Integrating Reference Intervals into Chimpanzee Welfare Research
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Behavioral Observations
2.2. Physiological Measures
2.2.1. Fecal Glucocorticoid Metabolite (GCM) Measurement
2.2.2. Fecal Immunoglobulin-A (IgA) Measurement
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AZA (Association of Zoos and Aquariums) Animal Welfare Committee. Available online: https://www.aza.org/animal_welfare_committee (accessed on 30 October 2022).
- Butterworth, A.; Mench, J.A.; Wielebnowski, N. Practical strategies to assess (and improve) welfare. In Animal Welfare, 2nd ed.; Appleby, M.C., Mench, J.A., Olsson, I.A.S., Hughes, B.O., Eds.; CABI Publishing: Cambridge, UK, 2011; pp. 200–214. [Google Scholar]
- Whitham, J.C.; Wielebnowski, N. New directions for zoo animal welfare science. Appl. Anim. Behav. Sci. 2013, 147, 247–260. [Google Scholar] [CrossRef]
- Martin, P.; Bateson, P. Measuring Behaviour: An Introductory Guide; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Staley, M.; Conners, M.G.; Hall, K.; Miller, L.J. Linking stress and immunity: Immunoglobulin A as a non-invasive physiological biomarker in animal welfare studies. Horm. Behav. 2018, 102, 55–68. [Google Scholar] [CrossRef]
- Wemelsfelder, F.; Haskell, M.; Mendl, M.T.; Calvert, S.; Lawrence, A.B. Diversity of behaviour during novel object tests is reduced in pigs housed in substrate-impoverished conditions. Anim. Behav. 2000, 60, 385–394. [Google Scholar] [CrossRef]
- Swaisgood, R.R.; White, A.M.; Zhou, X.; Zhang, H.; Zhang, G.; Wei, R.; Hare, V.J.; Tepper, E.M.; Lindburg, D.G. A quantitative assessment of the efficacy of an environmental enrichment programme for giant pandas. Anim. Behav. 2001, 61, 447–457. [Google Scholar] [CrossRef]
- Renner, M.J.; Lussier, J.P. Environmental enrichment for the captive spectacled bear (Tremarctos ornatus). Pharmacol. Biochem. Behav. 2002, 73, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.J.; Vicino, G.A.; Sheftel, J.; Lauderdale, L.K. Behavior diversity as a potential indicator of positive animal welfare. Animals 2020, 10, 1211. [Google Scholar] [CrossRef]
- Miller, L.J.; Pisacane, C.B.; Vicino, G.A. Relationship between behavioural diversity and faecal glucocorticoid metabolites: A case study with cheetahs (Acinonyx jubatus). Anim. Welf. 2016, 25, 325–329. [Google Scholar] [CrossRef]
- Hall, K.; Bryant, J.; Staley, M.; Whitham, J.C.; Miller, L.J. Behavioural diversity as a potential welfare indicator for professionally managed chimpanzees (Pan troglodytes): Exploring variations in calculating diversity using species-specific behaviours. Anim. Welf. 2021, 30, 381–392. [Google Scholar] [CrossRef]
- Miller, L.J.; Lauderdale, L.K.; Bryant, J.L.; Mellen, J.D.; Walsh, M.T.; Granger, D.A. Behavioral diversity as a potential positive indicator of animal welfare in bottlenose dolphins. PloS ONE 2021, 16, e0253113. [Google Scholar] [CrossRef]
- Stolba, A.; Wood-Gush, D.G.; Baker, N. The characterisation of stereotyped behaviour in stalled sows by informational redundancy. Behaviour 1983, 87, 157–182. [Google Scholar] [CrossRef]
- Gunn, D.; Morton, D.B. Inventory of the behaviour of New Zealand White rabbits in laboratory cages. Appl. Anim. Behav. Sci. 1995, 45, 277–292. [Google Scholar] [CrossRef]
- Dickens, M.J.; Romero, L.M. A consensus endocrine profile for chronically stressed wild animals does not exist. Gen. Comp. Endocr. 2013, 191, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Touma, C.; Palme, R. Measuring fecal glucocorticoid metabolites in mammals and birds: The importance of validation. Ann. N. Y. Acad. Sci. 2005, 1046, 54–74. [Google Scholar] [CrossRef]
- Wielebnowski, N.; Watters, J. Applying fecal endocrine monitoring to conservation and behavior studies of wild mammals: Important considerations and preliminary tests. Isr. J. Ecol. Evol. 2007, 53, 439–460. [Google Scholar] [CrossRef]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar] [CrossRef]
- Blecha, F. The Biology of Animal Stress; CABI: Wallingford, UK, 2000; pp. 111–122. [Google Scholar]
- Elsasser, T.H.; Klasing, K.C.; Filipov, N.; Thompson, F. The Biology of Animal Stress; CABI: Wallingford, UK, 2000; pp. 77–110. [Google Scholar]
- Kamin, H.S.; Kertes, D.A. Cortisol and DHEA in development and psychopathology. Horm. Behav. 2017, 89, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Moberg, G.P. Influence of the adrenal axis upon the gonads. Oxf. Rev. Reprod. Biol. 1987, 9, 456. [Google Scholar] [PubMed]
- Rivier, C. Luteinizing-hormone-releasing hormone, gonadotropins, and gonadal steroids in stress. Ann. N. Y. Acad. Sci. 1995, 771, 187–191. [Google Scholar] [CrossRef]
- Guhad, F.A.; Hau, J. Salivary IgA as a marker of social stress in rats. Neurosci. Lett. 1996, 216, 137–140. [Google Scholar] [CrossRef]
- Eriksson, E.; Royo, F.; Lyberg, K.; Carlsson, H.E.; Hau, J. Effect of metabolic cage housing on immunoglobulin A and corticosterone excretion in faeces and urine of young male rats. Exp. Physiol. 2004, 89, 427–433. [Google Scholar] [CrossRef]
- Tsujita, S.; Morimoto, K. Secretory IgA in saliva can be a useful stress marker. Environ. Health Prev. Med. 1999, 4, 1–8. [Google Scholar] [CrossRef]
- Salovey, P.; Rothman, A.J.; Detweiler, J.B.; Steward, W.T. Emotional states and physical health. Am. Psychol. 2000, 55, 110. [Google Scholar] [CrossRef]
- Bishop, N.C.; Gleeson, M. Acute and chronic effects of exercise on markers of mucosal immunity. Front. Biosci. 2009, 14, 4444–4456. [Google Scholar] [CrossRef]
- Ganster, D.C.; Rosen, C.C. Work stress and employee health: A multidisciplinary review. J. Manag. 2013, 39, 1085–1122. [Google Scholar] [CrossRef]
- Pacella, M.L.; Hruska, B.; Delahanty, D.L. The physical health consequences of PTSD and PTSD symptoms: A meta-analytic review. J. Anxiety Disord. 2013, 27, 33–46. [Google Scholar] [CrossRef]
- Pressman, S.D.; Cohen, S. Does positive affect influence health? Psychol. Bull. 2005, 131, 925. [Google Scholar] [CrossRef]
- Watanuki, S.; Kim, Y.K. Physiological responses induced by pleasant stimuli. J. Physiol. Anthropol. Appl. Hum. Sci. 2005, 24, 135–138. [Google Scholar] [CrossRef]
- Kurimoto, Y.; Saruta, J.; To, M.; Yamamoto, Y.; Kimura, K.; Tsukinoki, K. Voluntary exercise increases IgA concentration and polymeric Ig receptor expression in the rat submandibular gland. Biosci. Biotechnol. Biochem. 2016, 80, 2490–2496. [Google Scholar] [CrossRef]
- Skandakumar, S.; Stodulski, G.; Hau, J. Salivary IgA: A possible stressmarker in dogs. Anim. Welf. 1995, 4, 339–350. [Google Scholar] [CrossRef]
- Gourkow, N.; Hamon, S.C.; Phillips, C.J. Effect of gentle stroking and vocalization on behaviour, mucosal immunity and upper respiratory disease in anxious shelter cats. Prev. Vet. Med. 2014, 117, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Gourkow, N.; Phillips, C.J. Effect of interactions with humans on behaviour, mucosal immunity and upper respiratory disease of shelter cats rated as contented on arrival. Prev. Vet. Med. 2015, 121, 288–296. [Google Scholar] [CrossRef]
- Gourkow, N.; Phillips, C.J. Effect of cognitive enrichment on behavior, mucosal immunity and upper respiratory disease of shelter cats rated as frustrated on arrival. Prev. Vet. Med. 2016, 131, 103–110. [Google Scholar] [CrossRef]
- Kosaruk, W.; Brown, J.L.; Plangsangmas, T.; Towiboon, P.; Punyapornwithaya, V.; Silva-Fletcher, A.; Thitaram, C.; Khonmee, J.; Edwards, K.L.; Somgird, C. Effect of tourist activities on fecal and salivary glucocorticoids and immunoglobulin A in female captive Asian elephants in Thailand. Animals 2020, 10, 1928. [Google Scholar] [CrossRef]
- Plangsangmas, T.; Brown, J.L.; Thitaram, C.; Silva-Fletcher, A.; Edwards, K.L.; Punyapornwithaya, V.; Towiboon, P.; Somgird, C. Circadian rhythm of salivary immunoglobulin A and associations with cortisol as a stress biomarker in captive Asian elephants (Elephas maximus). Animals 2020, 10, 157. [Google Scholar] [CrossRef]
- Edwards, K.L.; Bansiddhi, P.; Paris, S.; Galloway, M.; Brown, J.L. The development of an immunoassay to measure immunoglobulin A in Asian elephant feces, saliva, urine and serum as a potential biomarker of well-being. Conserv. Physiol. 2019, 7, coy077. [Google Scholar] [CrossRef]
- Huang, S.; Li, L.; Wu, J.; Li, C.; Bai, J.; Sun, Y.; Wang, G. Seasonal variations in immunoreactive cortisol and fecal immunoglobulin levels in Sichuan golden monkey (Rhinopithecus roxellana). Turk. J. Zool. 2014, 38, 642–650. [Google Scholar] [CrossRef]
- Muneta, Y.; Yoshikawa, T.; Minagawa, Y.; Shibahara, T.; Maeda, R.; Omata, Y. Salivary IgA as a useful non-invasive marker for restraint stress in pigs. J. Vet. Med. Sci. 2010, 72, 1295–1300. [Google Scholar] [CrossRef]
- Miller, L.J.; Lauderdale, L.K.; Walsh, M.T.; Bryant, J.L.; Mitchell, K.A.; Granger, D.A.; Mellen, J.D. Reference intervals and values for fecal cortisol, aldosterone, and the ratio of cortisol to dehydroepiandrosterone metabolites in four species of cetaceans. PLoS ONE 2021, 16, e0250331. [Google Scholar] [CrossRef]
- Venn-Watson, S.; Jensen, E.D.; Ridgway, S.H. Effects of age and sex on clinicopathologic reference ranges in a healthy managed Atlantic bottlenose dolphin population. J. Am. Vet. Med. Assoc. 2007, 231, 596–601. [Google Scholar] [CrossRef]
- Norman, S.A.; Beckett, L.A.; Miller, W.A.; St. Leger, J.; Hobbs, R.C. Variation in hematologic and serum biochemical values of belugas (Delphinapterus leucas) under managed care. J. Zoo. Wildl. Med. 2013, 44, 376–388. [Google Scholar] [CrossRef]
- Lauderdale, L.K.; Walsh, M.T.; Mitchell, K.A.; Granger, D.A.; Mellen, J.D.; Miller, L.J. Health reference intervals and values for common bottlenose dolphins (Tursiops truncatus), Indo-Pacific bottlenose dolphins (Tursiops aduncus), Pacific white-sided dolphins (Lagenorhynchus obliquidens), and beluga whales (Delphinapterus leucas). PLoS ONE 2021, 16, e0250332. [Google Scholar] [CrossRef]
- Lauderdale, L.K.; Mellen, J.D.; Walsh, M.T.; Granger, D.A.; Miller, L.J. Towards understanding the welfare of cetaceans in accredited zoos and aquariums. PLoS ONE 2021, 16, e0255506. [Google Scholar] [CrossRef]
- Robinson, L.M.; Altschul, D.M.; Wallace, E.K.; Úbeda, Y.; Llorente, M.; Machanda, Z.; Slocombe, K.E.; Leach, M.C.; Waran, N.K.; Weiss, A. Chimpanzees with positive welfare are happier, extraverted, and emotionally stable. Appl. Anim. Behav. Sci. 2017, 191, 90–97. [Google Scholar] [CrossRef]
- Nash, L.T.; Fritz, J.; Alford, P.A.; Brent, L. Variables influencing the origins of diverse abnormal behaviors in a large sample of captive chimpanzees (Pan troglodytes). Am. J. Primatol. 1999, 48, 15–29. [Google Scholar] [CrossRef]
- Bloomsmith, M.A.; Else, J.G. Behavioral management of chimpanzees in biomedical research facilities: The state of the science. ILAR J. 2005, 46, 192–201. [Google Scholar] [CrossRef]
- Bloomsmith, M.A.; Lambeth, S.P.; Alford, P.L. The relationship between social behavior and genital swelling in captive female chimpanzees: Implications for managing chimpanzee (Pan troglodytes) groups. Int. J. Comp. Psychol. 1991, 4, 171–184. [Google Scholar] [CrossRef]
- Bloomsmith, M.; Baker, K.C.; Ross, S.R.; Pazol, K.A. The behavioral effects of early rearing experiences on captive chimpanzee behavioral development: The juvenile years. Am. J. Primatol. 2002, 57, 54–55. [Google Scholar]
- Freeman, H.D.; Ross, S.R. The impact of atypical early histories on pet or performer chimpanzees. PeerJ 2014, 2, e579. [Google Scholar] [CrossRef]
- Jacobson, S.L.; Ross, S.R.; Bloomsmith, M.A. Characterizing abnormal behavior in a large population of zoo-housed chimpanzees: Prevalence and potential influencing factors. PeerJ 2016, 4, e2225. [Google Scholar] [CrossRef]
- Neal Webb, S.J.; Hau, J.; Lambeth, S.P.; Schapiro, S.J. Differences in behavior between elderly and nonelderly captive chimpanzees and the effects of the social environment. J. Am. Assoc. Lab. Anim. Sci. 2019, 58, 783–789. [Google Scholar] [CrossRef]
- Nunamaker, E.A.; Lee, D.R.; Lammey, M.L. Chronic diseases in captive geriatric female chimpanzees (Pan troglodytes). Comp. Med. 2012, 62, 131–136. [Google Scholar]
- Friard, O.; Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 2016, 7, 1325–1330. [Google Scholar] [CrossRef]
- Ross, S.R.; Lukas, K.E. The care and management of captive chimpanzees workshop: Managing social behavior. Journal of Appl. Anim. Welf. Sci. 2001, 4, 299–301. [Google Scholar] [CrossRef]
- Bashaw, M.J.; Sicks, F.; Palme, R.; Schwarzenberger, F.; Tordiffe, A.S.; Ganswindt, A. Non-invasive assessment of adrenocortical activity as a measure of stress in giraffe (Giraffa camelopardalis). BMC Vet. Res. 2016, 12, 235. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chinnadurai, S.K.; Millspaugh, J.J.; Matthews, W.S.; Canter, K.; Slotow, R.; Washburn, B.E.; Woods, R.J. Validation of fecal glucocorticoid metabolite assays for South African herbivores. J. Wildl. Manag. 2009, 73, 1014–1020. [Google Scholar] [CrossRef]
- Morrow, C.J.; Kolver, E.S.; Verkerk, G.A.; Matthews, L.R. Fecal glucocorticoid metabolites as a measure of adrenal activity in dairy cattle. Gen. Comp. Endocrinol. 2002, 126, 229–241. [Google Scholar] [CrossRef]
- Yadav, R.; Mohan, K.; Kumar, V.; Sarkar, M.; Nitu, K.; Meyer, H.H.; Prakash, B.S. Development and validation of a sensitive enzyme immunoassay (EIA) for blood plasma cortisol in female cattle, buffaloes, and goats. Dom. Anim. Endocrinol. 2013, 45, 72–78. [Google Scholar] [CrossRef]
- Heintz, M.R.; Santymire, R.M.; Parr, L.A.; Lonsdorf, E.V. Validation of a cortisol enzyme immunoassay and characterization of salivary cortisol circadian rhythm in chimpanzees (Pan troglodytes). Am. J. Primatol. 2011, 73, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.M.; Heintz, M.R.; Lonsdorf, E.V.; Parr, L.A.; Santymire, R.M. Validation of a Field Technique and Characterization of Fecal Glucocorticoid Metabolite Analysis in Wild Chimpanzees (Pan troglodytes). Am. J. Primatol. 2013, 75, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Lantz, E.L.; Lonsdorf, E.V.; Heintz, M.R.; Murray, C.M.; Lipende, I.; Travis, D.A.; Santymire, R.M. Non-invasive quantification of immunoglobulin A in chimpanzees (Pan troglodytes schweinfurthii) at Gombe National Park, Tanzania. Am. J. Primatol. 2016, 80, e22558. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press I: Champaign, IL, USA, 1949. [Google Scholar]
- Fedurek, P.; Dunbar, R.I.; British Academy Centenary Research Project. What does mutual grooming tell us about why chimpanzees groom? Ethology 2009, 115, 566–575. [Google Scholar] [CrossRef]
- Machanda, Z.P.; Gilby, I.C.; Wrangham, R.W. Mutual grooming among adult male chimpanzees: The immediate investment hypothesis. Anim. Behav. 2014, 87, 165–174. [Google Scholar] [CrossRef]
- Goodall, J. The Chimpanzees of Gombe: Patterns of Behavior; Harvard University Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Pusey, A.; Williams, J.; Goodall, J. The influence of dominance rank on the reproductive success of female chimpanzees. Science 1997, 277, 828–831. [Google Scholar] [CrossRef]
- Sandel, A.A.; Reddy, R.B.; Mitani, J.C. Adolescent male chimpanzees do not form a dominance hierarchy with their peers. Primates 2017, 58, 39–49. [Google Scholar] [CrossRef]
- Watts, D.P. Male dominance relationships in an extremely large chimpanzee community at Ngogo, Kibale National Park, Uganda. Behaviour 2018, 155, 969–1009. [Google Scholar] [CrossRef]
- Seyfarth, R.M. A model of social grooming among adult female monkeys. J. Theor. Biol. 1977, 65, 671–698. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.P. Grooming between male chimpanzees at Ngogo, Kibale National Park. I. Partner number and diversity and grooming reciprocity. Int. J. Primatol. 2000, 21, 189–210. [Google Scholar] [CrossRef]
- Newton-Fisher, N.E.; Lee, P.C. Grooming reciprocity in wild male chimpanzees. Anim. Behav. 2011, 81, 439–446. [Google Scholar] [CrossRef]
- Muller, M.N. Agonistic relations among Kanyawara chimpanzees. In Behavioural Diversity in Chimpanzees and Bonobos; Boesch, C., Hohmann, G., Marchant, L., Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 112–124. [Google Scholar]
- Newton-Fisher, N.E.; Thompson, M.E. Comparative evolutionary perspectives on violence. In The Oxford Handbook of Evolutionary Perspectives on Violence, Homicide, and War; Shackleford, T.K., Weekes-Shackelford, V.A., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 41–60. [Google Scholar]
- Wrangham, R.W. Evolution of coalitionary killing. Am. J. Phys. Anthropol. 1999, 110 (Suppl. S29), 1–30. [Google Scholar] [CrossRef]
- Sabbi, K.H.; Emery Thompson, M.; Machanda, Z.P.; Otali, E.; Wrangham, R.W.; Muller, M.N. Sex differences in early experience and the development of aggression in wild chimpanzees. Proc. Natl. Acad. Sci. USA 2021, 118, e2017144118. [Google Scholar] [CrossRef]
- Muller, M.N.; Mitani, J.C. Conflict and cooperation in wild chimpanzees. Adv. Stud. Behav. 2005, 35, 275–331. [Google Scholar] [CrossRef]
- De Waal, F.B. Sex differences in chimpanzee (and human) behavior: A matter of social values? In The Origin of Values; Hechter, M., Nadel, L., Michod, R.E., Eds.; Aldine de Gruyter: Berlin, Germany, 1993; pp. 285–303. [Google Scholar]
- Nakamura, M.; Nishida, T. Subtle behavioral variation in wild chimpanzees, with special reference to Imanishi’s concept of kaluchua. Primates 2006, 47, 35–42. [Google Scholar] [CrossRef]
- Emery Thompson, M.; Wrangham, R.W. Male mating interest varies with female fecundity in Pan troglodytes schweinfurthii of Kanyawara, Kibale National Park. Int. J. Primatol. 2008, 29, 885–905. [Google Scholar] [CrossRef]
- Jänig, S.; Kücklich, M.; Kulik, L.; Zetzsche, M.; Weiß, B.M.; Widdig, A. Olfactory inspection of female reproductive states in chimpanzees. Front. Ecol. Evol. 2022, 10, 884661. [Google Scholar] [CrossRef]
- Pihl, L.; Hau, J. Faecal corticosterone and immunoglobulin A in young adult rats. Lab. Anim. 2003, 37, 166–171. [Google Scholar] [CrossRef]
- Behringer, V.; Borchers, C.; Deschner, T.; Möstl, E.; Selzer, D.; Hohmann, G. Measurements of salivary alpha amylase and salivary cortisol in hominoid primates reveal within-species consistency and between-species differences. PLoS ONE 2013, 8, e60773. [Google Scholar] [CrossRef] [PubMed]
- Yamanashi, Y.; Morimura, N.; Mori, Y.; Hayashi, M.; Suzuki, J. Cortisol analysis of hair of captive chimpanzees (Pan troglodytes). Gen. Comp. Endocr. 2013, 194, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Yamanashi, Y.; Teramoto, M.; Morimura, N.; Hirata, S.; Inoue-Murayama, M.; Idani, G.I. Effects of relocation and individual and environmental factors on the long-term stress levels in captive chimpanzees (Pan troglodytes): Monitoring hair cortisol and behaviors. PLoS ONE 2016, 11, e0160029. [Google Scholar] [CrossRef] [PubMed]
- Emery Thompson, M.; Muller, M.N.; Kahlenberg, S.M.; Wrangham, R.W. Dynamics of social and energetic stress in wild female chimpanzees. Horm. Behav. 2010, 58, 440–449. [Google Scholar] [CrossRef]
- Jacobson, S.L.; Freeman, H.D.; Santymire, R.M.; Ross, S.R. Atypical experiences of captive chimpanzees (Pan troglodytes) are associated with higher hair cortisol concentrations as adults. R. Soc. Open Sci. 2017, 4, 170932. [Google Scholar] [CrossRef]
Variable | Data Set | n * | Equation | r2 |
---|---|---|---|---|
Aggressive, Contact, Agent | Training | 28 | 0.005 + −0.005 × Sex | 0.431 |
Testing | 12 | 0.018 + −0.016 × Sex | 0.699 | |
Display, Chimps | Training | 28 | 0.072 + −0.067 × Sex | 0.457 |
Testing | 12 | 0.125 + −0.099 × Sex | 0.642 | |
Groom, Social, Mutual/Multiple | Training | 28 | 24.568 + −1.440 × Age + 0.022 × Age2 | 0.536 |
Testing | 12 | 1.417 + 0.332 × Age + −0.007 × Age2 | 0.356 | |
Sex Exam, Agent | Training | 28 | 0.003 + −0.002 × Sex | 0.469 |
Testing | 12 | 0.012 + −0.012 × Sex | 0.716 |
Model | Variable | Parameter | Estimate | Standard Error | t | p |
---|---|---|---|---|---|---|
i | Aggressive, Contact, Agent | Intercept | 0.005 | 0.002 | 3.122 | 0.004 |
Sex | −0.005 | 0.002 | −2.433 | 0.022 | ||
ii | Display, Chimps | Intercept | 0.072 | 0.020 | 3.626 | 0.001 |
Sex | −0.067 | 0.025 | −2.617 | 0.015 | ||
iii | Groom, Social, Mutual/Multiple | Intercept | 24.568 | 6.800 | 3.613 | 0.001 |
Age | −1.440 | 0.475 | −3.029 | 0.006 | ||
Age2 | 0.022 | 0.008 | 2.854 | 0.009 | ||
iv | Sex Exam, Agent | Intercept | 0.003 | 0.001 | 4.368 | <0.001 |
Sex | −0.002 | 0.001 | −2.708 | 0.012 |
Variable | Age Range | n * | Reference Interval |
---|---|---|---|
Physiological Measures | (Years) | ||
Fecal GCM | 13–48 | 40 | 27.21–587.93 ng/g |
Fecal IgA | 13–48 | 40 | 11.43–45.94 µg/g |
Indices | (Years) | ||
Behavioral Diversity | 13–48 | 40 | 1.22–2.00 |
Event Behaviors | (Years) | (Behaviors per minute) | |
Affiliative Touch, Agent | 13–48 | 40 | 0.00–0.02 |
Copulation | 13–48 | 40 | 0.00–0.01 |
Sexual-Exam, Agent (Male) | 13–48 | 18 | 0.00–0.21 |
Sexual-Exam, Agent (Female) | 16–45 | 22 | 0.00–0.03 |
Sexual-Present, Agent | 13–48 | 40 | 0.00–0.00 |
Supplant, Agent | 13–48 | 40 | 0.00–0.01 |
Yawn | 13–48 | 40 | 0.00–0.08 |
State Behaviors | (Years) | (%) | |
Aggressive, Contact, Agent (Male) | 13–48 | 18 | 0.00–0.03 |
Aggressive, Contact, Agent (Female) | 16–45 | 22 | 0.00–0.01 |
Aggressive, Non-Contact, Agent | 13–48 | 40 | 0.00–0.08 |
Contact | 13–48 | 40 | 0.07–12.24 |
Display, Chimps (Male) | 13–48 | 18 | 0.00–0.31 |
Display, Chimps (Female) | 16–45 | 22 | 0.00–0.06 |
Display, Humans | 13–48 | 40 | 0.00–0.14 |
Feed/Forage | 13–48 | 40 | 3.13–27.15 |
Groom, Social, Mutual/Multiple (Adults) | 13–34 | 27 | 0.00–15.31 |
Groom, Social, Mutual/Multiple (Geriatric) | 37–48 | 13 | 0.02–9.58 |
Groom, Self-Directed | 13–48 | 40 | 1.25–13.89 |
Groom, Social, Agent | 13–48 | 40 | 0.03–9.49 |
Human Interaction, Orientation, Public | 13–48 | 40 | 0.00–2.73 |
Human Interaction, Orientation, Staff | 13–48 | 40 | 0.00–2.94 |
Inactive | 13–48 | 40 | 29.28–69.00 |
Locomotion, Horizontal | 13–48 | 40 | 2.94–15.90 |
Locomotion, Vertical | 13–48 | 40 | 0.20–3.71 |
Masturbation | 13–48 | 40 | 0.00–0.00 |
Object Manipulation, Enrichment | 13–48 | 40 | 0.00–2.53 |
Object Manipulation, Prepared Enrichment | 13–48 | 40 | 0.00–6.22 |
Object Manipulation, Other | 13–48 | 40 | 0.17–5.82 |
Play, Social | 13–48 | 40 | 0.00–3.76 |
Play, Solitary | 13–48 | 40 | 0.00–0.22 |
Scratch, Gentle | 13–48 | 40 | 0.10–1.03 |
Scratch, Rough | 13–48 | 40 | 0.07–1.40 |
Submission, Agent | 13–48 | 40 | 0.00–0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whitham, J.C.; Hall, K.; Lauderdale, L.K.; Bryant, J.L.; Miller, L.J. Integrating Reference Intervals into Chimpanzee Welfare Research. Animals 2023, 13, 639. https://doi.org/10.3390/ani13040639
Whitham JC, Hall K, Lauderdale LK, Bryant JL, Miller LJ. Integrating Reference Intervals into Chimpanzee Welfare Research. Animals. 2023; 13(4):639. https://doi.org/10.3390/ani13040639
Chicago/Turabian StyleWhitham, Jessica C., Katie Hall, Lisa K. Lauderdale, Jocelyn L. Bryant, and Lance J. Miller. 2023. "Integrating Reference Intervals into Chimpanzee Welfare Research" Animals 13, no. 4: 639. https://doi.org/10.3390/ani13040639
APA StyleWhitham, J. C., Hall, K., Lauderdale, L. K., Bryant, J. L., & Miller, L. J. (2023). Integrating Reference Intervals into Chimpanzee Welfare Research. Animals, 13(4), 639. https://doi.org/10.3390/ani13040639