Immunity in Sea Turtles: Review of a Host-Pathogen Arms Race Millions of Years in the Running
Abstract
:Simple Summary
Abstract
1. Introduction
2. Lymphoid Structures
Seasonal Changes of Lymphoid Structures
3. Innate Immune System
Innate Effector Cells
4. Behaviorally Induced Fever
5. Innate Immune Effectors
- (1)
- Lysozyme
- (2)
- Antimicrobial Peptides (AMPs)
- (3)
- Complement System
6. Natural Abs
7. Mucosal Immunoglobulin
8. Acute Phase Proteins
9. Pattern Recognition Receptors (PPRs)
9.1. Toll-like Receptors
9.2. RIG-I-like Receptors (RLRs)
9.3. Nod-like Receptors (NLRs)
9.4. C-Type Lectin Receptors Are Primarily Expressed by Myeloid Cells
10. Interferons (IFN)
Interferon Regulatory Factors (IRFs)
11. Adaptive Immunity
12. Cell-Mediated Immunity
13. Humoral Immunity
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fumagalli, M.; Sironi, M.; Pozzoli, U.; Ferrer-Admetlla, A.; Ferrer-Admettla, A.; Pattini, L.; Nielsen, R. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet. 2011, 7, e1002355. [Google Scholar] [CrossRef]
- Hoffmann, J.A. The immune response of Drosophila. Nature 2003, 426, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Metchnikoff, E. Lectures on the Comparative Pathology of Inflammation Delivered at the Pasteur Institute in 1891; Ripol Klassik: Moscow, Russia, 1893; ISBN 5-87712-856-6. [Google Scholar]
- Cooper, M.D.; Peterson, R.D.; Good, R.A. Delineation of the thymic and bursal lymphoid systems in the chicken. Nature 1965, 205, 143–146. [Google Scholar] [CrossRef]
- Reynaud, C.-A.; Anquez, V.; Grimal, H.; Weill, J.-C. A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell 1987, 48, 379–388. [Google Scholar] [CrossRef]
- Litman, G.W.; Cooper, M.D. Why study the evolution of immunity? Nat. Immunol. 2007, 8, 547–548. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Yang, H.; Gao, J.; Zhang, F.; Chu, P.; Yang, Y.; Zhang, M.; Wang, Y.; Yu, H. Diversity, immunoregulatory action and structure-activity relationship of green sea turtle cathelicidins. Dev. Comp. Immunol. 2019, 98, 189–204. [Google Scholar] [CrossRef] [PubMed]
- The IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org/en (accessed on 20 November 2022).
- Field, E.K.; Hartzheim, A.; Terry, J.; Dawson, G.; Haydt, N.; Neuman-Lee, L.A. Reptilian Innate Immunology and Ecoimmunology: What Do We Know and where Are We Going? Integr. Comp. Biol. 2022, 62, 1557–1571. [Google Scholar] [CrossRef]
- Zimmerman, L.M. Adaptive immunity in reptiles: Conventional components but unconventional strategies. Integr. Comp. Biol. 2022, 62, 1557–1571. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, L.M.; Paitz, R.T.; Vogel, L.A.; Bowden, R.M. Variation in the seasonal patterns of innate and adaptive immunity in the red-eared slider (Trachemys scripta). J. Exp. Biol. 2010, 213, 1477–1483. [Google Scholar] [CrossRef]
- Zimmerman, L.M. The reptilian perspective on vertebrate immunity: 10 years of progress. J. Exp. Biol. 2020, 223, jeb.214171. [Google Scholar] [CrossRef]
- Herbst, L.; Ene, A.; Su, M.; Desalle, R.; Lenz, J. Tumor outbreaks in marine turtles are not due to recent herpesvirus mutations. Curr. Biol. 2004, 14, R697–R699. [Google Scholar] [CrossRef]
- Jones, K.; Ariel, E.; Burgess, G.; Read, M. A review of fibropapillomatosis in Green turtles (Chelonia mydas). Vet. J. 2016, 212, 48–57. [Google Scholar] [CrossRef]
- Duffy, D.J.; Schnitzler, C.; Karpinski, L.; Thomas, R.; Whilde, J.; Eastman, C.; Yang, C.; Krstic, A.; Rollinson, D.; Zirkelbach, B.; et al. Sea turtle fibropapilloma tumors share genomic drivers and therapeutic vulnerabilities with human cancers. Commun. Biol. 2018, 1, 1–13. [Google Scholar] [CrossRef]
- Banerjee, S.M.; Stoll, J.A.; Allen, C.D.; Lynch, J.M.; Harris, H.S.; Kenyon, L.; Connon, R.E.; Sterling, E.J.; Naro-Maciel, E.; McFadden, K.; et al. Species and population specific gene expression in blood transcriptomes of marine turtles. BMC Genom. 2021, 22, 346. [Google Scholar] [CrossRef]
- Chaousis, S.; Leusch, F.D.L.; Nouwens, A.; Melvin, S.D.; van de Merwe, J.P. Changes in global protein expression in sea turtle cells exposed to common contaminants indicates new biomarkers of chemical exposure. Sci. Total Environ. 2021, 751, 141680. [Google Scholar] [CrossRef]
- Chaousis, S.; Leusch, F.D.L.; Limpus, C.J.; Nouwens, A.; Weijs, L.J.; Weltmeyer, A.; Covaci, A.; van de Merwe, J.P. Non-targeted proteomics reveals altered immune response in geographically distinct populations of green sea turtles (Chelonia mydas). Environ. Res. 2023, 216, 114352. [Google Scholar] [CrossRef]
- Marancik, D.P.; Perrault, J.R.; Komoroske, L.M.; Stoll, J.A.; Kelley, K.N.; Manire, C.A. Plasma proteomics of green turtles (Chelonia mydas) reveals pathway shifts and potential biomarker candidates associated with health and disease. Conserv. Physiol. 2021, 9, coab018. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, N.B.; Leandro, A.C.; Nahvi, N.; Devlin, M.A.; Leandro, M.; Escobedo, I.M.; Peralta, J.M.; George, J.; Stacy, B.A.; deMaar, T.W.; et al. Transcriptomic Profiling of Fibropapillomatosis in Green Sea Turtles (Chelonia mydas) From South Texas. Front. Immunol. 2021, 12, 630988. [Google Scholar] [CrossRef] [PubMed]
- Kane, R.A.; Christodoulides, N.; Jensen, I.M.; Becker, D.J.; Mansfield, K.L.; Savage, A.E. Gene expression changes with tumor disease and leech parasitism in the juvenile green sea turtle skin transcriptome. Gene 2021, 800, 145800. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xiao, X.; Wei, X.; Li, J.; Yang, J.; Tan, H.; Zhu, J.; Zhang, Q.; Wu, J.; Liu, L. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J. Med. Virol. 2020, 92, 595–601. [Google Scholar] [CrossRef] [Green Version]
- Foti, M.; Giacopello, C.; Bottari, T.; Fisichella, V.; Rinaldo, D.; Mammina, C. Antibiotic resistance of gram negatives isolates from loggerhead sea turtles (Caretta caretta) in the central Mediterranean Sea. Mar. Pollut. Bull. 2009, 58, 1363–1366. [Google Scholar] [CrossRef]
- Ahasan, M.S.; Picard, J.; Elliott, L.; Kinobe, R.; Owens, L.; Ariel, E. Evidence of antibiotic resistance in Enterobacteriales isolated from green sea turtles, Chelonia mydas on the Great Barrier Reef. Mar. Pollut. Bull. 2017, 120, 18–27. [Google Scholar] [CrossRef]
- Tsai, T.-T.; Huang, C.-Y.; Chen, C.-A.; Shen, S.-W.; Wang, M.-C.; Cheng, C.-M.; Chen, C.-F. Diagnosis of Tuberculosis Using Colorimetric Gold Nanoparticles on a Paper-Based Analytical Device. ACS Sens. 2017, 2, 1345–1354. [Google Scholar] [CrossRef] [PubMed]
- Drane, K.; Huerlimann, R.; Power, M.; Whelan, A.; Ariel, E.; Sheehan, M.; Kinobe, R. Testudines as Sentinels for Monitoring the Dissemination of Antibiotic Resistance in Marine Environments: An Integrative Review. Antibiotics 2021, 10, 775. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.; Grilo, M.L.; Carneiro, C.; Cunha, E.; Tavares, L.; Patino-Martinez, J.; Oliveira, M. Antibiotic Resistance and Virulence Profiles of Gram-Negative Bacteria Isolated from Loggerhead Sea Turtles (Caretta caretta) of the Island of Maio, Cape Verde. Antibiotics 2021, 10, 771. [Google Scholar] [CrossRef]
- Trotta, A.; Cirilli, M.; Marinaro, M.; Bosak, S.; Diakoudi, G.; Ciccarelli, S.; Paci, S.; Buonavoglia, D.; Corrente, M. Detection of multi-drug resistance and AmpC β-lactamase/extended-spectrum β-lactamase genes in bacterial isolates of loggerhead sea turtles (Caretta caretta) from the Mediterranean Sea. Mar. Pollut. Bull. 2021, 164, 112015. [Google Scholar] [CrossRef]
- Trotta, A.; Marinaro, M.; Sposato, A.; Galgano, M.; Ciccarelli, S.; Paci, S.; Corrente, M. Antimicrobial Resistance in Loggerhead Sea Turtles (Caretta caretta): A Comparison between Clinical and Commensal Bacterial Isolates. Animals 2021, 11, 2435. [Google Scholar] [CrossRef]
- Carini, A.D.P.; Ariel, E.; Picard, J.; Elliott, L. Antibiotic Resistant Bacterial Isolates from Captive Green Turtles and In Vitro Sensitivity to Bacteriophages. Int. J. Microbiol. 2017, 2017, 5798161. [Google Scholar] [CrossRef]
- Duffy, D.J.; Martindale, M.Q. Perspectives on the expansion of human precision oncology and genomic approaches to sea turtle fibropapillomatosis. Commun. Biol. 2019, 2, 54. [Google Scholar] [CrossRef] [PubMed]
- Leceta, J.; Zapata, A. Seasonal changes in the thymus and spleen of the turtle, Mauremys caspica. A morphometrical, light microscopical study. Dev. Comp. Immunol. 1985, 9, 653–668. [Google Scholar] [CrossRef]
- Lu, H.; Jin, J.; Fan, H.; Dang, W. The magnitude of incubation temperature fluctuation affects the immunity of Chinese soft-shelled turtle (Pelodiscus sinensis) hatchlings. Aquac. Res. 2021, 52, 5229–5238. [Google Scholar] [CrossRef]
- Baker, S.; Kessler, E.; Darville-Bowleg, L.; Merchant, M. Different mechanisms of serum complement activation in the plasma of common (Chelydra serpentina) and alligator (Macrochelys temminckii) snapping turtles. PLoS ONE 2019, 14, e0217626. [Google Scholar] [CrossRef]
- Adamovicz, L.; Baker, S.J.; Merchant, M.; Darville, L.; Allender, M.C. Plasma complement activation mechanisms differ in ornate (Terrapene ornata ornata) and eastern box turtles (Terrapene carolina carolina). J. Exp. Zool. Part Ecol. Integr. Physiol. 2020, 333, 720–731. [Google Scholar] [CrossRef] [PubMed]
- Work, T.M.; Balazs, G.H.; Rameyer, R.A.; Chang, S.P.; Berestecky, J. Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas. Vet. Immunol. Immunopathol. 2000, 74, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Work, T.M.; Rameyer, R.A.; Balazs, G.H.; Cray, C.; Chang, S.P. IMMUNE STATUS OF FREE-RANGING GREEN TURTLES WITH FIBROPAPILLOMATOSIS FROM HAWAII. J. Wildl. Dis. 2001, 37, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Cray, C.; Varella, R.; Bossart, G.D.; Lutz, P. Altered in vitro Immune Responses in Green Turtles (Chelonia mydas) with Fibropapillomatosis. J. Zoo Wildl. Med. 2001, 32, 436–440. [Google Scholar]
- Rossi, S.; Sá-Rocha, V.M.; Kinoshita, D.; Genoy-Puerto, A.; Zwarg, T.; Werneck, M.R.; Sá-Rocha, L.C.; Matushima, E.R. Flow cytometry as a tool in the evaluation of blood leukocyte function in Chelonia mydas (Linnaeus, 1758) (Testudines, Cheloniidae). Braz. J. Biol. Rev. Brasleira Biol. 2009, 69, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; de Queiroz Hazarbassanov, N.G.T.; Sánchez-Sarmiento, A.M.; Prioste, F.E.S.; Matushima, E.R. Immune Response of Green Sea Turtles with and without Fibropapillomatosis: Evaluating Oxidative Burst and Phagocytosis via Flow Cytometry. Chelonian Conserv. Biol. 2016, 15, 273–278. [Google Scholar] [CrossRef]
- Swarthout, R.F.; Keller, J.M.; Peden-Adams, M.; Landry, A.M.; Fair, P.A.; Kucklick, J.R. Organohalogen contaminants in blood of Kemp’s ridley (Lepidochelys kempii) and green sea turtles (Chelonia mydas) from the Gulf of Mexico. Chemosphere 2010, 78, 731–741. [Google Scholar] [CrossRef]
- Komoroske, L.M.; Lewison, R.L.; Seminoff, J.A.; Deheyn, D.D.; Dutton, P.H. Pollutants and the health of green sea turtles resident to an urbanized estuary in San Diego, CA. Chemosphere 2011, 84, 544–552. [Google Scholar] [CrossRef]
- Perrault, J.R.; Stacy, N.I.; Lehner, A.F.; Mott, C.R.; Hirsch, S.; Gorham, J.C.; Buchweitz, J.P.; Bresette, M.J.; Walsh, C.J. Potential effects of brevetoxins and toxic elements on various health variables in Kemp’s ridley (Lepidochelys kempii) and green (Chelonia mydas) sea turtles after a red tide bloom event. Sci. Total Environ. 2017, 605–606, 967–979. [Google Scholar] [CrossRef]
- Perrault, J.R.; Levin, M.; Mott, C.R.; Bovery, C.M.; Bresette, M.J.; Chabot, R.M.; Gregory, C.R.; Guertin, J.R.; Hirsch, S.E.; Ritchie, B.W.; et al. Insights on Immune Function in Free-Ranging Green Sea Turtles (Chelonia mydas) with and without Fibropapillomatosis. Animals 2021, 11, 861. [Google Scholar] [CrossRef] [PubMed]
- Pace, A.; Rinaldi, L.; Ianniello, D.; Borrelli, L.; Cringoli, G.; Fioretti, A.; Hochscheid, S.; Dipineto, L. Gastrointestinal investigation of parasites and Enterobacteriaceae in loggerhead sea turtles from Italian coasts. BMC Vet. Res. 2019, 15, 370. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.R.; Lynch, J.M.; Balazs, G.H.; Jones, T.T.; Pawloski, J.; Rice, M.R.; French, A.D.; Liu, J.; Cobb, G.P.; Klein, D.M. Trace Element Concentrations in Blood and Scute Tissues from Wild and Captive Hawaiian Green Sea Turtles (Chelonia mydas). Environ. Toxicol. Chem. 2021, 40, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Sposato, P.; Keating, P.; Lutz, P.L.; Milton, S.L. EVALUATION OF IMMUNE FUNCTION IN TWO POPULATIONS OF GREEN SEA TURTLES (CHELONIA MYDAS) IN A DEGRADED VERSUS A NONDEGRADED HABITAT. J. Wildl. Dis. 2021, 57, 761–772. [Google Scholar] [CrossRef]
- Bastos, K.V.; Machado, L.P.; Joyeux, J.-C.; Ferreira, J.S.; Militão, F.P.; Fernandes, V.d.O.; Santos, R.G. Coastal degradation impacts on green turtle’s (Chelonia mydas) diet in southeastern Brazil: Nutritional richness and health. Sci. Total Environ. 2022, 823, 153593. [Google Scholar] [CrossRef] [PubMed]
- Garefino, V.E.; Milton, S.L. Influence of Sunlight on Vitamin D and Health Status in Green (Chelonia mydas) Sea Turtles with Fibropapillomatosis. Animals 2022, 12, 488. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, L.M.; Bowden, R.M.; Vogel, L.A. Red-Eared Slider Turtles Lack Response to Immunization with Keyhole Limpet Hemocyanin but Have High Levels of Natural Antibodies. ISRN Zool. 2013, 2013, 858941. [Google Scholar] [CrossRef]
- Ashford, M.A.; Palackdharry, S.M.; Sadd, B.M.; Bowden, R.M.; Vogel, L.A. Intestinal B cells in the red-eared slider turtle, Trachemys scripta: Anatomical distribution and implications for ecological interactions with pathogenic microbes. J. Exp. Zool. Part Ecol. Integr. Physiol. 2019, 331, 407–415. [Google Scholar] [CrossRef]
- Walsh, C.J.; Cocilova, C.; Restivo, J.; Flewelling, L.; Milton, S. Immune function in Trachemys scripta following exposure to a predominant brevetoxin congener, PbTx-3, as a model for potential health impacts for sea turtles naturally exposed to brevetoxins. Ecotoxicology 2019, 28, 1085–1104. [Google Scholar] [CrossRef]
- Ding, L.; Li, W.; Liang, L.; Huang, Z.; Li, N.; Zhang, J.; Shi, H.; Storey, K.B.; Hong, M. Modulation of the intestinal barrier adaptive functions in red-eared slider (Trachemys scripta elegans) invading brackish waters. Sci. Total Environ. 2021, 751, 141744. [Google Scholar] [CrossRef] [PubMed]
- Leceta, J.; Zapata, A.G. White pulp compartments in the spleen of the turtle Mauremys caspica: A light-microscopic, electron-microscopic, and immuno-histochemical study. Cell Tissue Res. 1991, 266, 605–613. [Google Scholar] [CrossRef]
- Muñoz, F.J.; de la Fuente, M. Seasonal Changes in Lymphoid Distribution of the Turtle Mauremys caspica. Copeia 2004, 2004, 178–183. [Google Scholar] [CrossRef]
- Gao, Y.; Wei, Y.; Cao, D.; Ge, Y.; Gong, S. Transcriptome analysis reveals decreased immunity under heat stress in Mauremys mutica. Aquaculture 2021, 531, 735894. [Google Scholar] [CrossRef]
- Soltanian, S.; Fallahi, R.; Fereidouni, M.S. Effects of diazinon on some innate resistance parameters in the Caspian pond turtle (Mauremys caspica caspica). Bulg. J. Vet. Med. 2018, 21, 212–223. [Google Scholar]
- Lakshminarayanan, R.; Vivekanandan, S.; Samy, R.P.; Banerjee, Y.; Chi-Jin, E.O.; Teo, K.W.; Jois, S.D.S.; Kini, R.M.; Valiyaveettil, S. Structure, Self-Assembly, and Dual Role of a β-Defensin-like Peptide from the Chinese Soft-Shelled Turtle Eggshell Matrix. J. Am. Chem. Soc. 2008, 130, 4660–4668. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Q.; Wang, F.; Li, X.; Wang, B.; Zhou, Y.; Zou, P.; Tang, L.; Yu, D.; Li, W. Improved immune function of Chinese soft-shelled turtles (Pelodiscus sinensis) through oral probiotics via the TLR signaling pathway. Aquaculture 2022, 555, 738126. [Google Scholar] [CrossRef]
- Bao, H.-J.; Li, M.-Y.; Wang, J.; Qin, J.-H.; Xu, C.-S.; Hei, N.-N.; Yang, P.; Gandahi, J.; Chen, Q.-S. Architecture of the Blood-Spleen Barrier in the Soft-Shelled Turtle, Pelodiseus Sinensis. Anat. Rec. 2009, 292, 1079–1087. [Google Scholar] [CrossRef]
- Feng, R.; Zhang, Z.; Guan, Y. Physiological and transcriptional analysis of Chinese soft-shelled turtle (Pelodiscus sinensis) in response to acute nitrite stress. Aquat. Toxicol. 2021, 237, 105899. [Google Scholar] [CrossRef]
- Fu, J.P.; Chen, S.N.; Zou, P.F.; Huang, B.; Guo, Z.; Zeng, L.B.; Qin, Q.W.; Nie, P. IFN-γ in turtle: Conservation in sequence and signalling and role in inhibiting iridovirus replication in Chinese soft-shelled turtle Pelodiscus sinensis. Dev. Comp. Immunol. 2014, 43, 87–95. [Google Scholar] [CrossRef]
- Fu, J.; Liu, W.; Cui, H.; Song, C.; Liu, Y.; Wei, L. Characterization and functional analysis of liver-expressed antimicrobial peptide-2 (LEAP-2) in Pelodiscus sinensis. Aquaculture 2019, 511, 734263. [Google Scholar] [CrossRef]
- Shi, N.; Cai, S.; Gao, J.; Qiao, X.; Yang, H.; Wang, Y.; Yu, H. Roles of polymorphic cathelicidins in innate immunity of soft-shell turtle, Pelodiscus sinensis. Dev. Comp. Immunol. 2019, 92, 179–192. [Google Scholar] [CrossRef]
- Liang, Q.; Zhu, N.; Zheng, X.; Ding, X.; He, R.; Xu, H.; Cao, F.; Xue, H.; Zhou, F.; Zheng, T. Transcriptome Analysis of Immune Responses and Metabolic Regulations of Chinese Soft-Shelled Turtle (Pelodiscus sinensis) against Edwardsiella tarda Infection. Fishes 2022, 7, 79. [Google Scholar] [CrossRef]
- Liu, T.; Han, Y.; Chen, S.; Zhao, H. Genome-wide identification of Toll-like receptors in the Chinese soft-shelled turtle Pelodiscus sinensis and expression analysis responding to Aeromonas hydrophila infection. Fish Shellfish Immunol. 2019, 87, 478–489. [Google Scholar] [CrossRef]
- Monagas, W.R.; Gatten, R.E. Behavioural fever in the turtles Terrapene carolina and Chrysemys picta. J. Therm. Biol. 1983, 8, 285–288. [Google Scholar] [CrossRef]
- Soltanian, S. Effect of atrazine on immunocompetence of red-eared slider turtle (Trachemys scripta). J. Immunotoxicol. 2016, 13, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, T.; Sun, Y.; Cheng, G.; Yang, H.; Wei, Z.; Wang, P.; Hu, X.; Ren, L.; Meng, Q.; et al. Extensive Diversification of IgD-, IgY-, and Truncated IgY(ΔFc)-Encoding Genes in the Red-Eared Turtle (Trachemys scripta elegans). J. Immunol. 2012, 189, 3995–4004. [Google Scholar] [CrossRef]
- Romanova, E.B.; Stolyarova, I.A.; Bakiev, A.G.; Gorelov, R.A. Leukocyte blood composition of Emys orbicularis and Mauremys capsica (Reptilia: Testudines: Emydidae, Geoemydidae) at syntopy. Povolzhskiy J. Ecol. 2022, 0, 79–93. [Google Scholar] [CrossRef]
- Shaffer, H.B.; Minx, P.; Warren, D.E.; Shedlock, A.M.; Thomson, R.C.; Valenzuela, N.; Abramyan, J.; Amemiya, C.T.; Badenhorst, D.; Biggar, K.K.; et al. The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol. 2013, 14, R28. [Google Scholar] [CrossRef]
- Xu, C.; Dolby, G.A.; Drake, K.K.; Esque, T.C.; Kusumi, K. Immune and sex-biased gene expression in the threatened Mojave desert tortoise, Gopherus agassizii. PLoS ONE 2020, 15, e0238202. [Google Scholar] [CrossRef]
- Bianchi, L.; Casini, S.; Vantaggiato, L.; Di Noi, A.; Carleo, A.; Shaba, E.; Armini, A.; Bellucci, F.; Furii, G.; Bini, L.; et al. A Novel Ex Vivo Approach Based on Proteomics and Biomarkers to Evaluate the Effects of Chrysene, MEHP, and PBDE-47 on Loggerhead Sea Turtles (Caretta caretta). Int. J. Environ. Res. Public Health 2022, 19, 4369. [Google Scholar] [CrossRef]
- Day, R.D.; Segars, A.L.; Arendt, M.D.; Lee, A.M.; Peden-Adams, M.M. Relationship of Blood Mercury Levels to Health Parameters in the Loggerhead Sea Turtle (Caretta caretta). Environ. Health Perspect. 2007, 115, 1421–1428. [Google Scholar] [CrossRef] [Green Version]
- Perrault, J.R.; Bauman, K.D.; Greenan, T.M.; Blum, P.C.; Henry, M.S.; Walsh, C.J. Maternal transfer and sublethal immune system effects of brevetoxin exposure in nesting loggerhead sea turtles (Caretta caretta) from western Florida. Aquat. Toxicol. 2016, 180, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Jakšić, Ž.; Mrljak, V.; Horvatić, A.; Gelemanović, A.; Mičić, M. Loggerhead sea turtle Caretta caretta plasma biochemistry and proteome profile modulation during recovery. J. Proteom. 2022, 252, 104433. [Google Scholar] [CrossRef]
- Dickey, M.; Cray, C.; Norton, T.; Murray, M.; Barysauskas, C.; Arheart, K.L.; Nelson, S.; Rodriguez, M. ASSESSMENT OF HEMOGLOBIN BINDING PROTEIN IN LOGGERHEAD SEA TURTLES (Caretta caretta) UNDERGOING REHABILITATION. J. Zoo Wildl. Med. 2014, 45, 700–703. [Google Scholar] [CrossRef]
- Rodgers, M.L.; Toline, C.A.; Rice, C.D. Humoral Immune Responses to Select Marine Bacteria in Loggerhead Sea Turtles Caretta caretta and Kemp’s Ridley Sea Turtles Lepidochelys kempii from the Southeastern United States. J. Aquat. Anim. Health 2018, 30, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Stacy, N.I.; Lynch, J.M.; Arendt, M.D.; Avens, L.; McNeill, J.B.; Cray, C.; Day, R.D.; Harms, C.A.; Lee, A.M.; Peden-Adams, M.M.; et al. Chronic debilitation in stranded loggerhead sea turtles (Caretta caretta) in the southeastern United States: Morphometrics and clinicopathological findings. PLoS ONE 2018, 13, e0200355. [Google Scholar] [CrossRef] [PubMed]
- Hunt, K.E.; Innis, C.; Rolland, R.M. CORTICOSTERONE AND THYROXINE IN COLD-STUNNED KEMP’S RIDLEY SEA TURTLES (Lepidochelys kempii). J. Zoo Wildl. Med. 2012, 43, 479–493. [Google Scholar] [CrossRef]
- Gregory, L.F.; Schmid, J.R. Stress Responses and Sexing of Wild Kemp’s Ridley Sea Turtles (Lepidochelys kempii) in the Northeastern Gulf of Mexico. Gen. Comp. Endocrinol. 2001, 124, 66–74. [Google Scholar] [CrossRef]
- Valverde, R.A.; Owens, D.W.; MacKenzie, D.S.; Amoss, M.S. Basal and stress-induced corticosterone levels in olive ridley sea turtles (Lepidochelys olivacea) in relation to their mass nesting behavior. J. Exp. Zool. 1999, 284, 652–662. [Google Scholar] [CrossRef]
- Praja, R.N.; Yudhana, A.; Haditanojo, W.; Oktaviana, V. Short Communication: Antimicrobial properties in cloacal fluid of olive ridley sea turtle (Lepidochelys olivacea). Biodiversitas J. Biol. Divers. 2022, 13, 930629. [Google Scholar] [CrossRef]
- López-Hurtado, M.; Castro-González, M.I.; Guerra-Infante, F.M. Actividad antibacteriana de la clara de huevo de la tortuga marina Lepidochelys olivacea. Rev. Biol. Mar. Oceanogr. 2010, 45, 353–357. [Google Scholar] [CrossRef]
- Jessop, T.S.; Sumner, J.M.; Limpus, C.J.; Whittier, J.M. Interplay between plasma hormone profiles, sex and body condition in immature hawksbill turtles (Eretmochelys imbricata) subjected to a capture stress protocol. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2004, 137, 197–204. [Google Scholar] [CrossRef]
- Muñoz, F.A.; Estrada-Parra, S.; Romero-Rojas, A.; Gonzalez-Ballesteros, E.; Work, T.M.; Villaseñor-Gaona, H.; Estrada-Garcia, I. IMMUNOLOGICAL EVALUATION OF CAPTIVE GREEN SEA TURTLE (CHELONIA MYDAS) WITH ULCERATIVE DERMATITIS. J. Zoo Wildl. Med. 2013, 44, 837–844. [Google Scholar] [CrossRef]
- Work, T.M.; Dagenais, J.; Breeden, R.; Schneemann, A.; Sung, J.; Hew, B.; Balazs, G.H.; Berestecky, J.M. Green Turtles (Chelonia mydas) Have Novel Asymmetrical Antibodies. J. Immunol. 2015, 195, 5452–5460. [Google Scholar] [CrossRef]
- Collins, B.R.; Peck, B.; Buergelt, C.; Moreland, A. The Lymphoid Structure of the Green Turtle (Chelonia mydas); VIN.Com: Davis, CA, USA, 1986. [Google Scholar]
- Benedict, A.A.; Pollard, L.W. Three classes of immunoglobulins found in the sea turtle, Chelonia mydas. Folia Microbiol. 1972, 17, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Mead, K.F.; Borysenko, M.; Findlay, S.R. Naturally abundant basophils in the snapping turtle, Chelydra serpentina, possess cytophilic surface antibody with reaginic function. J. Immunol. 1983, 130, 334–340. [Google Scholar] [CrossRef]
- Borysenko, M.; Cooper, E.L. Lymphoid tissue in the snapping turtle, Chelydra serpentina. J. Morphol. 1972, 138, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Sypek, J.P.; Borysenko, M.; Findlay, S.R. Anti-immunoglobulin induced histamine release from naturally abundant basophils in the snapping turtle, Chelydra serpentina. Dev. Comp. Immunol. 1984, 8, 359–366. [Google Scholar] [CrossRef]
- Zimmerman, L.M.; Vogel, L.A.; Bowden, R.M. Understanding the vertebrate immune system: Insights from the reptilian perspective. J. Exp. Biol. 2010, 213, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, R.G.; Newberry, R.D. Isolated lymphoid follicles can function as sites for induction of mucosal immune responses. Ann. N. Y. Acad. Sci. 2004, 1029, 44–57. [Google Scholar] [CrossRef]
- Kiss, E.A.; Vonarbourg, C.; Kopfmann, S.; Hobeika, E.; Finke, D.; Esser, C.; Diefenbach, A. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 2011, 334, 1561–1565. [Google Scholar] [CrossRef]
- Klein, U.; Dalla-Favera, R. Germinal centres: Role in B-cell physiology and malignancy. Nat. Rev. Immunol. 2008, 8, 22–33. [Google Scholar] [CrossRef]
- Jung, C.; Hugot, J.-P.; Barreau, F. Peyer’s Patches: The Immune Sensors of the Intestine. Int. J. Inflamm. 2010, 2010, 823710. [Google Scholar] [CrossRef]
- Hussein, M.F.; Badir, N.; el-Ridi, R.; Akef, M. Effect of seasonal variation on lymphoid tissues of the lizards, Mabuya quinquetaeniata Licht. and Uromastyx aegyptia Forsk. Dev. Comp. Immunol. 1978, 2, 469–478. [Google Scholar] [CrossRef] [PubMed]
- el Ridi, R.; Zada, S.; Afifi, A.; el Deeb, S.; el Rouby, S.; Farag, M.; Saad, A.H. Cyclic changes in the differentiation of lymphoid cells in reptiles. Cell Differ. 1988, 24, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Matoltsy, A.G.; Huszar, T. Keratinization of the reptilian epidermis: An ultrastructural study of the turtle skin. J. Ultrastruct. Res. 1972, 38, 87–101. [Google Scholar] [CrossRef]
- Tenería, F.A.M.; Calderón-Amador, J.; Negrete-Philippe, A.C.; Flores-Romo, L. A subpopulation of green turtle suprabasal epidermal cells are Langerin+ and migrate under in vitro stimulation of the chemokine CCL21. Vet. Res. Commun. 2022, 46, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, A. Immunolocalization of a beta-defensin (Tu-BD-1) in the skin and subdermal granulocytes of turtles indicate the presence of an antimicrobial skin barrier. Ann. Anat.-Anat. Anz. 2013, 195, 554–561. [Google Scholar] [CrossRef]
- Rimer, J.; Cohen, I.R.; Friedman, N. Do all creatures possess an acquired immune system of some sort? BioEssays 2014, 36, 273–281. [Google Scholar] [CrossRef]
- Viney, M.E.; Riley, E.M. From immunology to eco-immunology: More than a new name. In Eco-Immunology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–19. [Google Scholar]
- Zimmerman, L.M.; Bowden, R.M.; Vogel, L.A. A vertebrate cytokine primer for eco-immunologists. Funct. Ecol. 2014, 28, 1061–1073. [Google Scholar] [CrossRef]
- van der Heijden, C.D.; Noz, M.P.; Joosten, L.A.; Netea, M.G.; Riksen, N.P.; Keating, S.T. Epigenetics and trained immunity. Antioxid. Redox Signal. 2018, 29, 1023–1040. [Google Scholar] [CrossRef]
- Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.; van der Meer, J.W.; Mhlanga, M.M.; Mulder, W.J. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020, 20, 375–388. [Google Scholar] [CrossRef]
- Divangahi, M.; Aaby, P.; Khader, S.A.; Barreiro, L.B.; Bekkering, S.; Chavakis, T.; van Crevel, R.; Curtis, N.; DiNardo, A.R.; Dominguez-Andres, J. Trained immunity, tolerance, priming and differentiation: Distinct immunological processes. Nat. Immunol. 2021, 22, 2–6. [Google Scholar] [CrossRef]
- Katzmarski, N.; Domínguez-Andrés, J.; Cirovic, B.; Renieris, G.; Ciarlo, E.; Le Roy, D.; Lepikhov, K.; Kattler, K.; Gasparoni, G.; Händler, K. Transmission of trained immunity and heterologous resistance to infections across generations. Nat. Immunol. 2021, 22, 1382–1390. [Google Scholar] [CrossRef]
- Tomalka, J.A.; Suthar, M.S.; Diamond, M.S.; Sekaly, R.P. Innate antiviral immunity: How prior exposures can guide future responses. Trends Immunol. 2022, 43, 696–705. [Google Scholar] [CrossRef]
- Zimmerman, L.M.; Vogel, L.A.; Edwards, K.A.; Bowden, R.M. Phagocytic B cells in a reptile. Biol. Lett. 2010, 6, 270–273. [Google Scholar] [CrossRef]
- Muñoz, F.A.; Franco-Noguez, S.Y.; Gonzalez-Ballesteros, E.; Negrete-Philippe, A.C.; Flores-Romo, L. Characterisation of the green turtle’s leukocyte subpopulations by flow cytometry and evaluation of their phagocytic activity. Vet. Res. Commun. 2014, 38, 123–128. [Google Scholar] [CrossRef]
- Pellizzon, C.H.; Lunardi, L.O. Endocytic activity in the thrombocytes of the turtle Phrynopys hilarii (freshwater South American species). J. Submicrosc. Cytol. Pathol. 2000, 32, 651–656. [Google Scholar]
- Caliani, I.; Poggioni, L.; D’Agostino, A.; Fossi, M.C.; Casini, S. An immune response-based approach to evaluate physiological stress in rehabilitating loggerhead sea turtle. Vet. Immunol. Immunopathol. 2019, 207, 18–24. [Google Scholar] [CrossRef]
- Feiyan, Z.; Hexiang, G.; Pipeng, L. A Review of Chelonian Hematology: A Review of Chelonian Hematology. Asian Herpetol. Res. 2011, 2, 12–20. [Google Scholar] [CrossRef]
- Rios, F.M.; Zimmerman, L.M. Immunology of Reptiles. In eLS; American Cancer Society: Atlanta, GA, USA, 2015; pp. 1–7. ISBN 978-0-470-01590-2. [Google Scholar]
- León, B.; López-Bravo, M.; Ardavín, C. Monocyte-derived dendritic cells. Semin. Immunol. 2005, 17, 313–318. [Google Scholar] [CrossRef]
- Cabanac, M.; Bernieri, C. Behavioral rise in body temperature and tachycardia by handling of a turtle (Clemmys insculpta). Behav. Process. 2000, 49, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Goessling, J.M.; Guyer, C.; Mendonça, M.T. More than Fever: Thermoregulatory Responses to Immunological Stimulation and Consequences of Thermoregulatory Strategy on Innate Immunity in Gopher Tortoises (Gopherus polyphemus). Physiol. Biochem. Zool. 2017, 90, 484–493. [Google Scholar] [CrossRef]
- Pasmans, F.; Herdt, P.D.; Nerom, A.V.; Haesebrouck, F. Induction of the respiratory burst in turtle peritoneal macrophages by Salmonella muenchen. Dev. Comp. Immunol. 2001, 25, 159–168. [Google Scholar] [CrossRef]
- Van Houtan, K.S.; Halley, J.M.; Marks, W. Terrestrial basking sea turtles are responding to spatio-temporal sea surface temperature patterns. Biol. Lett. 2015, 11, 20140744. [Google Scholar] [CrossRef]
- Swimmer, J.Y. Relationship Between Basking and Fibropapillomatosis in Captive Green Turtles (Chelonia mydas). Chelonian Conserv. Biol. 2006, 5, 305–309. [Google Scholar] [CrossRef]
- Kokolus, K.M.; Capitano, M.L.; Lee, C.-T.; Eng, J.W.-L.; Waight, J.D.; Hylander, B.L.; Sexton, S.; Hong, C.-C.; Gordon, C.J.; Abrams, S.I.; et al. Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature. Proc. Natl. Acad. Sci. USA 2013, 110, 20176–20181. [Google Scholar] [CrossRef]
- Evans, S.S.; Repasky, E.A.; Fisher, D.T. Fever and the thermal regulation of immunity: The immune system feels the heat. Nat. Rev. Immunol. 2015, 15, 335–349. [Google Scholar] [CrossRef]
- Saurabh, S.; Sahoo, P.K. Lysozyme: An important defense molecule of fish innate immune system. Aquac. Res. 2008, 39, 223–239. [Google Scholar] [CrossRef]
- van Hoek, M.L. Antimicrobial Peptides in Reptiles. Pharmaceuticals 2014, 7, 723–753. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, A.; Parida, S.; Mohanty, J.; Sahoo, P.K. Identification and functional characterization of a g-type lysozyme gene of Labeo rohita, an Indian major carp species. Dev. Comp. Immunol. 2019, 92, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.-X.; He, J.-G.; Deng, W.-X.; Chan, S.-M. Molecular cloning, expression of orange-spotted grouper goose-type lysozyme cDNA, and lytic activity of its recombinant protein. Dis. Aquat. Organ. 2003, 55, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez-Cantizano, R.M.; Infante, C.; Martin-Antonio, B.; Ponce, M.; Hachero, I.; Navas, J.I.; Manchado, M. Molecular characterization, phylogeny, and expression of c-type and g-type lysozymes in brill (Scophthalmus rhombus). Fish Shellfish. Immunol. 2008, 25, 57–65. [Google Scholar] [CrossRef]
- Ye, X.; Zhang, L.; Tian, Y.; Tan, A.; Bai, J.; Li, S. Identification and expression analysis of the g-type and c-type lysozymes in grass carp Ctenopharyngodon idellus. Dev. Comp. Immunol. 2010, 34, 501–509. [Google Scholar] [CrossRef]
- Buonocore, F.; Randelli, E.; Trisolino, P.; Facchiano, A.; de Pascale, D.; Scapigliati, G. Molecular characterization, gene structure and antibacterial activity of a g-type lysozyme from the European sea bass (Dicentrarchus labrax L.). Mol. Immunol. 2014, 62, 10–18. [Google Scholar] [CrossRef]
- Wei, S.; Huang, Y.; Huang, X.; Cai, J.; Wei, J.; Li, P.; Ouyang, Z.; Qin, Q. Molecular cloning and characterization of a new G-type lysozyme gene (Ec-lysG) in orange-spotted grouper, Epinephelus coioides. Dev. Comp. Immunol. 2014, 46, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Kumaresan, V.; Bhatt, P.; Ganesh, M.-R.; Harikrishnan, R.; Arasu, M.; Al-Dhabi, N.A.; Pasupuleti, M.; Marimuthu, K.; Arockiaraj, J. A novel antimicrobial peptide derived from fish goose type lysozyme disrupts the membrane of Salmonella enterica. Mol. Immunol. 2015, 68, 421–433. [Google Scholar] [CrossRef]
- Thammasirirak, S.; Ponkham, P.; Preecharram, S.; Khanchanuan, R.; Phonyothee, P.; Daduang, S.; Srisomsap, C.; Araki, T.; Svasti, J. Purification, characterization and comparison of reptile lysozymes. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2006, 143, 209–217. [Google Scholar] [CrossRef]
- Walsh, C.J.; Leggett, S.R.; Carter, B.J.; Colle, C. Effects of brevetoxin exposure on the immune system of loggerhead sea turtles. Aquat. Toxicol. 2010, 97, 293–303. [Google Scholar] [CrossRef]
- Keller, J.M.; McClellan-Green, P.D.; Kucklick, J.R.; Keil, D.E.; Peden-Adams, M.M. Effects of organochlorine contaminants on loggerhead sea turtle immunity: Comparison of a correlative field study and in vitro exposure experiments. Environ. Health Perspect. 2006, 114, 70–76. [Google Scholar] [CrossRef]
- Kou, H.; Hu, J.; Wang, A.-L.; Pan, X.; Miao, Y.; Lin, L. Impacts of dietary zinc on growth performance, haematological indicators, transaminase activity and tissue trace mineral contents of soft-shelled turtle (Pelodiscus sinensis). Aquac. Nutr. 2021, 27, 2182–2194. [Google Scholar] [CrossRef]
- Chijiiwa, Y.; Kawamura, S.; Torikata, T.; Araki, T. Amino Acid Sequence and Activity of Green Turtle (Chelonia mydas) Lysozyme. Protein J. 2006, 25, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Gayen, S.K.; Som, S.; Sinha, N.K.; Sen, A. Lysozyme in egg whites of tortoises and turtle: Purification and properties of egg white lysozyme of Trionyx gangeticus cuvier. Arch. Biochem. Biophys. 1977, 183, 432–442. [Google Scholar] [CrossRef]
- Araki, T.; Yamamoto, T.; Torikata, T. Reptile Lysozyme: The Complete Amino Acid Sequence of Soft-Shelled Turtle Lysozyme and Its Activity. Biosci. Biotechnol. Biochem. 1998, 62, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Sinha, N.K.; Banerjee, S.; Roy, D.; Chattopadhyay, D.; Roy, S. Small cationic protein from a marine turtle has β-defensin-like fold and antibacterial and antiviral activity. Proteins Struct. Funct. Bioinforma. 2006, 64, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Hilchie, A.L.; Wuerth, K.; Hancock, R.E.W. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat. Chem. Biol. 2013, 9, 761–768. [Google Scholar] [CrossRef]
- Mansour, S.C.; Pena, O.M.; Hancock, R.E.W. Host defense peptides: Front-line immunomodulators. Trends Immunol. 2014, 35, 443–450. [Google Scholar] [CrossRef]
- Stegemann, C.; Kolobov, A., Jr.; Leonova, Y.F.; Knappe, D.; Shamova, O.; Ovchinnikova, T.V.; Kokryakov, V.N.; Hoffmann, R. Isolation, purification and de novo sequencing of TBD-1, the first beta-defensin from leukocytes of reptiles. Proteomics 2009, 9, 1364–1373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, D.; Yu, L.; Wei, Y.; Li, J.; Zhou, C. Genome-wide analysis of the ovodefensin gene family: Monophyletic origin, independent gene duplication and presence of different selection patterns. Infect. Genet. Evol. 2019, 68, 265–272. [Google Scholar] [CrossRef]
- Guyot, N.; Landon, C.; Monget, P. The Two Domains of the Avian Double-β-Defensin AvBD11 Have Different Ancestors, Common with Potential Monodomain Crocodile and Turtle Defensins. Biology 2022, 11, 690. [Google Scholar] [CrossRef]
- Agarwal, S.; Chauhan, A.; Singh, K.; Kumar, K.; Kaur, R.; Masih, M.; Gautam, P.K. Immunomodulatory effects of β-defensin 2 on macrophages induced immuno-upregulation and their antitumor function in breast cancer. BMC Immunol. 2022, 23, 53. [Google Scholar] [CrossRef]
- Conejo-Garcia, J.R.; Benencia, F.; Courreges, M.-C.; Kang, E.; Mohamed-Hadley, A.; Buckanovich, R.J.; Holtz, D.O.; Jenkins, A.; Na, H.; Zhang, L.; et al. Tumor-infiltrating dendritic cell precursors recruited by a β-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat. Med. 2004, 10, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, T. 25 years of UV-induced immunosuppression mediated by T cells—From disregarded T suppressor cells to highly respected regulatory T cells. Photochem. Photobiol. 2008, 84, 10–18. [Google Scholar] [CrossRef]
- Gläser, R.; Navid, F.; Schuller, W.; Jantschitsch, C.; Harder, J.; Schröder, J.M.; Schwarz, A.; Schwarz, T. UV-B radiation induces the expression of antimicrobial peptides in human keratinocytes in vitro and in vivo. J. Allergy Clin. Immunol. 2009, 123, 1117–1123. [Google Scholar] [CrossRef]
- Le, M.N.-T.; Kawada-Matsuo, M.; Komatsuzawa, H. Efficiency of Antimicrobial Peptides Against Multidrug-Resistant Staphylococcal Pathogens. Front. Microbiol. 2022, 13, 930629. [Google Scholar] [CrossRef]
- Kościuczuk, E.M.; Lisowski, P.; Jarczak, J.; Strzałkowska, N.; Jóźwik, A.; Horbańczuk, J.; Krzyżewski, J.; Zwierzchowski, L.; Bagnicka, E. Cathelicidins: Family of antimicrobial peptides. A review. Mol. Biol. Rep. 2012, 39, 10957–10970. [Google Scholar] [CrossRef] [PubMed]
- Sarma, J.V.; Ward, P.A. The complement system. Cell Tissue Res. 2011, 343, 227–235. [Google Scholar] [CrossRef]
- Lin, B.; Chen, S.; Cao, Z.; Lin, Y.; Mo, D.; Zhang, H.; Gu, J.; Dong, M.; Liu, Z.; Xu, A. Acute phase response in zebrafish upon Aeromonas salmonicida and Staphylococcus aureus infection: Striking similarities and obvious differences with mammals. Mol. Immunol. 2007, 44, 295–301. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, L.; Feng, H.; Guo, Q.; Dai, H. Acute phase response in Chinese soft-shelled turtle (Trionyx sinensis) with Aeromonas hydrophila infection. Dev. Comp. Immunol. 2011, 35, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Freedberg, S.; Greives, T.J.; Ewert, M.A.; Demas, G.E.; Beecher, N.; Nelson, C.E. Incubation Environment Affects Immune System Development in a Turtle with Environmental Sex Determination. J. Herpetol. 2008, 42, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Niu, C.; Chen, B.; Storey, K.B. Digital Gene Expression Profiling reveals transcriptional responses to acute cold stress in Chinese soft-shelled turtle Pelodiscus sinensis juveniles. Cryobiology 2018, 81, 43–56. [Google Scholar] [CrossRef]
- Li, H.; Zhao, J.; Ji, B.; Ye, Z.; Zhu, S.; Zhou, C. Effects of Sunlamp-Based Lighting Mode on Growth Performance, Survival Rate, Stress Response, and Oxidative Stress of Juvenile Chinese Soft-Shelled Turtles (Pelodiscus sinensis) in a Greenhouse; ASABE: St. Joseph, MI, USA, 2021; Volume 64, pp. 1269–1276. [Google Scholar]
- Sandmeier, F.C.; Tracy, C.R.; Dupré, S.; Hunter, K. A trade-off between natural and acquired antibody production in a reptile: Implications for long-term resistance to disease. Biol. Open 2012, 1, 1078–1082. [Google Scholar] [CrossRef] [Green Version]
- Stromsland, K.; Zimmerman, L.M. Relationships between parasitic infection and natural antibodies, age, and sex in a long-lived vertebrate. J. Exp. Zool. Part Ecol. Integr. Physiol. 2017, 327, 407–412. [Google Scholar] [CrossRef]
- Refsnider, J.M.; Garcia, J.A.; Holliker, B.; Hulbert, A.C.; Nunez, A.; Streby, H.M. Effects of harmful algal blooms on stress levels and immune functioning in wetland-associated songbirds and reptiles. Sci. Total Environ. 2021, 788, 147790. [Google Scholar] [CrossRef] [PubMed]
- Kulseth, M.A.; Krajci, P.; Myklebost, O.; Rogne, S. Cloning and Characterization of Two Forms of Bovine Polymeric Immunoglobulin Receptor cDNA. DNA Cell Biol. 1995, 14, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Stadtmueller, B.M.; Yang, Z.; Huey-Tubman, K.E.; Roberts-Mataric, H.; Hubbell, W.L.; Bjorkman, P.J. Biophysical and Biochemical Characterization of Avian Secretory Component Provides Structural Insights into the Evolution of the Polymeric Ig Receptor. J. Immunol. 2016, 197, 1408–1414. [Google Scholar] [CrossRef]
- Xu, J.; Wu, Y.; Xu, C.; Munang’andu, H.M.; Xu, H. Characterization of the Pelodiscus sinensis polymeric immunoglobulin receptor (P. sinensis pIgR) and its response to LPS and Aeromonas sobria. Dev. Comp. Immunol. 2021, 121, 104072. [Google Scholar] [CrossRef]
- Shi, Y.; Vistro, W.A.; Bai, X.; Wu, R.; Chen, C.; Huang, Y.; Fazlani, S.A.; Tarique, I.; Yang, P.; Chen, Q. Effect of seasonal variance on intestinal epithelial barriers and the associated innate immune response of the small intestine of the Chinese soft-shelled turtles. Fish Shellfish Immunol. 2020, 97, 173–181. [Google Scholar] [CrossRef]
- Gruys, E.; Toussaint, M.J.M.; Niewold, T.A.; Koopmans, S.J. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B 2005, 6, 1045–1056. [Google Scholar] [CrossRef]
- Janeway, C.A.; Medzhitov, R. Innate Immune Recognition. Annu. Rev. Immunol. 2002, 20, 197–216. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, A.; Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 2015, 16, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Maldonado, E.; Silva, L.; Almeida, D.; Johnson, W.E.; O’Brien, S.J.; Zhang, G.; Jarvis, E.D.; Gilbert, M.T.P.; Antunes, A. The Vertebrate TLR Supergene Family Evolved Dynamically by Gene Gain/Loss and Positive Selection Revealing a Host–Pathogen Arms Race in Birds. Diversity 2019, 11, 131. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.V.; Bokla, L.; Nüsslein-Volhard, C. Establishment of dorsal-ventral polarity in the Drosophila embryo: The induction of polarity by the Toll gene product. Cell 1985, 42, 791–798. [Google Scholar] [CrossRef]
- Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 2001, 1, 135–145. [Google Scholar] [CrossRef]
- Fore, F.; Budipranama, M.; Destiawan, R.A. TLR10 and Its Role in Immunity. In Toll-Like Receptors in Health and Disease; Kumar, V., Ed.; Handbook of Experimental Pharmacology; Springer International Publishing: Cham, Switzerland, 2022; pp. 161–174. ISBN 978-3-031-06512-5. [Google Scholar]
- Huo, R.; Zhao, X.; Han, J.; Xu, T. Genomic organization, evolution and functional characterization of soluble toll-like receptor 5 (TLR5S) in miiuy croaker (Miichthys miiuy). Fish Shellfish Immunol. 2018, 80, 109–114. [Google Scholar] [CrossRef]
- Zhang, J.; Kong, X.; Zhou, C.; Li, L.; Nie, G.; Li, X. Toll-like receptor recognition of bacteria in fish: Ligand specificity and signal pathways. Fish Shellfish Immunol. 2014, 41, 380–388. [Google Scholar] [CrossRef]
- Shan, S.; Liu, D.; Liu, R.; Zhu, Y.; Li, T.; Zhang, F.; An, L.; Yang, G.; Li, H. Non-mammalian Toll-like receptor 18 (Tlr18) recognizes bacterial pathogens in common carp (Cyprinus carpio L.): Indications for a role of participation in the NF-κB signaling pathway. Fish Shellfish Immunol. 2018, 72, 187–198. [Google Scholar] [CrossRef]
- Zhang, Y.E.; Landback, P.; Vibranovski, M.D.; Long, M. Accelerated Recruitment of New Brain Development Genes into the Human Genome. PLoS Biol. 2011, 9, e1001179. [Google Scholar] [CrossRef]
- Ranz, J.M.; Parsch, J. Newly evolved genes: Moving from comparative genomics to functional studies in model systems. BioEssays 2012, 34, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Dolby, G.A.; Morales, M.; Webster, T.H.; DeNardo, D.F.; Wilson, M.A.; Kusumi, K. Discovery of a New TLR Gene and Gene Expansion Event through Improved Desert Tortoise Genome Assembly with Chromosome-Scale Scaffolds. Genome Biol. Evol. 2020, 12, 3917–3925. [Google Scholar] [CrossRef]
- Albalat, R.; Cañestro, C. Evolution by gene loss. Nat. Rev. Genet. 2016, 17, 379–391. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, M.; Tang, X.; Xu, D.; Chi, C.; Lv, Z.; Liu, H. Characterization of a novel Toll-like receptor 13 homologue from a marine fish Nibea albiflora, revealing its immunologic function as PRRs. Dev. Comp. Immunol. 2023, 139, 104563. [Google Scholar] [CrossRef] [PubMed]
- Georgel, P.; Crozat, K.; Lauth, X.; Makrantonaki, E.; Seltmann, H.; Sovath, S.; Hoebe, K.; Du, X.; Rutschmann, S.; Jiang, Z.; et al. A toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with gram-positive bacteria. Infect. Immun. 2005, 73, 4512–4521. [Google Scholar] [CrossRef]
- Shang, S.; Zhong, H.; Wu, X.; Wei, Q.; Zhang, H.; Chen, J.; Chen, Y.; Tang, X.; Zhang, H. Genomic evidence of gene duplication and adaptive evolution of Toll like receptors (TLR2 and TLR4) in reptiles. Int. J. Biol. Macromol. 2018, 109, 698–703. [Google Scholar] [CrossRef]
- Cervantes, J.L.; Weinerman, B.; Basole, C.; Salazar, J.C. TLR8: The forgotten relative revindicated. Cell. Mol. Immunol. 2012, 9, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhang, H.; Zhao, C.; Zhang, H. Evolutionary History of the Toll-Like Receptor Gene Family across Vertebrates. Genome Biol. Evol. 2019, 12, 3615–3634. [Google Scholar] [CrossRef] [PubMed]
- Cocci, P.; Mosconi, G.; Palermo, F.A. Organic UV Filters Induce Toll-like-Receptors and Related Signaling Pathways in Peripheral Blood Mononuclear Cells of Juvenile Loggerhead Sea Turtles (Caretta caretta). Animals 2022, 12, 594. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-J.; Shen, Y.; Xu, X.-Y.; Hu, M.-Y. Identification and characterization of the TLR18 gene in grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2015, 47, 681–688. [Google Scholar] [CrossRef]
- Wang, K.-L.; Ji, W.; Zhang, G.-R.; Wei, K.-J.; Shi, Z.-C.; Zhang, X.-T.; Zheng, H.; Fan, Q.-X. Molecular characterization and expression analysis of three TLR genes in yellow catfish (Pelteobagrus fulvidraco): Responses to stimulation of Aeromonas hydrophila and TLR ligands. Fish Shellfish Immunol. 2017, 66, 466–479. [Google Scholar] [CrossRef]
- Lu, Y.-C.; Yeh, W.-C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine 2008, 42, 145–151. [Google Scholar] [CrossRef]
- Cai, W.; Chen, W.; Wang, Y.; Bu, X.; Xia, X.; Nie, L.; Cai, W.; Chen, W.; Wang, Y.; Bu, X.; et al. Sperm storage in the oviduct of the Chinese pond turtle Mauremys reevesii depends on oestrogen-based suppression of the TLR2/4 immune pathway. Reprod. Fertil. Dev. 2021, 33, 736–745. [Google Scholar] [CrossRef]
- Rauta, P.R.; Nayak, B.; Das, S. Immune system and immune responses in fish and their role in comparative immunity study: A model for higher organisms. Immunol. Lett. 2012, 148, 23–33. [Google Scholar] [CrossRef]
- Iurescia, S.; Fioretti, D.; Rinaldi, M. The Innate Immune Signalling Pathways: Turning RIG-I Sensor Activation against Cancer. Cancers 2020, 12, 3158. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wan, H.; Nie, L.; Shao, T.; Xiang, L.; Shao, J. RIG-I: A multifunctional protein beyond a pattern recognition receptor. Protein Cell 2018, 9, 246–253. [Google Scholar] [CrossRef]
- Chen, J.; Shang, S.; Wu, X.; Zhong, H.; Zhao, C.; Wei, Q.; Zhang, H.; Xia, T.; Chen, Y.; Zhang, H.; et al. Genomic analysis and adaptive evolution of the RIG-I-like and NOD-like receptors in reptiles. Int. J. Biol. Macromol. 2019, 134, 1045–1051. [Google Scholar] [CrossRef]
- Meng, Y.; Fan, Y.; Zhou, Y.; Jiang, N.; Xue, M.; Liu, W.; Li, Y.; Zeng, L. Identification and comparative expression analysis of RIG-I and MDA5 in Chinese giant salamander Andrias davidianus. Aquac. Res. 2020, 51, 4575–4582. [Google Scholar] [CrossRef]
- Inohara, N.; Nuñez, G. The NOD: A signaling module that regulates apoptosis and host defense against pathogens. Oncogene 2001, 20, 6473–6481. [Google Scholar] [CrossRef]
- Priyam, M.; Tripathy, M.; Rai, U.; Ghorai, S.M. Tracing the evolutionary lineage of pattern recognition receptor homologues in vertebrates: An insight into reptilian immunity via de novo sequencing of the wall lizard splenic transcriptome. Vet. Immunol. Immunopathol. 2016, 172, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Drouin, M.; Saenz, J.; Chiffoleau, E. C-Type Lectin-Like Receptors: Head or Tail in Cell Death Immunity. Front. Immunol. 2020, 11, 251. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.-H.; Pan, S.-K.; Hu, L.; Zhu, Y.; Xu, P.-W.; Xia, J.-Q.; Chen, H.; He, G.-Y.; He, J.; Ni, X.-W.; et al. Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator. Cell Res. 2013, 23, 1091–1105. [Google Scholar] [CrossRef]
- Aird, S.D.; Da Silva, N.J.; Qiu, L.; Villar-Briones, A.; Saddi, V.A.; de Campos Telles, M.P.; Grau, M.L.; Mikheyev, A.S. Coralsnake Venomics: Analyses of Venom Gland Transcriptomes and Proteomes of Six Brazilian Taxa. Toxins 2017, 9, 187. [Google Scholar] [CrossRef]
- Pénzes, J.J.; Szirovicza, L.; Harrach, B. The complete genome sequence of bearded dragon adenovirus 1 harbors three genes encoding proteins of the C-type lectin-like domain superfamily. Infect. Genet. Evol. 2020, 83, 104321. [Google Scholar] [CrossRef] [PubMed]
- Graber, J.J.; Dhib-Jalbut, S. Interferons. In Encyclopedia of the Neurological Sciences, 2nd ed.; Aminoff, M.J., Daroff, R.B., Eds.; Academic Press: Oxford, UK, 2014; pp. 718–723. ISBN 978-0-12-385158-1. [Google Scholar]
- Chen, S.N.; Zhang, X.W.; Li, L.; Ruan, B.Y.; Huang, B.; Huang, W.S.; Zou, P.F.; Fu, J.P.; Zhao, L.J.; Li, N.; et al. Evolution of IFN-λ in tetrapod vertebrates and its functional characterization in green anole lizard (Anolis carolinensis). Dev. Comp. Immunol. 2016, 61, 208–224. [Google Scholar] [CrossRef]
- Chen, S.N.; Huang, L.; Fu, J.P.; Pang, A.N.; Wang, K.L.; Nie, P. Gene synteny, evolution and antiviral activity of type I IFNs in a reptile species, the Chinese soft-shelled turtle Pelodiscus sinensis. Dev. Comp. Immunol. 2022, 134, 104461. [Google Scholar] [CrossRef] [PubMed]
- Galabov, A.S. [28] Induction and characterization of tortoise interferon. In Methods in Enzymology; Interferons Part A; Academic Press: Cambridge, MA, USA, 1981; Volume 78, pp. 196–208. [Google Scholar]
- Mathews, J.H.; Vorndam, A.V. Interferon-mediated persistent infection of Saint Louis encephalitis virus in a reptilian cell line. J. Gen. Virol. 1982, 61, 177–186. [Google Scholar] [CrossRef]
- Fleming, S.B. Viral Inhibition of the IFN-Induced JAK/STAT Signalling Pathway: Development of Live Attenuated Vaccines by Mutation of Viral-Encoded IFN-Antagonists. Vaccines 2016, 4, 23. [Google Scholar] [CrossRef] [PubMed]
- Alphonse, N.; Dickenson, R.E.; Odendall, C. Interferons: Tug of War Between Bacteria and Their Host. Front. Cell. Infect. Microbiol. 2021, 11, 624094. [Google Scholar] [CrossRef]
- Liu, T.; Han, Y.; Chen, S.; Zhao, H. Global characterization and expression analysis of interferon regulatory factors in response to Aeromonas hydrophila challenge in Chinese soft-shelled turtle (Pelodiscus sinensis). Fish Shellfish Immunol. 2019, 92, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Broere, F.; van Eden, W. T Cell Subsets and T Cell-Mediated Immunity. In Nijkamp and Parnham’s Principles of Immunopharmacology; Parnham, M.J., Nijkamp, F.P., Rossi, A.G., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 23–35. ISBN 978-3-030-10809-0. [Google Scholar]
- Muñoz, F.A.; Estrada-Parra, S.; Romero-Rojas, A.; Work, T.M.; Gonzalez-Ballesteros, E.; Estrada-Garcia, I. Identification of CD3+ T lymphocytes in the green turtle Chelonia mydas. Vet. Immunol. Immunopathol. 2009, 131, 211–217. [Google Scholar] [CrossRef]
- Aguirre, A.A.; Balazs, G.H.; Spraker, T.R.; Gross, T.S. Adrenal and Hematological Responses to Stress in Juvenile Green Turtles (Chelonia mydas) with and without Fibropapillomas. Physiol. Zool. 1995, 68, 831–854. [Google Scholar] [CrossRef]
- Yetsko, K.; Farrell, J.; Stammnitz, M.R.; Whitmore, L.; Whilde, J.; Eastman, C.B.; Ramia, D.R.; Thomas, R.; Krstic, A.; Linser, P.; et al. Mutational, transcriptional and viral shedding dynamics of the marine turtle fibropapillomatosis tumor epizootic. bioRxiv 2020. [Google Scholar] [CrossRef]
- Yu, S.; Halbrook, R.S.; Sparling, D.W.; Colombo, R. Metal accumulation and evaluation of effects in a freshwater turtle. Ecotoxicology 2011, 20, 1801–1812. [Google Scholar] [CrossRef]
- Charles, A.; Janeway, J.; Travers, P.; Walport, M.; Shlomchik, M.J. The structure of a typical antibody molecule. In Immunobiology: The Immune System in Health and Disease, 5th ed.; Garland Science: New York, NY, USA, 2001. [Google Scholar]
- Goessling, J.M.; Koler, S.A.; Overman, B.D.; Hiltbold, E.M.; Guyer, C.; Mendonça, M.T. Lag of Immunity Across Seasonal Acclimation States in Gopher Tortoises (Gopherus Polyphemus). J. Exp. Zool. Part Ecol. Integr. Physiol. 2017, 327, 235–242. [Google Scholar] [CrossRef]
- Wu, L.; Qin, Z.; Liu, H.; Lin, L.; Ye, J.; Li, J. Recent Advances on Phagocytic B Cells in Teleost Fish. Front. Immunol. 2020, 11, 824. [Google Scholar] [CrossRef] [PubMed]
- Abós, B.; Bird, S.; Granja, A.G.; Morel, E.; Bayona, J.A.M.; Barreda, D.R.; Tafalla, C. Identification of the First Teleost CD5 Molecule: Additional Evidence on Phenotypical and Functional Similarities between Fish IgM+ B Cells and Mammalian B1 Cells. J. Immunol. 2018, 201, 465–480. [Google Scholar] [CrossRef]
- Xing, J.; Luo, K.; Xiao, Y.; Tang, X.; Zhan, W. Influence of CD4-1+, CD4-2+ and CD8+ T lymphocytes subpopulations on the immune response of B lymphocytes in flounder (Paralichthys olivaceus) immunized with thymus-dependent or thymus-independent antigen. Fish Shellfish Immunol. 2019, 84, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, D.N.; Mirete-Bachiller, S.; Gambón-Deza, F. Insights into the evolution of IG genes in Amphibians and reptiles. Dev. Comp. Immunol. 2021, 114, 103868. [Google Scholar] [CrossRef] [PubMed]
- Leslie, G.A.; Clem, L.W. Phylogeny of immunoglobulin structure and function. VI. 17S, 7.5S and 5.7S anti-DNP of the turtle, Pseudamys scripta. J. Immunol. Baltim. 1972, 108, 1656–1664. [Google Scholar] [CrossRef]
- Turchin, A.; Hsu, E. The generation of antibody diversity in the turtle. J. Immunol. 1996, 156, 3797–3805. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, G.L.; Nie, P. IgM, IgD and IgY and their expression pattern in the Chinese soft-shelled turtle Pelodiscus sinensis. Mol. Immunol. 2009, 46, 2124–2132. [Google Scholar] [CrossRef]
- Magadán-Mompó, S.; Sánchez-Espinel, C.; Gambón-Deza, F. Immunoglobulin genes of the turtles. Immunogenetics 2013, 65, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Magor, K.E.; Warr, G.W.; Middleton, D.; Wilson, M.R.; Higgins, D.A. Structural relationship between the two IgY of the duck, Anas platyrhynchos: Molecular genetic evidence. J. Immunol. Baltim. 1992, 149, 2627–2633. [Google Scholar] [CrossRef]
- Herbst, L.H.; Klein, P.A. Monoclonal antibodies for the measurement of class-specific antibody responses in the green turtle, Chelonia mydas. Vet. Immunol. Immunopathol. 1995, 46, 317–335. [Google Scholar] [CrossRef]
- Work, T.M.; Dagenais, J.; Willimann, A.; Balazs, G.; Mansfield, K.; Ackermann, M. Differences in Antibody Responses against Chelonid Alphaherpesvirus 5 (ChHV5) Suggest Differences in Virus Biology in ChHV5-Seropositive Green Turtles from Hawaii and ChHV5-Seropositive Green Turtles from Florida. J. Virol. 2020, 94, e01658-19. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.J.; Stacy, N.I.; Jacobson, E.; Le-Bert, C.R.; Nollens, H.H.; Origgi, F.C.; Green, L.G.; Bootorabi, S.; Bolten, A.; Hernandez, J.A. Development and validation of a competitive enzyme-linked immunosorbent assay for the measurement of total plasma immunoglobulins in healthy loggerhead sea (Caretta caretta) and green turtles (Chelonia mydas). J. Vet. Diagn. Investig. 2016, 28, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, A.A.; Ostfeld, R.S.; Tabor, G.M.; House, C.; Pearl, M.C. Conservation Medicine: Ecological Health in Practice; Oxford University Press: Oxford, UK, 2002; ISBN 978-0-19-534862-0. [Google Scholar]
- Aguirre, A.A.; Lutz, P.L. Marine Turtles as Sentinels of Ecosystem Health: Is Fibropapillomatosis an Indicator? EcoHealth 2004, 1, 275–283. [Google Scholar] [CrossRef]
- Aguirre, A.A.; Tabor, G.M. Introduction: Marine Vertebrates as Sentinels of Marine Ecosystem Health. EcoHealth 2004, 1, 236–238. [Google Scholar] [CrossRef]
- Bossart, G.D. Marine Mammals as Sentinel Species for Oceans and Human Health. Vet. Pathol. 2011, 48, 676–690. [Google Scholar] [CrossRef]
- Pace, A.; Dipineto, L.; Fioretti, A.; Hochscheid, S. Loggerhead sea turtles as sentinels in the western Mediterranean: Antibiotic resistance and environment-related modifications of Gram-negative bacteria. Mar. Pollut. Bull. 2019, 149, 110575. [Google Scholar] [CrossRef] [PubMed]
- Rapport, D.J. What Constitutes Ecosystem Health? Perspect. Biol. Med. 1989, 33, 120–132. [Google Scholar] [CrossRef]
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.U.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s sixth mass extinction already arrived? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, G.; Ehrlich, P.R.; Raven, P.H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl. Acad. Sci. USA 2020, 117, 13596–13602. [Google Scholar] [CrossRef] [PubMed]
- Stanford, C.B.; Iverson, J.B.; Rhodin, A.G.J.; Paul van Dijk, P.; Mittermeier, R.A.; Kuchling, G.; Berry, K.H.; Bertolero, A.; Bjorndal, K.A.; Blanck, T.E.G.; et al. Turtles and Tortoises Are in Trouble. Curr. Biol. 2020, 30, R721–R735. [Google Scholar] [CrossRef] [PubMed]
- McCallum, M.L. Turtle biodiversity losses suggest coming sixth mass extinction. Biodivers. Conserv. 2021, 30, 1257–1275. [Google Scholar] [CrossRef]
- Li, C.; Fraser, N.C.; Rieppel, O.; Wu, X.-C. A Triassic stem turtle with an edentulous beak. Nature 2018, 560, 476–479. [Google Scholar] [CrossRef]
- Stroud, J.T.; Losos, J.B. Ecological Opportunity and Adaptive Radiation. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 507–532. [Google Scholar] [CrossRef]
- Simões, T.R.; Vernygora, O.; Caldwell, M.W.; Pierce, S.E. Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles. Nat. Commun. 2020, 11, 3322. [Google Scholar] [CrossRef]
Testudines | GenBank Common Name | Habitat | Ecosystem | Refs. |
---|---|---|---|---|
Pelodiscus sinensis | Chinese soft-shelled turtle | East Asia | Aquatic | [9,10,11,12,13,14,15,16] |
Terrapene carolina | Eastern box turtle | North America | Terrestrial | [17,18] |
Terrapene ornata | Ornate box turtle | North America | Terrestrial | [17] |
Chrysemys picta bellii | Western painted turtle | North America | Aquatic | [18] |
Trachemys scripta | Red-eared slider turtle | North America | Semi-aquatic | [19,20,21,22,23,24,25] |
Emys orbicularis | European pond turtle | Europe, West Asia, North America | Aquatic | [26] |
Mauremys mutica | Yellowpond turtle | East Asia | Aquatic | [27] |
Mauremys caspica | Caspian turtle/striped-necked terrapin | Eastern Mediterranean | Aquatic | [26,27,28,29,30,31] |
Aldabrachelys gigantea | Aldabra giant tortoise | Seychelles | Terrestrial | [32] |
Chelonoidis abingdonii | Abingdon island giant tortoise | Galápagos | Terrestrial | [32] |
Gopherus agassizii | Agassiz’s desert tortoise | North America | Terrestrial | [33] |
Caretta caretta | Loggerhead turtle | AO, PO, IO, and MS | Marine | [34,35,36,37,38,39,40,41] |
Lepidochelys kempii | Kemp’s ridley sea turtle | AO | Marine | [42,43,44] |
Lepidochelys olivacea | Olive ridley sea turtle | PO | Marine | [45,46,47] |
Eretmochelys imbricata | Hawksbill sea turtle | IP and AO | Marine | [48] |
Natator depressus | Flatback sea turtle | PO | Marine | * |
Chelonia mydas | Green sea turtle | AO, PO, IO, and MS | Marine | [49,50,51,52,53,54,55,56,57,58,59,60] |
Dermochelys coriacea | Leatherback sea turtle | AO, PO, and IO | Marine | * |
Chelydra serpentina | Common snapping turtle | North America | Aquatic | [61,62,63,64] |
Macrochelys temminckii | Alligator snapping turtle | North America | Aquatic | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nash, A.; Ryan, E.J. Immunity in Sea Turtles: Review of a Host-Pathogen Arms Race Millions of Years in the Running. Animals 2023, 13, 556. https://doi.org/10.3390/ani13040556
Nash A, Ryan EJ. Immunity in Sea Turtles: Review of a Host-Pathogen Arms Race Millions of Years in the Running. Animals. 2023; 13(4):556. https://doi.org/10.3390/ani13040556
Chicago/Turabian StyleNash, Alana, and Elizabeth J. Ryan. 2023. "Immunity in Sea Turtles: Review of a Host-Pathogen Arms Race Millions of Years in the Running" Animals 13, no. 4: 556. https://doi.org/10.3390/ani13040556
APA StyleNash, A., & Ryan, E. J. (2023). Immunity in Sea Turtles: Review of a Host-Pathogen Arms Race Millions of Years in the Running. Animals, 13(4), 556. https://doi.org/10.3390/ani13040556