journal of Zoology 1959, 7, 146–181.
-
Roca, V.; Hornero, M.J. Strongyloides ophiusensis sp. n. (Nematoda: Strongyloididae), parasite of an insular lizard, Podarcis pityusensis (Sauria: Lacertidae). Folia Parasitologica 1992, 39, 369–373.
-
Roca-Cusachs, M.; Goula, M.; Prieto, F.; Pérez, J. Checklist de Fauna Ibérica. Superfamilias Aradoidea, Coreoidea y Pyrrhocoroidea (Insecta: Heteroptera) en la península ibérica, islas Baleares e islas Canarias. In: Ramos, M.A. and Sánchez, M. (eds.). Documentos Fauna Ibérica 2018, 6. Museo Nacional de Ciencias Naturales, CSIC. Madrid. 14 pp.
-
Rozkosny, R. Fauna Europaea: Stratiomyidae. In Fauna Europaea: Diptera, Brachycera; Pape, T.; Beuk, P. Fauna Europaea version 2017.06. https://fauna-eu.org [29/01/2021].
-
Schmalfuss, H. World catalog of terrestrial isopods (Isopoda: Oniscidea). Stuttgarter Beiträge zur Naturkunde 2003, Serie A, 654: 1–341.
-
Schubart, C.D.; Cuesta, J.A.; Felder, D.L. Phylogeography of Pachygrapsus transversus (Gibbes, 1850): The effect of the American continent and the Atlantic Ocean as gene flow barriers and recognition of Pachygrapsus socius Stimpson 1871 as a valid species. Nauplius 2005, 13, 99–113.
-
Seco, M.V.; Mier, M.P. Contribuciones al conocimiento de los pulgones (Hom., Aphidoidea) de las Islas Baleares. 1. Introducción y afidofauna de Mallorca. Bolletí de la Societat d’Història Natural de les Balears 1986, 30, 5–17.
-
Seifert, B.; d’Eustacchio, D.; Kaufmann, B.; Centorame, M.; Lorite, P.; Modica, M.V. Four species within the supercolonial ants of the Tapinoma nigerrimum complex revealed by integrative taxonomy (Hymenoptera: Formicidae). Myrmecological News 2017, 24, 123–144.
-
Siddiqi M.R. Tylenchida. Parasites of plants and insects., 2nd ed. CABI Publishing. 2000, 848 pp.
-
Skuhravá, M. and Skuhravý, V. Gall midges (Cecidomyiidae, Diptera) of Mallorca (Balearic Islands, Spain). Boletín de la Asociación Española de Entomología 2004, 28 (1–2), 105–119.
-
Skuhravá, M.; Skuhravý, V. Species richness of gall midges (Diptera: Cecidomyiidae) in Europe (West Palaearctic): Biogeography and coevolution with host plants. Acta Societatis Zoologicae Bohemicae 2009, 73, 87–156.
-
Skuhravá, M.; Blasco-Zumeta, J.; Pujade-Villar, J. Cecidomyiidae. In Catálogo de los Diptera de España, Portugal y Andorra (Insecta); Carles-Tolrá Hjorth-Andersen, M. (coord.); Monografías S.E.A. 2002, 8, 21–25.
-
Sláma, P.M.; Berger, P. Contribution to the knowledge of the genus Nathrius Brèthes, 1916, with the description of N. cypericus n. sp. from Cyprus (Coleoptera: Cerambycidae). Biocosme Mésogéen 2006, 23, 55–65.
-
Soghigian, J.; Andreadis, T.G.; Livdahl, T.P. From ground pools to treeholes: Convergent evolution of habitat and phenotype in Aedes mosquitoes. BMC Evolutionary Biology 2017, 17: 262. https://doi.org/10.1186/s12862-017-1092-y.
-
Soler-Membrives, A.; Munilla, T. PYCNOIB: Biodiversity and Biogeography of Iberian Pycnogonids. PLoS ONE 2015, 10, e0120818. https://doi.org/10.1371/journal.pone.0120818.
-
Spelda, J. Clase Diplopoda, Orden Julida. Revista IDE@-SEA 2015, 27, 1–18.
-
Stehlík, J.L.; Kment, P. Antilochus (Neaeretus) pterobrachys sp. nov. and the correct name of the subgenus Afroantilochus (Hemiptera: Heteroptera: Pyrrhocoridae). Acta Entomologica Musei Nationalis Pragae 2011, 51, 49–53.
-
Stock, J.H. On the identity of Porrassia mallorquensis Marcus, 1912, an amphipod supposedly endemic in Mallorca. Crustaceana 1976, 30 (1), 110–111.
-
Subías, L.S.; Shtanchaeva, U.Y.; Arillo, A. Oribátidos (Acari, Oribatida) de España peninsular e Islas Baleares. Distribución. Monografías electrónicas S.E.A. 2013, 5. Sociedad Entomológica Aragonesa.
-
Teruel, R.; Melic, A. Orden Scorpiones. Revista IDE@-SEA 2015, 18, 1–17.
-
Thanou, E.; Sponza, S.; Nelson, E.J.; Perry, A.; Wanless, S.; Daunt, F.; Cavers, S. Genetic structure in the European endemic seabird, Phalacrocorax aristotelis, shaped by a complex interaction of historical and contemporary, physical and nonphysical drivers. Molecular Ecology 2017, 26, 2796–2811.
-
Torres-Vila, L.M.; McMinn, M.; Rodríguez-Molina, A.; Rodríguez-Molina, M.C. Primera cita de Lobesia botrana Den. et Schiff. (Lepidoptera: Tortricidae) en la isla de Cabrera, Islas Baleares. Bolletí de la Societat d’Història Natural de les Balears 2006, 49, 45–49.
-
Vadell, M.; Pons, G.X. Aportaciones al conocimiento de los quilópodos (Chilopoda; Geophilomorpha) de la Serra de na Burguesa (Mallorca, Islas Baleares). Bolletí de la Societat d’Història Natural de les Balears 2009, 52, 169–182.
-
Vadell, M.; Zaragoza, J.A. Estudio preliminar de la fauna invertebrada terreste de la Cova des Coll (Felanitx, Mallorca). Endins 2005, 27, 187–204.
-
Vallhonrat, F. Aportació a la fauna de geomètrids de les illes Balears (Lepidoptera: Geometridae). Butlletí-Societat Catalana de Lepidopterologia 2004, 93, 43–51.
-
Vallhonrat, F.; Pérez, J.J.; Requena, E. Heteròcers nous o interessants de les illes Balears (Lepidoptera). Butlletí-Societat Catalana de Lepidopterologia 2011, 102, 67–72.
-
Vicens, P. Primer cens hivernal de corb marí gros Phalacrocorax carbo a les zones de colgada a Balears. Anuari Ornitològic de les Balears 2012, 27, 15–21.
-
Viejo, J.L.; González, J.; Gómez, C. Biodiversidad de lepidópteros en relación con sus hábitats, formaciones vegetales y flora de Las Marismillas (Parque Nacional de Doñana, Huelva, Sur de España). Resultados preliminares. Boletín de la Real Sociedad Española de Historia Natural, Sección biológica 2014, 108, 79–101.
-
Wang, M.; Zhang, Y.; Bourgoin, T. Planthopper family Issidae (Insecta: Hemiptera: Fulgoromorpha): Linking molecular phylogeny with classification. Molecular Phylogenetics and Evolution 2016, 105, 224–234.
-
Wheeler, W.M. Ants of the Balearic Islands. Folia Myrmecologica et Termitologica 1926, 1, 1–6.
-
Wirth, S. Description of a new species, Bonomoia opuntiae n. sp. (Histiostomatidae, Astigmata), with observations on the function of its eyes. Acarologia 2005, XLV, 4, 303–319.
-
World Spider Catalog. Version 22.0. Natural History Museum Bern, online at http://wsc.nmbe.ch [22-01-2021]. https://doi.org/10.24436/2.
-
Wulcan, J.M.; Dennis, M.M.; Ketzis, J.K.; Bevelock, T.J.; Verocai, G.G. Strongyloides spp. in cats: A review of the literature and the first report of zoonotic Strongyloides stercoralis in colonic epithelial nodular hyperplasia in cats. Parasites Vectors 2019, 12, 349.
-
WWF España. Informe del Inventario: MAL028-S’Albufera de Mallorca. EsIsWet-Base de datos de los humedales insulares españoles. Updated: 05.2020. Online at: https://www.humedalesdebaleares.es/general/report.php?id=58&lang=es_ES [22.10.2020].
-
Yunker, C.E. Studies on the Snake Mite, Ophionyssus natricis, in Nature. Science 1956, 124, 979–980.
-
Zahradnik, P. Fauna Europaea: Gastrallus. In Fauna Europaea: Coleoptera, Anobiidae. Audisio, P. (edit.); Fauna Europaea version 2017.06. https://fauna-eu.org [29/01/2021].
-
Zaragoza, J.A. Catálogo de los Pseudoescorpiones de la Península Ibérica e Islas Baleares (Arachnida: Pseudoscorpiones). Revista Ibérica de Aracnología 2006, 13, 3–91.
Plant References
-
Balaguer, P.; Gómez-Pujol, L.; Fornós, J.J. 1240 Acantilados con vegetación de las costas mediterráneas con Limonium spp. endémicos. In: Fornós, J.J. (coord.), Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Madrid: Ministerio de Medio Ambiente y Medio Rural y Marino, 2009, 1–66.
-
Bibiloni, G.; Alomar, G.; Rita, J. XII. Flora vascular dels illost I addicions a la flora de Cabrera Gran. In, Història Natural de l’Arxipèlag de Cabrera; Alcover, J.A.; Ballesteros, E.; Fornós, J.J. (Eds.) CSIC–Editorial Moll, Monografies de la Societat d’Història Natural de les Balears 1993, 2, 179–206.
-
Cano, M.J.; Gallego, M.T.; Garilleti, R.; Juaristi, R.; Lara, F., Martínez, J.; Mazimpaka, V.; Rosselló, J.A.; Sánchez-Moya, M.C.; Urdíroz, A. Aportaciones al conocimiento de la flora briológica española. Nótula XIII: Hepáticas y musgos de Mallorca (Islas Baleares). Boletín de la Sociedad Española de Briología 2001, 18/19, 103–110.
-
Casas, C.; Cros, R.M.; Muñoz, J. Triquetrella arapilensis y especies afines: Su morfología y distribución geográfica. The Bryologist 1993, 96(1), 122–131.
-
Cirujano, S. Tamaricaceae. In. Flora Ibérica, Castroviejo, S. (coord.), 2005, III, 437–445.
-
Cros, R.M. Algunos briofitos interesantes para la flora balear. Acta Botánica Malacitana 1982, 7: 141–150.
-
Cros, R.M.; Brugués, M.; Sérgio, C.; Infante, M.; Heras, P. Ephemerum recurvifolium. In: Brugués, M., Cros, R.M. and Sérgio, C. (coord.). Cartografia de Briòfits. Península Ibèrica i Illes Balears, Available at http://briofits.iec.cat [11-03-2021].
-
Herbari Virtual del Mediterrani Occidental. Available at http://herbarivirtual.uib.es/ [30-08-2021].
-
Infante, M.; Sérgio, C.; Heras, P.; Cros, R.M.; Brugués, M. Ephemerum sessile. In Cartografia de Briòfits. Península Ibèrica i Illes Balears. Brugués, M.; Cros, R.M.; Sérgio, C. (coord.); 2019, Available at http://briofits.iec.cat [11-03-2021].
-
Puche, F.; Rosselló, J.A. XI. Flora Briològica i Pteridològica. In, Història Natural de l’Arxipèlag de Cabrera; Alcover, J.A., Ballesteros, E. and Fornós, J.J. (Eds.) CSIC–Editorial Moll, Monografies de la Societat d’Història Natural de les Balears 1993, 2, 175–178.
-
Pujadas, A.J. Daucus. In: Castroviejo, S. (coord.) Flora Ibérica, 2003, X, 97–125.
-
Rita, J.; Bibiloni, G. XIII. La vegetació (Memòria del mapa de les comunitats vegetals). In, Història Natural de l’Arxipèlag de Cabrera; Alcover, J.A.; Ballesteros, E.; Fornós, J.J. (Eds.) CSIC–Editorial Moll, Monografies de la Societat d’Història Natural de les Balears 1993, 2, 207–255.
-
Röser, M. Stipellula, a new genus, and new combination in feather grasses (Poaceae tribe Stipeae). Schlechtendalia 2012, 24, 91–93.
-
Sáez, L.; Brugués, M.; Casas, C.; Cros, R.M; Balaguer, P. Briófitos nuevos o interesantes para las Islas Baleares. Boletín de la Sociedad Española de Briología 2006, 28, 11–23.
-
SITIBSA-GOIB. Projecte BioAtles. Last updated 17/08/2021. Conselleria de Medi Ambient i Territori, Govern de les Illes Balears. 2018, Available at: http://bioatles.caib.es/serproesfront/VisorServlet [31/08/2020].
-
Stevens, P.F. Angiosperm Phylogeny Website. Version 14. Last updated 06/02/2021. 2017, Available at: http://www.mobot.org/MOBOT/research/APweb/ [12/03/2021].
-
Talavera, S. Cullen. In Flora Ibérica; Castroviejo, S. (coord.); 2000, VII: 357–360.
-
Talavera, S. Cymodocea. Flora Ibérica, Talavera, S., Gallego, M.J.; Romero, C.; Herrero, A. (eds.) 2010, XVII: 104–107.
-
Traveset, A.; Rita, J. Els illots de l’Arxipèlag de Cabrera: Refugis de biodiversitat. In Arxipèlag de Cabrera: Historia Natural. Mallorca; Grau, A.M; Fornós, J.J.; Mateu, G.; Oliver, P.A.; Terrasa, B. (eds.); Monografies de la Societat d’Historia Natural de les Balears 2020, 30, 513–533.
-
Vives, J. Vegetació briofítica. Impressions sobre la vegetació de l’illa de Cabrera. Treballs de la Institució Catalana d’Historia Natural 1976, 7, 119–121.
-
World Flora Online. Beta L. 2021, Available at www.worldfloraonline.org/taxon/wfo-4000004539. [26-07-2021].

References

  1. Pianka, E.; Vitt, L.J. Lizards, Windows to the Evolution of Diversity; University of California Press: Berkeley, CA, USA, 2003. [Google Scholar]
  2. Pough, F.H. Lizard energetics and diet. Ecology 1973, 54, 837–844. [Google Scholar] [CrossRef]
  3. Pianka, E.R. Ecology and Natural History of Desert Lizards; Princeton University Press: Princeton, NJ, USA, 1986. [Google Scholar]
  4. Pérez-Mellado, V.; Corti, C. Dietary adaptations and herbivory in lacertid lizards of the genus Podarcis from western Mediterranean islands (Reptilia: Sauria). Bonner Zool. Beiträge 1993, 44, 193–220. [Google Scholar]
  5. Legler, J.M.; Sullivan, L.J. The application of stomach-flushing to lizards and anurans. Herpetol. J. 1979, 35, 107–110. [Google Scholar]
  6. Herrel, A.; Joachim, R.; Vanhooydonck, B.; Irschick, D.J. Ecological consequences of ontogenetic changes in head shape and bite performance in the Jamaican lizard Anolis lineatopus. Biol. J. Linn. Soc. 2006, 86, 443–454. [Google Scholar] [CrossRef]
  7. Sáez, E.; Traveset, A. Fruit and nectar feeding by Podarcis lilfordi (Lacertidae) on Cabrera Archipelago (Balearic Islands). Herpetol. Rev. 1995, 26, 121–123. [Google Scholar]
  8. Luiselli, L.; Akani, G.C.; Nwabueze, E.; Pérez-Mellado, V. Stomach flushing affects survival/emigration in wild lizards: A study case with rainbow lizards (Agama agama) in Nigeria. Amphibia. -Reptil. 2011, 32, 253–260. [Google Scholar]
  9. Pérez-Cembranos, A.; León, A.; Pérez-Mellado, V. Omnivory of an insular lizard: Sources of variation in the diet of Podarcis lilfordi (Squamata, Lacertidae). PLoS ONE 2016, 11, e0148947. [Google Scholar] [CrossRef]
  10. Pérez-Mellado, V.; Pérez-Cembranos, A.; Garrido, M.; Corti, C.; Luiselli, L. Using faecal samples in lizard dietary studies. Amphibia. -Reptil. 2011, 32, 1–7. [Google Scholar] [CrossRef]
  11. Casper, R.M.; Jarman, S.N.; Deagle, B.E.; Gales, N.J.; Hindell, M.A. Detecting prey from DNA in predator scats: A comparison with morphological analysis, using Arctocephalus seals fed a known diet. J. Exp. Mar. Bio. Ecol. 2007, 347, 144–154. [Google Scholar] [CrossRef]
  12. Alemany, I.; Pérez-Cembranos, A.; Pérez-Mellado, V.; Castro, J.A.; Picornell, A.; Ramon, C.; Jurado-Rivera, J.A. DNA metabarcoding the diet of Podarcis lizards endemic to the Balearic Islands. Curr. Zool. 2022, 20, zoac073. [Google Scholar] [CrossRef]
  13. Jurado-Rivera, J.A.; Vogler, A.P.; Reid, C.A.M.; Petitpierre, E.; Gómez-Zurita, J. DNA barcoding insect-host plant associations. Proc. R. Soc. B Biol. Sci. 2009, 276, 639–648. [Google Scholar] [CrossRef] [PubMed]
  14. Navarro, S.P.; Jurado-Rivera, J.A.; Gómez-Zurita, J.; Lyal, C.H.C.; Vogler, A.P. DNA profiling of host-herbivore interactions in tropical forests. Ecol. Entomol. 2010, 35, 18–32. [Google Scholar] [CrossRef]
  15. García-Robledo, C.; Erickson, D.L.; Staines, C.L.; Erwin, T.L.; Kress, W.J. Tropical plant-herbivore networks: Reconstructing species interactions using DNA barcodes. PLoS ONE 2013, 8, e52967. [Google Scholar] [CrossRef]
  16. Admassu, B.; Juen, A.; Traugott, M. Earthworm primers for DNA-based gut content analysis and their cross-reactivity in a multi-species system. Soil Biol. Biochem. 2006, 38, 1308–1315. [Google Scholar] [CrossRef]
  17. Dasmahapatra, K.K.; Mallet, J. Taxonomy: DNA barcodes: Recent successes and future prospects. Heredity 2006, 97, 254–255. [Google Scholar] [CrossRef] [PubMed]
  18. Pérez-Cembranos, A.; Pérez-Mellado, V.; Alemany, I.; Bassitta, M.; Terrasa, B.; Picornell, A.; Castro, J.A.; Brown, R.P.; Ramon, C. Morphological and genetic diversity of the Balearic lizard, Podarcis lilfordi (Günther, 1874): Is it relevant to its conservation? Divers. Distrib. 2020, 26, 1122–1141. [Google Scholar] [CrossRef]
  19. Pérez-Mellado, V. Estudio ecológico de la Lagartija Balear Podarcis lilfordi (Günther, 1874) en Menorca. Rev. Menorca 1989, 80, 455–511. [Google Scholar]
  20. Leray, M.; Yang, J.Y.; Meyer, C.P.; Mills, S.C.; Agudelo, N.; Ranwez, V.; Boehm, J.T.; Machida, R.J. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 2013, 10, 34. [Google Scholar] [CrossRef]
  21. Geller, J.B.; Meyer, C.P.; Parker, M.; Hawk, H. Redesign of PCR primers for mitochondrial Cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 2013, 13, 851–861. [Google Scholar] [CrossRef]
  22. Mallott, E.K.; Malhi, R.S.; Garber, P.A. Brief communication: High-Throughput sequencing of fecal DNA to Identify Insects Consumed by Wild Weddell’s Saddleback Tamarins (Saguinus weddelli, Cebidae, Primates) in Bolivia. Am. J. Phys. Anthropol. 2015, 156, 474–481. [Google Scholar] [CrossRef]
  23. Sang, T.; Crawford, D.J.; Stuessy, T.F. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 1997, 84, 1120–1136. [Google Scholar] [CrossRef] [PubMed]
  24. Tate, J.A.; Simpson, B.B. Paraphyly of Tarasa (Malvaceae) and Diverse Origins of the Polyploid Species. Syst. Bot. 2003, 28, 723–737. [Google Scholar]
  25. Kress, W.; Erickson, D.L.; Jones, F.A.; Swenson, N.G.; Perez, R.; Sanjur, O.; Bermingham, E. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc. Natl. Acad. Sci. USA 2009, 106, 18621–18626. [Google Scholar] [CrossRef]
  26. Levin, R.A.; Wagner, W.L.; Hoch, P.C.; Nepokroeff, M.; Pires, J.C.; Zimmer, E.A.; Sytsma, K.J. Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data. Am. J. Bot. 2003, 90, 107–115. [Google Scholar] [CrossRef] [PubMed]
  27. Albanese, D.; Fontana, P.; De Filippo, C.; Cavalieri, D.; Donati, C. MICCA: A complete and accurate software for taxonomic profiling of metagenomic data. Sci. Rep. 2015, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
  28. Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
  29. Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
  30. Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
  31. Rambaut, A. FigTree v. 1.4.4; Institute of Evolutionary Biology, University of Edinburgh: Edinburgh, Scotland, 2014; Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 3 February 2021).
  32. Hillis, D.M.; Bull, J.J. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 1993, 42, 182–192. [Google Scholar] [CrossRef]
  33. Da Silva, L.P.; Mata, V.A.; Lopes, P.B.; Pereira, P.; Jarman, S.N.; Lopes, R.J.; Beja, P. Advancing the integration of multi-marker metabarcoding data in dietary analysis of trophic generalists. Mol. Ecol. Resour. 2019, 19, 1420–1432. [Google Scholar] [CrossRef]
  34. Cronquist, A. The Evolution and Classification of Flowering Plants, 2nd ed.; New York Botanical Garden: New York, NY, USA, 1988. [Google Scholar]
  35. Bremer, B.; Bremer, K.; Chase, M.W.; Fay, M.F.; Reveal, J.L.; Soltis, D.E. THE ANGIOSPERM PHYLOGENY GROUP, An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 2009, 161, 105–121. [Google Scholar]
  36. Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2008, 26, 32–46. [Google Scholar] [CrossRef]
  37. Oksanen, J.; Kindt, R.; Legendre, P.; O’Hara, B.; Stevens, M.H.H.; Oksanen, M.J.; Suggests, M. The vegan package. Community Ecol. Packag. 2007, 10, 631–637. [Google Scholar]
  38. Pallmann, P.; Schaarschmidt, F.; Hothorn, L.A.; Fischer, C.; Nacke, H.; Priesnitz, K.U. Assessing group differences in biodiversity by simultaneously testing a user-defined selection of diversity indices. Mol. Ecol. Resour. 2012, 12, 1068–1078. [Google Scholar] [CrossRef] [PubMed]
  39. Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
  40. Magurran, A.E. Measuring Biological Diversity; Blackwell Publishing: Oxford, UK, 2004. [Google Scholar]
  41. Westfall, P.H.; Young, S.S. Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment; John Wiley & Sons, Inc.: New York, NY, USA, 1993. [Google Scholar]
  42. Scherer, R.; Pallmann, P. simboot: Simultaneous inference for diversity indices. R package, version 0.2-5; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
  43. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 22 January 2020).
  44. Gil, V.; Pinho, C.J.; Aguiar, C.A.S.; Jardim, C.; Rebelo, R.; Vasconcelos, R. Questioning the proverb ‘more haste, less speed’: Classic versus metabarcoding approaches for the diet study of a remote island endemic gecko. PeerJ 2020, 8, e8084. [Google Scholar] [CrossRef]
  45. Calvo, M. Reflexiones en torno a los esquemas de racionalidad espacial reflejados en el paisaje durante la Prehistoria de Mallorca. Pyrenae 2009, 40, 37–78. [Google Scholar]
  46. Crocetta, F.; Mifsud, S.; Paolini, P.; Piscopo, J.; Schembri, P. New records of the genus Pachygrapsus (Crustacea: Decapoda) from the central Mediterranean Sea with a review of its Mediterranean zoogeography. Mediterr. Mar. Sci. 2011, 12, 75–94. [Google Scholar] [CrossRef]
  47. Álvarez, E.; Grau, A.M.; Marbà, N.; Carreras, D. Praderas de angiospermas marinas de las Islas Baleares. In Atlas de las Praderas Marinas de España; Ruiz, J.M., Guillén, J.E., Ramos Segura, A., Otero, M.M., Eds.; IEO/IEL/UICN, Murcia-Alicante-Málaga: Murcia, Spain, 2015; pp. 179–219. [Google Scholar]
  48. Hofreiter, M.; Kreuz, E.; Eriksson, J.; Schubert, G.; Hohmann, G. Vertebrate DNA in fecal samples from Bonobos and Gorillas: Evidence for meat consumption or artefact? PLoS ONE 2010, 5, e9419. [Google Scholar] [CrossRef] [Green Version]
Figure 1. Maps of Mallorca and the Cabrera archipelago showing the location of the sampled Podarcis lilfordi (blue arrows). Maps were obtained with Google Maps (Map data 2020 Google) using the function ‘get_map’ in the package ‘ggmap’ version 3.0.0.902 in R version 3.6.3.
Figure 1. Maps of Mallorca and the Cabrera archipelago showing the location of the sampled Podarcis lilfordi (blue arrows). Maps were obtained with Google Maps (Map data 2020 Google) using the function ‘get_map’ in the package ‘ggmap’ version 3.0.0.902 in R version 3.6.3.
Animals 13 00507 g001
Figure 2. Frequencies of occurrence of each order of animals in the diet composition of Podarcis lilfordi through morphological and molecular analysis.
Figure 2. Frequencies of occurrence of each order of animals in the diet composition of Podarcis lilfordi through morphological and molecular analysis.
Animals 13 00507 g002
Figure 3. Percentage of occurrence of each family of animals or plants in the diet composition of Podarcis lilfordi through molecular analysis. All populations pooled.
Figure 3. Percentage of occurrence of each family of animals or plants in the diet composition of Podarcis lilfordi through molecular analysis. All populations pooled.
Animals 13 00507 g003
Table 1. List of the identified diet taxa to the maximum resolution obtained in the diet composition of Podarcis lilfordi through molecular analysis. We show the number of fecal samples where each taxon was detected.
Table 1. List of the identified diet taxa to the maximum resolution obtained in the diet composition of Podarcis lilfordi through molecular analysis. We show the number of fecal samples where each taxon was detected.
PhylumClass Order Family Genus Species Ses BledesCaragolNa Guardia Na MoltonaNa Pelada
Arthropoda
ArachnidaAraneaeGnaphosidae 1
Pseudoscorpiones 1
Trombidiformes 1 2
Eriophyidae 1
Tydeidae 1 3
MalacostracaDecapodaGrapsidaePachygrapsusmarmoratus 1
Isopoda 15276
ArmadillidaeArmadilloofficinalis 1
HalophilosciidaeHalophiloscia21 4
Halophilosciacouchii 2
LigiidaeLigiaitalica 3 2
Insecta 5
ArchaeognathaMachilidae 1
Coleoptera 131 1
AnobiidaeGastrallus 11
CurculionidaeTychius 1
Diptera 11
SarcophagidaeSarcophaga 1
Syrphidae 1
Embioptera 2
OligotomidaeHaploembia 1
HemipteraLygaeidaeNysius 3
Miridae 1
ScutelleridaeOdontoscelis 1
HymenopteraFormicidae 1 1
Messorbouvieri 211
Pheidole 64 5
Plagiolepis 11
Tetramoriumsemilaeve 1
LepidopteraCrambidaePyraustasanguinalis1
Psychidae 1
PterophoridaeAgdistismeridionalis 4
Tortricidae 1
Lobesia 6
NeuropteraConiopterydidae 1
PsocopteraPeripsocidaePeropsocus 1
Trogiidae 1 2
Cerobasis 3
DiplopodaJulidaJulidae 231
Chordata
MammaliaRodentiaMuridaeMus 2
Mollusca
GastropodaStylommatophoraHelicidaeTheba 11
Thebapisana 2
Streptophyta
MagnoliopsidaAlismatales 1
ApialesApiaceae 1
Caryophyllales 2122
Amaranthaceae 22245
Betavulgaris2 1
Suaeda 27668
PlumbaginaceaeLimonium 13228
Polygonaceae 1
FabalesFabaceae 1 221
Medicago 2
Prunus 1 1
PinopsidaPinalesPinaceaePinus 212
Table 2. List of the presence of identified diet taxa in morphological (morpho) and molecular analysis (DNA) of Podarcis lilfordi in the five populations under study. Taxa are grouped at the level of morphological identification (see more details in the text).
Table 2. List of the presence of identified diet taxa in morphological (morpho) and molecular analysis (DNA) of Podarcis lilfordi in the five populations under study. Taxa are grouped at the level of morphological identification (see more details in the text).
Ses BledesCaragolNa GuardiaNa MoltonaNa Pelada
TaxonMorphoDNAMorphoDNAMorphoDNAMorphoDNAMorphoDNA
Gastropoda101 015110
Pseudoscorpionida10 01
Araneae01 100220
Acarina 03 03
Isopoda1264010725
Crustacea 03 0301
Diplopoda 121301
Blattodea 10
Isoptera 10
Orthoptera 1
Dermaptera 0 10
Embioptera 0201
Homoptera 0 30
Heteroptera 300103
Diptera011111
Lepidoptera02 01 06
Neuroptera05 01
Coleoptera1284414131
Hymenoptera102010 30
Formicidae7685316460
Psocoptera 010302
Archaeognatha 01
Mammalia 01
Aves20
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Alemany, I.; Pérez-Cembranos, A.; Castro, J.A.; Picornell, A.; Pérez-Mellado, V.; Ramon, C. Diet of the Insular Lizard, Podarcis lilfordi (Günther, 1874): Complementary Morphological and Molecular Approaches. Animals 2023, 13, 507. https://doi.org/10.3390/ani13030507

AMA Style

Alemany I, Pérez-Cembranos A, Castro JA, Picornell A, Pérez-Mellado V, Ramon C. Diet of the Insular Lizard, Podarcis lilfordi (Günther, 1874): Complementary Morphological and Molecular Approaches. Animals. 2023; 13(3):507. https://doi.org/10.3390/ani13030507

Chicago/Turabian Style

Alemany, Iris, Ana Pérez-Cembranos, José A. Castro, Antònia Picornell, Valentín Pérez-Mellado, and Cori Ramon. 2023. "Diet of the Insular Lizard, Podarcis lilfordi (Günther, 1874): Complementary Morphological and Molecular Approaches" Animals 13, no. 3: 507. https://doi.org/10.3390/ani13030507

APA Style

Alemany, I., Pérez-Cembranos, A., Castro, J. A., Picornell, A., Pérez-Mellado, V., & Ramon, C. (2023). Diet of the Insular Lizard, Podarcis lilfordi (Günther, 1874): Complementary Morphological and Molecular Approaches. Animals, 13(3), 507. https://doi.org/10.3390/ani13030507

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop