Meta-Regression to Develop Predictive Equations for Urinary Nitrogen Excretion of Lactating Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Meta-Analysis Data Frame
2.2. Assessing Established Equations
2.3. Model Development and Evaluation
3. Results
3.1. Performance of Established Equations
3.2. Model Development
For Pasture: UN (g/d) = 0.0240 × MUN (mg/dL) × BW (kg)
3.3. Model Evaluation
4. Discussion
4.1. Performance of Established Equations
4.2. Newly Developed Equations
4.3. Performance of New Equations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; ISBN 9789251079201. [Google Scholar]
- Castillo, A.R.; Kebreab, E.; Beever, D.E.; Barbi, J.H.; Sutton, J.D.; Kirby, H.C.; France, J. The Effect of Protein Supplementation on Nitrogen Utilization in Lactating Dairy Cows Fed Grass Silage Diets. J. Anim. Sci. 2001, 79, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Kebreab, E.; France, J.; Beever, D.E.; Castillo, A.R. Nitrogen Pollution by Dairy Cows and Its Mitigation by Dietary Manipulation. Nutr. Cycl. Agroecosyst. 2001, 60, 275–285. [Google Scholar] [CrossRef]
- Spek, J.W.; Dijkstra, J.; Van Duinkerken, G.; Bannink, A. A Review of Factors Influencing Milk Urea Concentration and Its Relationship with Urinary Urea Excretion in Lactating Dairy Cattle. J. Agric. Sci. 2013, 151, 407–423. [Google Scholar] [CrossRef]
- van Horn, H.H.; Wilkie, A.C.; Powers, W.J.; Nordstedt, R.A. Components of Dairy Manure Management Systems. J. Dairy Sci. 1994, 77, 2008–2030. [Google Scholar] [CrossRef] [PubMed]
- Oudshoorn, F.W.; Kristensen, T.; Nadimi, E.S. Dairy Cow Defecation and Urination Frequency and Spatial Distribution in Relation to Time-Limited Grazing. Livest. Sci. 2008, 113, 62–73. [Google Scholar] [CrossRef]
- Clark, C.E.F.; McLeod, K.L.M.; Glassey, C.B.; Gregorini, P.; Costall, D.A.; Betteridge, K.; Jago, J.G. Capturing Urine While Maintaining Pasture Intake, Milk Production, and Animal Welfare of Dairy Cows in Early and Late Lactation. J. Dairy Sci. 2010, 93, 2280–2286. [Google Scholar] [CrossRef]
- Selbie, D.R.; Buckthought, L.E.; Shepherd, M.A. The Challenge of the Urine Patch for Managing Nitrogen in Grazed Pasture Systems; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 129. [Google Scholar]
- Bristow, A.W.; Whitehead, D.C.; Cockburn, J.E. Nitrogenous Constituents in the Urine of Cattle, Sheep and Goats. J. Sci. Food Agric. 1992, 59, 387–394. [Google Scholar] [CrossRef]
- Dijkstra, J.; Oenema, O.; van Groenigen, J.W.; Spek, J.W.; van Vuuren, A.M.; Bannink, A. Diet Effects on Urine Composition of Cattle and N2O Emissions. Animal 2013, 7 (Suppl. S2), 292–302. [Google Scholar] [CrossRef]
- Marini, J.C.; Van Amburgh, M.E. Partition of Nitrogen Excretion in Urine and the Feces of Holstein Replacement Heifers. J. Dairy Sci. 2005, 88, 1778–1784. [Google Scholar] [CrossRef]
- Kohn, R.A.; Dinneen, M.M.; Russek-Cohen, E. Using Blood Urea Nitrogen to Predict Nitrogen Excretion and Efficiency of Nitrogen Utilization in Cattle, Sheep, Goats, Horses, Pigs, and Rats. J. Anim. Sci. 2005, 83, 879–889. [Google Scholar] [CrossRef] [Green Version]
- Jonker, J.S.; Kohn, R.A.; Erdman, R.A. Using Milk Urea Nitrogen to Predict Nitrogen Excretion and Utilization Efficiency in Lactating Dairy Cows. J. Dairy Sci. 1998, 81, 2681–2692. [Google Scholar] [CrossRef]
- Kauffman, A.J.; St-Pierre, N.R. The Relationship of Milk Urea Nitrogen to Urine Nitrogen Excretion in Holstein and Jersey Cows. J. Dairy Sci. 2001, 84, 2284–2294. [Google Scholar] [CrossRef]
- Kohn, R.A.; Kalscheur, K.F.; Russek-Cohen, E. Evaluation of Models to Estimate Urinary Nitrogen and Expected Milk Urea Nitrogen. J. Dairy Sci. 2002, 85, 227–233. [Google Scholar] [CrossRef]
- Spek, J.W.; Dijkstra, J.; van Duinkerken, G.; Hendriks, W.H.; Bannink, A. Prediction of Urinary Nitrogen and Urinary Urea Nitrogen Excretion by Lactating Dairy Cattle in Northwestern Europe and North America: A Meta-Analysis. J. Dairy Sci. 2013, 96, 4310–4322. [Google Scholar] [CrossRef]
- Marshall, C.J.; Beck, M.R.; Garrett, K.; Barrell, G.K.; Gregorini, P. Grazing Dairy Cows with Low Milk Urea Nitrogen Breeding Values Excrete Less Urinary Urea Nitrogen. Sci. Total Environ. 2020, 739, 139994. [Google Scholar] [CrossRef]
- Powell, J.M.; Rotz, C.A.; Wattiaux, M.A. Potential Use of Milk Urea Nitrogen to Abate Atmospheric Nitrogen Emissions from Wisconsin Dairy Farms. J. Environ. Qual. 2014, 43, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, C.; Moorby, J.M.; Tsiplakou, E.; Kantas, D.; Foskolos, A. Evaluation of Nitrogen Excretion Equations for Ryegrass Pasture-Fed Dairy Cows. Animal 2021, 15, 100311. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.J.; Beck, M.R.; Garrett, K.; Beale, N.; Gregorini, P. Evaluation of PEETER V1.0 Urine Sensors for Measuring Individual Urination Behavior of Dairy Cows. JDS Commun. 2021, 2, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Box, L.A.; Edwards, G.R.; Bryant, R.H. Milk Production and Urinary Nitrogen Excretion of Dairy Cows Grazing Plantain in Early and Late Lactation. N. Z. J. Agric. Res. 2017, 60, 470–482. [Google Scholar] [CrossRef]
- Mangwe, M.C.; Bryant, R.H.; Beck, M.R.; Beale, N.; Bunt, C.; Gregorini, P. Forage Herbs as an Alternative to Ryegrass-White Clover to Alter Urination Patterns in Grazing Dairy Systems. Anim. Feed Sci. Technol. 2019, 252, 11–22. [Google Scholar] [CrossRef]
- Edwards, G.R.; Bryant, R.H.; Smith, N.; Hague, H.; Taylor, S.; Ferris, A.; Farrell, L. Milk Production and Urination Behaviour of Dairy Cows Grazing Diverse and Simple Pastures. N. Z. Soc. Anim. Prod. 2015, 75, 79–83. [Google Scholar]
- Johnson, A.C.B.; Reed, K.F.; Kebreab, E. Short Communication: Evaluation of Nitrogen Excretion Equations from Cattle. J. Dairy Sci. 2016, 99, 7669–7678. [Google Scholar] [CrossRef] [PubMed]
- Minnée, E.M.K.; Leach, C.M.T.; Dalley, D.E. Substituting a Pasture-Based Diet with Plantain (Plantago lanceolata) Reduces Nitrogen Excreted in Urine from Dairy Cows in Late Lactation. Livest. Sci. 2020, 239, 104093. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- St-Pierre, N.R. Invited Review. Integrating Quantitative Findings from Multiple Studies Using Mixed Model Methodology. J. Dairy Sci. 2001, 84, 741–755. [Google Scholar] [CrossRef]
- Lin, L.I.-K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- Lin, L.I.-K. A Note on the Concordance Correlation Coefficient. Biometrics 2000, 56, 324–325. [Google Scholar]
- Signorell, A.; Aho, K.; Alfons, A.; Anderegg, N.; Aragon, T.; Arppe, A.; Baddeley, A.; Barton, K.; Bolker, B.; Borchers, H.W.; et al. DescTools: Tools for Descriptive Statistics; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Luedeling, E. ChillR: Statistical Methods for Phenology Analysis in Temperate Fruit Trees. Available online: https://cran.r-project.org/package=chillR (accessed on 1 December 2021).
- Pacheco, D.; Burke, J.L.; Death, A.F.; Cosgrove, G.P. Comparison of Models for Estimation of Urinary Nitrogen Excretion from Dairy Cows Fed Fresh Forages. In Proceeding of the 3rd Australasian Dairy Science Symposium: Meeting the Challenges for Pasture-Based Dairying; Chapman, D.F., Ed.; National Dairy Alliance: Melbourne, Australia, 2007; pp. 417–422. [Google Scholar]
- Sannes, R.A.; Messman, M.A.; Vagnoni, D.B. Form of Rumen-Degradable Carbohydrate and Nitrogen on Microbial Protein Synthesis and Protein Efficiency of Dairy Cows. J. Dairy Sci. 2002, 85, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Appuhamy, J.; France, J.; Kebreab, E. Models for Predicting Enteric Methane Emissions from Dairy Cows in North America, Europe, and Australia and New Zealand. Glob. Chang. Biol. 2016, 22, 3039–3056. [Google Scholar] [CrossRef] [PubMed]
- Garrett, K.; Beck, M.R.; Marshall, C.J.; Logan, C.M.; Maxwell, T.M.R.; Greer, A.W.; Gregorini, P. Effects of Incorporating Plantain, Chicory, and Alfalfa into a Ryegrass-Based Diet on in Vitro Gas Production and Fermentation Characteristics. Appl. Anim. Sci. 2021, 37, 367–376. [Google Scholar] [CrossRef]
- Beltran, I.E.; Gregorini, P.; Daza, J.; Balocchi, O.A.; Morales, A.; Pulido, R.G. Diurnal Concentration of Urinary Nitrogen and Rumen Ammonia Are Modified by Timing and Mass of Herbage Allocation. Animals 2019, 9, 961. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.A.; Moorby, J.M.; Davies, D.R.; Humphreys, M.O.; Scollan, N.D.; MacRae, J.C.; Theodorou, M.K. Increased Concetration of Water-Soluble Carbohydrate in Perennial Ryegrass (Lolium perenne L.): Milk Production from Late-Lactation Dairy Cows. Grass Forage Sci. 2001, 56, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Bach, A.; Calsamiglia, S.; Stern, M.D. Nitrogen Metabolism in the Rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Complete Data Set | Training Set | Test Set | ||||
---|---|---|---|---|---|---|
Items 1 | TMR | Pasture | TMR | Pasture | TMR | Pasture |
No. of experiments | 41 | 10 | 38 | 7 | 3 | 3 |
No. of treatment obs. | 143 | 31 | 132 | 21 | 11 | 10 |
Dietary Factors, Mean (SD) | ||||||
CP, % DM | 16.7 (1.79) | 18.2 (3.58) | 16.7 (1.85) | 19.5 (3.40) | 16.8 (0.65) | 15.5 (2.25) |
NDF, % DM | 32.6 (1.79) | 43.5 (3.58) | 33.1 (5.80) | 44.4 (6.74) | 27.7 (8.32) | 41.7 (7.70) |
Roughage, % | 54.1 (9.09) | 92.3 (13.24) | 53.9 (9.30) | 89.4 (15.18) | 57.05 (3.26) | 98.3 (3.54) |
Animal Factors, Mean (SD) | ||||||
UN, g/d | 197.0 (53.56) | 195.1 (58.92) | 196.7 (55.34) | 221.0 (46.98) | 199.7 (24.78) | 140.8 (42.65) |
MUN, mg/dL | 13.1 (3.09) | 16.7 (4.07) | 13.2 (3.17) | 18.5 (2.46) | 12.2 (1.77) | 12.8 (4.17) |
BW, kg | 647.6 (64.94) | 497.3 (60.57) | 647.5 (64.74) | 508.6 (63.60) | 648.7 (70.59) | 473.6 (48.16) |
DMI, kg/d | 22.2 (2.59) | 16.6 (2.85) | 22.1 (2.65) | 17.0 (3.25) | 22.6 (1.82) | 15.9 (1.65) |
N intake, g/d | 594.6 (99.89) | 482.9 (108.93) | 593.7 (103.21) | 518.3 (84.67) | 606.5 (44.21) | 408.3 (120.47) |
MY, kg/d | 34.2 (18.14) | 20.2 (5.41) | 34.4 (18.84) | 20.3 (6.46) | 32.0 (4.50) | 20.1 (2.18) |
DIM, d | 123.3 (69.42) | 111.1 (55.22) | 125.7 (70.16) | 115.3 (57.73) | 95.5 (55.55) | 102.4 (51.32) |
Items 1,2 | TMR 3 | Pasture | p-Value 4 |
---|---|---|---|
Equation (1) (Jonker et al., 1998) | |||
Mean Bias | 31.4 | −3.5 | 0.02 |
SEm | 6.25 | 12.8 | — |
p-value | <0.01 | 0.78 | — |
Linear Bias | −0.003 | −0.17 | 0.02 |
SEm | 0.058 | 0.04 | — |
p-value | 0.92 | <0.01 | — |
RMSEP, g UN/d | 51.8 | 50.2 | — |
RPE, % | 26.3 | 25.7 | — |
Equation (2) (Kauffman and St-Pierre, 2001) | |||
Mean Bias | −24.7 | −18.6 | 0.68 |
SEm | 6.52 | 13.28 | — |
p-value | <0.01 | 0.17 | — |
Linear Bias | −0.3 | −0.07 | <0.01 |
SEm | 0.041 | 0.046 | — |
p-value | <0.01 | 0.15 | — |
RMSEP | 49.0 | 65.4 | — |
RPE, % | 24.9 | 33.5 | — |
Equation (3) (Spek et al., 2013) | |||
Mean Bias | 0.8 | −15.2 | 0.10 |
SEm | 4.19 | 8.59 | — |
p-value | 0.86 | 0.08 | — |
Linear Bias | 0.05 | −0.15 | <0.01 |
SEm | 0.045 | 0.033 | — |
p-value | 0.23 | <0.01 | — |
RMSEP | 31.3 | 32.8 | — |
RPE, % | 15.9 | 16.8 | — |
Variables 1 | Regression Equation 2 |
---|---|
Milk Urea Nitrogen, mg/dL (MUN) | |
Observed—Predicted by Equation (1) | –1.5 (0.43) ** × MUN + 45.1 (8.41) ** |
Observed—Predicted by Equation (2) | –1.8 (0.43) ** × MUN + 0.54 (8.72) |
Observed—Predicted by Equation (3) | –1.2 (0.35) ** × MUN + 13.8 (6.13) * |
Crude Protein, % (CP) | |
Observed—Predicted by Equation (1) | 0.3 (0.83) × CP + 17.9 (15.5) |
Observed—Predicted by Equation (2) | 0.5 (0.85) × CP − 33.9 (15.94) * |
Observed—Predicted by Equation (3) | –1.7 (0.65) ** × CP + 26.3 (11.79) * |
Dry Matter Intake, kg (DMI) | |
Observed—Predicted by Equation (1) | 5.6 (0.84) ** × DMI − 94.4 (18.6) ** |
Observed—Predicted by Equation (2) | 1.3 (0.97) × DMI − 52.5 (21.4) * |
Observed—Predicted by Equation (3) | 0.9 (0.71) × DMI − 22.7 (15.4) |
Body Weight, kg (BW) | |
Observed—Predicted by Equation (1) | 0.2 (0.045) ** × BW − 122.7 (28.74) ** |
Observed—Predicted by Equation (2) | –0.08 (0.051) × BW + 23.1 (32.24) |
Observed—Predicted by Equation (3) | 0.1 (0.033) ** × BW − 69.07 (20.9) |
Random Effect Variance, % 1 | |||
---|---|---|---|
Equations 3 | RSD 2 | Study | Residual |
For TMR: UN/BW = 0.0214 (0.00156) × MUN For Pasture: UN/BW = 0.0240 (0.000704) × MUN | 0.02 | 92.4 | 7.6 |
UN = −209.4 (24.40) + 6.8 (0.80) × MUN + 12.4 (1.51) × CP + 4.8 (0.74) × DMI | 11.8 | 79.8 | 20.2 |
UN = −281.3 (31.04) + 6.7 (0.77) × MUN + 13.2 (1.47) × CP + 2.8 (0.93) × DMI + 0.16 (0.046) × BW | 11.4 | 79.2 | 20.8 |
UN/BW = −0.253 (0.0323) + 0.00932 (0.00132) × MUN + 0.0260 (0.00250) × CP | 0.019 | 82.9 | 17.1 |
Model Predicted 1 | |||||
---|---|---|---|---|---|
Items 2 | Observed 3 | Equation (4) | Equation (5) | Equation (6) | Equation (7) |
Mean | 171.6 | 158.6 | 169.3 | 160.7 | 162.2 |
SD | 45.1 | 39.6 | 41.8 | 48.5 | 46.9 |
CV | 26.3 | 25.1 | 24.7 | 30.2 | 28.9 |
Max. Value | 239.8 | 235.6 | 216.8 | 209.4 | 223.8 |
Min. Value | 81.0 | 56.2 | 65.8 | 40.2 | 59.5 |
Comparative Statistics 1 | |||||||
---|---|---|---|---|---|---|---|
Comparisons 2 | r | u | v | Cb | CCC | RMSEP | RPE |
Observed vs. Equation (4) | 0.53 | −0.33 | 0.88 | 0.94 | 0.50 | 42.4 | 24.7 |
Observed vs. Equation (5) | 0.86 | −0.06 | 0.93 | 0.99 | 0.86 | 22.4 | 13.1 |
Observed vs. Equation (6) | 0.91 | −0.24 | 1.08 | 0.97 | 0.89 | 22.1 | 12.8 |
Observed vs. Equation (7) | 0.93 | −0.21 | 1.04 | 0.98 | 0.91 | 19.5 | 11.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beck, M.; Marshall, C.; Garrett, K.; Campbell, T.; Foote, A.; Vibart, R.; Pacheco, D.; Gregorini, P. Meta-Regression to Develop Predictive Equations for Urinary Nitrogen Excretion of Lactating Dairy Cows. Animals 2023, 13, 620. https://doi.org/10.3390/ani13040620
Beck M, Marshall C, Garrett K, Campbell T, Foote A, Vibart R, Pacheco D, Gregorini P. Meta-Regression to Develop Predictive Equations for Urinary Nitrogen Excretion of Lactating Dairy Cows. Animals. 2023; 13(4):620. https://doi.org/10.3390/ani13040620
Chicago/Turabian StyleBeck, Matthew, Cameron Marshall, Konagh Garrett, Terra Campbell, Andrew Foote, Ronaldo Vibart, David Pacheco, and Pablo Gregorini. 2023. "Meta-Regression to Develop Predictive Equations for Urinary Nitrogen Excretion of Lactating Dairy Cows" Animals 13, no. 4: 620. https://doi.org/10.3390/ani13040620
APA StyleBeck, M., Marshall, C., Garrett, K., Campbell, T., Foote, A., Vibart, R., Pacheco, D., & Gregorini, P. (2023). Meta-Regression to Develop Predictive Equations for Urinary Nitrogen Excretion of Lactating Dairy Cows. Animals, 13(4), 620. https://doi.org/10.3390/ani13040620