Integrating Reference Intervals into Chimpanzee Welfare Research
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Behavioral Observations
2.2. Physiological Measures
2.2.1. Fecal Glucocorticoid Metabolite (GCM) Measurement
2.2.2. Fecal Immunoglobulin-A (IgA) Measurement
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AZA (Association of Zoos and Aquariums) Animal Welfare Committee. Available online: https://www.aza.org/animal_welfare_committee (accessed on 30 October 2022).
- Butterworth, A.; Mench, J.A.; Wielebnowski, N. Practical strategies to assess (and improve) welfare. In Animal Welfare, 2nd ed.; Appleby, M.C., Mench, J.A., Olsson, I.A.S., Hughes, B.O., Eds.; CABI Publishing: Cambridge, UK, 2011; pp. 200–214. [Google Scholar]
- Whitham, J.C.; Wielebnowski, N. New directions for zoo animal welfare science. Appl. Anim. Behav. Sci. 2013, 147, 247–260. [Google Scholar] [CrossRef]
- Martin, P.; Bateson, P. Measuring Behaviour: An Introductory Guide; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Staley, M.; Conners, M.G.; Hall, K.; Miller, L.J. Linking stress and immunity: Immunoglobulin A as a non-invasive physiological biomarker in animal welfare studies. Horm. Behav. 2018, 102, 55–68. [Google Scholar] [CrossRef]
- Wemelsfelder, F.; Haskell, M.; Mendl, M.T.; Calvert, S.; Lawrence, A.B. Diversity of behaviour during novel object tests is reduced in pigs housed in substrate-impoverished conditions. Anim. Behav. 2000, 60, 385–394. [Google Scholar] [CrossRef]
- Swaisgood, R.R.; White, A.M.; Zhou, X.; Zhang, H.; Zhang, G.; Wei, R.; Hare, V.J.; Tepper, E.M.; Lindburg, D.G. A quantitative assessment of the efficacy of an environmental enrichment programme for giant pandas. Anim. Behav. 2001, 61, 447–457. [Google Scholar] [CrossRef]
- Renner, M.J.; Lussier, J.P. Environmental enrichment for the captive spectacled bear (Tremarctos ornatus). Pharmacol. Biochem. Behav. 2002, 73, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.J.; Vicino, G.A.; Sheftel, J.; Lauderdale, L.K. Behavior diversity as a potential indicator of positive animal welfare. Animals 2020, 10, 1211. [Google Scholar] [CrossRef]
- Miller, L.J.; Pisacane, C.B.; Vicino, G.A. Relationship between behavioural diversity and faecal glucocorticoid metabolites: A case study with cheetahs (Acinonyx jubatus). Anim. Welf. 2016, 25, 325–329. [Google Scholar] [CrossRef]
- Hall, K.; Bryant, J.; Staley, M.; Whitham, J.C.; Miller, L.J. Behavioural diversity as a potential welfare indicator for professionally managed chimpanzees (Pan troglodytes): Exploring variations in calculating diversity using species-specific behaviours. Anim. Welf. 2021, 30, 381–392. [Google Scholar] [CrossRef]
- Miller, L.J.; Lauderdale, L.K.; Bryant, J.L.; Mellen, J.D.; Walsh, M.T.; Granger, D.A. Behavioral diversity as a potential positive indicator of animal welfare in bottlenose dolphins. PloS ONE 2021, 16, e0253113. [Google Scholar] [CrossRef]
- Stolba, A.; Wood-Gush, D.G.; Baker, N. The characterisation of stereotyped behaviour in stalled sows by informational redundancy. Behaviour 1983, 87, 157–182. [Google Scholar] [CrossRef]
- Gunn, D.; Morton, D.B. Inventory of the behaviour of New Zealand White rabbits in laboratory cages. Appl. Anim. Behav. Sci. 1995, 45, 277–292. [Google Scholar] [CrossRef]
- Dickens, M.J.; Romero, L.M. A consensus endocrine profile for chronically stressed wild animals does not exist. Gen. Comp. Endocr. 2013, 191, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Touma, C.; Palme, R. Measuring fecal glucocorticoid metabolites in mammals and birds: The importance of validation. Ann. N. Y. Acad. Sci. 2005, 1046, 54–74. [Google Scholar] [CrossRef]
- Wielebnowski, N.; Watters, J. Applying fecal endocrine monitoring to conservation and behavior studies of wild mammals: Important considerations and preliminary tests. Isr. J. Ecol. Evol. 2007, 53, 439–460. [Google Scholar] [CrossRef]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar] [CrossRef]
- Blecha, F. The Biology of Animal Stress; CABI: Wallingford, UK, 2000; pp. 111–122. [Google Scholar]
- Elsasser, T.H.; Klasing, K.C.; Filipov, N.; Thompson, F. The Biology of Animal Stress; CABI: Wallingford, UK, 2000; pp. 77–110. [Google Scholar]
- Kamin, H.S.; Kertes, D.A. Cortisol and DHEA in development and psychopathology. Horm. Behav. 2017, 89, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Moberg, G.P. Influence of the adrenal axis upon the gonads. Oxf. Rev. Reprod. Biol. 1987, 9, 456. [Google Scholar] [PubMed]
- Rivier, C. Luteinizing-hormone-releasing hormone, gonadotropins, and gonadal steroids in stress. Ann. N. Y. Acad. Sci. 1995, 771, 187–191. [Google Scholar] [CrossRef]
- Guhad, F.A.; Hau, J. Salivary IgA as a marker of social stress in rats. Neurosci. Lett. 1996, 216, 137–140. [Google Scholar] [CrossRef]
- Eriksson, E.; Royo, F.; Lyberg, K.; Carlsson, H.E.; Hau, J. Effect of metabolic cage housing on immunoglobulin A and corticosterone excretion in faeces and urine of young male rats. Exp. Physiol. 2004, 89, 427–433. [Google Scholar] [CrossRef]
- Tsujita, S.; Morimoto, K. Secretory IgA in saliva can be a useful stress marker. Environ. Health Prev. Med. 1999, 4, 1–8. [Google Scholar] [CrossRef]
- Salovey, P.; Rothman, A.J.; Detweiler, J.B.; Steward, W.T. Emotional states and physical health. Am. Psychol. 2000, 55, 110. [Google Scholar] [CrossRef]
- Bishop, N.C.; Gleeson, M. Acute and chronic effects of exercise on markers of mucosal immunity. Front. Biosci. 2009, 14, 4444–4456. [Google Scholar] [CrossRef]
- Ganster, D.C.; Rosen, C.C. Work stress and employee health: A multidisciplinary review. J. Manag. 2013, 39, 1085–1122. [Google Scholar] [CrossRef]
- Pacella, M.L.; Hruska, B.; Delahanty, D.L. The physical health consequences of PTSD and PTSD symptoms: A meta-analytic review. J. Anxiety Disord. 2013, 27, 33–46. [Google Scholar] [CrossRef]
- Pressman, S.D.; Cohen, S. Does positive affect influence health? Psychol. Bull. 2005, 131, 925. [Google Scholar] [CrossRef]
- Watanuki, S.; Kim, Y.K. Physiological responses induced by pleasant stimuli. J. Physiol. Anthropol. Appl. Hum. Sci. 2005, 24, 135–138. [Google Scholar] [CrossRef]
- Kurimoto, Y.; Saruta, J.; To, M.; Yamamoto, Y.; Kimura, K.; Tsukinoki, K. Voluntary exercise increases IgA concentration and polymeric Ig receptor expression in the rat submandibular gland. Biosci. Biotechnol. Biochem. 2016, 80, 2490–2496. [Google Scholar] [CrossRef]
- Skandakumar, S.; Stodulski, G.; Hau, J. Salivary IgA: A possible stressmarker in dogs. Anim. Welf. 1995, 4, 339–350. [Google Scholar] [CrossRef]
- Gourkow, N.; Hamon, S.C.; Phillips, C.J. Effect of gentle stroking and vocalization on behaviour, mucosal immunity and upper respiratory disease in anxious shelter cats. Prev. Vet. Med. 2014, 117, 266–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gourkow, N.; Phillips, C.J. Effect of interactions with humans on behaviour, mucosal immunity and upper respiratory disease of shelter cats rated as contented on arrival. Prev. Vet. Med. 2015, 121, 288–296. [Google Scholar] [CrossRef]
- Gourkow, N.; Phillips, C.J. Effect of cognitive enrichment on behavior, mucosal immunity and upper respiratory disease of shelter cats rated as frustrated on arrival. Prev. Vet. Med. 2016, 131, 103–110. [Google Scholar] [CrossRef]
- Kosaruk, W.; Brown, J.L.; Plangsangmas, T.; Towiboon, P.; Punyapornwithaya, V.; Silva-Fletcher, A.; Thitaram, C.; Khonmee, J.; Edwards, K.L.; Somgird, C. Effect of tourist activities on fecal and salivary glucocorticoids and immunoglobulin A in female captive Asian elephants in Thailand. Animals 2020, 10, 1928. [Google Scholar] [CrossRef]
- Plangsangmas, T.; Brown, J.L.; Thitaram, C.; Silva-Fletcher, A.; Edwards, K.L.; Punyapornwithaya, V.; Towiboon, P.; Somgird, C. Circadian rhythm of salivary immunoglobulin A and associations with cortisol as a stress biomarker in captive Asian elephants (Elephas maximus). Animals 2020, 10, 157. [Google Scholar] [CrossRef]
- Edwards, K.L.; Bansiddhi, P.; Paris, S.; Galloway, M.; Brown, J.L. The development of an immunoassay to measure immunoglobulin A in Asian elephant feces, saliva, urine and serum as a potential biomarker of well-being. Conserv. Physiol. 2019, 7, coy077. [Google Scholar] [CrossRef]
- Huang, S.; Li, L.; Wu, J.; Li, C.; Bai, J.; Sun, Y.; Wang, G. Seasonal variations in immunoreactive cortisol and fecal immunoglobulin levels in Sichuan golden monkey (Rhinopithecus roxellana). Turk. J. Zool. 2014, 38, 642–650. [Google Scholar] [CrossRef]
- Muneta, Y.; Yoshikawa, T.; Minagawa, Y.; Shibahara, T.; Maeda, R.; Omata, Y. Salivary IgA as a useful non-invasive marker for restraint stress in pigs. J. Vet. Med. Sci. 2010, 72, 1295–1300. [Google Scholar] [CrossRef]
- Miller, L.J.; Lauderdale, L.K.; Walsh, M.T.; Bryant, J.L.; Mitchell, K.A.; Granger, D.A.; Mellen, J.D. Reference intervals and values for fecal cortisol, aldosterone, and the ratio of cortisol to dehydroepiandrosterone metabolites in four species of cetaceans. PLoS ONE 2021, 16, e0250331. [Google Scholar] [CrossRef]
- Venn-Watson, S.; Jensen, E.D.; Ridgway, S.H. Effects of age and sex on clinicopathologic reference ranges in a healthy managed Atlantic bottlenose dolphin population. J. Am. Vet. Med. Assoc. 2007, 231, 596–601. [Google Scholar] [CrossRef]
- Norman, S.A.; Beckett, L.A.; Miller, W.A.; St. Leger, J.; Hobbs, R.C. Variation in hematologic and serum biochemical values of belugas (Delphinapterus leucas) under managed care. J. Zoo. Wildl. Med. 2013, 44, 376–388. [Google Scholar] [CrossRef]
- Lauderdale, L.K.; Walsh, M.T.; Mitchell, K.A.; Granger, D.A.; Mellen, J.D.; Miller, L.J. Health reference intervals and values for common bottlenose dolphins (Tursiops truncatus), Indo-Pacific bottlenose dolphins (Tursiops aduncus), Pacific white-sided dolphins (Lagenorhynchus obliquidens), and beluga whales (Delphinapterus leucas). PLoS ONE 2021, 16, e0250332. [Google Scholar] [CrossRef]
- Lauderdale, L.K.; Mellen, J.D.; Walsh, M.T.; Granger, D.A.; Miller, L.J. Towards understanding the welfare of cetaceans in accredited zoos and aquariums. PLoS ONE 2021, 16, e0255506. [Google Scholar] [CrossRef]
- Robinson, L.M.; Altschul, D.M.; Wallace, E.K.; Úbeda, Y.; Llorente, M.; Machanda, Z.; Slocombe, K.E.; Leach, M.C.; Waran, N.K.; Weiss, A. Chimpanzees with positive welfare are happier, extraverted, and emotionally stable. Appl. Anim. Behav. Sci. 2017, 191, 90–97. [Google Scholar] [CrossRef]
- Nash, L.T.; Fritz, J.; Alford, P.A.; Brent, L. Variables influencing the origins of diverse abnormal behaviors in a large sample of captive chimpanzees (Pan troglodytes). Am. J. Primatol. 1999, 48, 15–29. [Google Scholar] [CrossRef]
- Bloomsmith, M.A.; Else, J.G. Behavioral management of chimpanzees in biomedical research facilities: The state of the science. ILAR J. 2005, 46, 192–201. [Google Scholar] [CrossRef]
- Bloomsmith, M.A.; Lambeth, S.P.; Alford, P.L. The relationship between social behavior and genital swelling in captive female chimpanzees: Implications for managing chimpanzee (Pan troglodytes) groups. Int. J. Comp. Psychol. 1991, 4, 171–184. [Google Scholar] [CrossRef]
- Bloomsmith, M.; Baker, K.C.; Ross, S.R.; Pazol, K.A. The behavioral effects of early rearing experiences on captive chimpanzee behavioral development: The juvenile years. Am. J. Primatol. 2002, 57, 54–55. [Google Scholar]
- Freeman, H.D.; Ross, S.R. The impact of atypical early histories on pet or performer chimpanzees. PeerJ 2014, 2, e579. [Google Scholar] [CrossRef]
- Jacobson, S.L.; Ross, S.R.; Bloomsmith, M.A. Characterizing abnormal behavior in a large population of zoo-housed chimpanzees: Prevalence and potential influencing factors. PeerJ 2016, 4, e2225. [Google Scholar] [CrossRef]
- Neal Webb, S.J.; Hau, J.; Lambeth, S.P.; Schapiro, S.J. Differences in behavior between elderly and nonelderly captive chimpanzees and the effects of the social environment. J. Am. Assoc. Lab. Anim. Sci. 2019, 58, 783–789. [Google Scholar] [CrossRef]
- Nunamaker, E.A.; Lee, D.R.; Lammey, M.L. Chronic diseases in captive geriatric female chimpanzees (Pan troglodytes). Comp. Med. 2012, 62, 131–136. [Google Scholar]
- Friard, O.; Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 2016, 7, 1325–1330. [Google Scholar] [CrossRef]
- Ross, S.R.; Lukas, K.E. The care and management of captive chimpanzees workshop: Managing social behavior. Journal of Appl. Anim. Welf. Sci. 2001, 4, 299–301. [Google Scholar] [CrossRef]
- Bashaw, M.J.; Sicks, F.; Palme, R.; Schwarzenberger, F.; Tordiffe, A.S.; Ganswindt, A. Non-invasive assessment of adrenocortical activity as a measure of stress in giraffe (Giraffa camelopardalis). BMC Vet. Res. 2016, 12, 235. [Google Scholar] [CrossRef] [PubMed]
- Chinnadurai, S.K.; Millspaugh, J.J.; Matthews, W.S.; Canter, K.; Slotow, R.; Washburn, B.E.; Woods, R.J. Validation of fecal glucocorticoid metabolite assays for South African herbivores. J. Wildl. Manag. 2009, 73, 1014–1020. [Google Scholar] [CrossRef]
- Morrow, C.J.; Kolver, E.S.; Verkerk, G.A.; Matthews, L.R. Fecal glucocorticoid metabolites as a measure of adrenal activity in dairy cattle. Gen. Comp. Endocrinol. 2002, 126, 229–241. [Google Scholar] [CrossRef]
- Yadav, R.; Mohan, K.; Kumar, V.; Sarkar, M.; Nitu, K.; Meyer, H.H.; Prakash, B.S. Development and validation of a sensitive enzyme immunoassay (EIA) for blood plasma cortisol in female cattle, buffaloes, and goats. Dom. Anim. Endocrinol. 2013, 45, 72–78. [Google Scholar] [CrossRef]
- Heintz, M.R.; Santymire, R.M.; Parr, L.A.; Lonsdorf, E.V. Validation of a cortisol enzyme immunoassay and characterization of salivary cortisol circadian rhythm in chimpanzees (Pan troglodytes). Am. J. Primatol. 2011, 73, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.M.; Heintz, M.R.; Lonsdorf, E.V.; Parr, L.A.; Santymire, R.M. Validation of a Field Technique and Characterization of Fecal Glucocorticoid Metabolite Analysis in Wild Chimpanzees (Pan troglodytes). Am. J. Primatol. 2013, 75, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Lantz, E.L.; Lonsdorf, E.V.; Heintz, M.R.; Murray, C.M.; Lipende, I.; Travis, D.A.; Santymire, R.M. Non-invasive quantification of immunoglobulin A in chimpanzees (Pan troglodytes schweinfurthii) at Gombe National Park, Tanzania. Am. J. Primatol. 2016, 80, e22558. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press I: Champaign, IL, USA, 1949. [Google Scholar]
- Fedurek, P.; Dunbar, R.I.; British Academy Centenary Research Project. What does mutual grooming tell us about why chimpanzees groom? Ethology 2009, 115, 566–575. [Google Scholar] [CrossRef]
- Machanda, Z.P.; Gilby, I.C.; Wrangham, R.W. Mutual grooming among adult male chimpanzees: The immediate investment hypothesis. Anim. Behav. 2014, 87, 165–174. [Google Scholar] [CrossRef]
- Goodall, J. The Chimpanzees of Gombe: Patterns of Behavior; Harvard University Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Pusey, A.; Williams, J.; Goodall, J. The influence of dominance rank on the reproductive success of female chimpanzees. Science 1997, 277, 828–831. [Google Scholar] [CrossRef]
- Sandel, A.A.; Reddy, R.B.; Mitani, J.C. Adolescent male chimpanzees do not form a dominance hierarchy with their peers. Primates 2017, 58, 39–49. [Google Scholar] [CrossRef]
- Watts, D.P. Male dominance relationships in an extremely large chimpanzee community at Ngogo, Kibale National Park, Uganda. Behaviour 2018, 155, 969–1009. [Google Scholar] [CrossRef]
- Seyfarth, R.M. A model of social grooming among adult female monkeys. J. Theor. Biol. 1977, 65, 671–698. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.P. Grooming between male chimpanzees at Ngogo, Kibale National Park. I. Partner number and diversity and grooming reciprocity. Int. J. Primatol. 2000, 21, 189–210. [Google Scholar] [CrossRef]
- Newton-Fisher, N.E.; Lee, P.C. Grooming reciprocity in wild male chimpanzees. Anim. Behav. 2011, 81, 439–446. [Google Scholar] [CrossRef]
- Muller, M.N. Agonistic relations among Kanyawara chimpanzees. In Behavioural Diversity in Chimpanzees and Bonobos; Boesch, C., Hohmann, G., Marchant, L., Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 112–124. [Google Scholar]
- Newton-Fisher, N.E.; Thompson, M.E. Comparative evolutionary perspectives on violence. In The Oxford Handbook of Evolutionary Perspectives on Violence, Homicide, and War; Shackleford, T.K., Weekes-Shackelford, V.A., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 41–60. [Google Scholar]
- Wrangham, R.W. Evolution of coalitionary killing. Am. J. Phys. Anthropol. 1999, 110 (Suppl. S29), 1–30. [Google Scholar] [CrossRef]
- Sabbi, K.H.; Emery Thompson, M.; Machanda, Z.P.; Otali, E.; Wrangham, R.W.; Muller, M.N. Sex differences in early experience and the development of aggression in wild chimpanzees. Proc. Natl. Acad. Sci. USA 2021, 118, e2017144118. [Google Scholar] [CrossRef]
- Muller, M.N.; Mitani, J.C. Conflict and cooperation in wild chimpanzees. Adv. Stud. Behav. 2005, 35, 275–331. [Google Scholar] [CrossRef]
- De Waal, F.B. Sex differences in chimpanzee (and human) behavior: A matter of social values? In The Origin of Values; Hechter, M., Nadel, L., Michod, R.E., Eds.; Aldine de Gruyter: Berlin, Germany, 1993; pp. 285–303. [Google Scholar]
- Nakamura, M.; Nishida, T. Subtle behavioral variation in wild chimpanzees, with special reference to Imanishi’s concept of kaluchua. Primates 2006, 47, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Emery Thompson, M.; Wrangham, R.W. Male mating interest varies with female fecundity in Pan troglodytes schweinfurthii of Kanyawara, Kibale National Park. Int. J. Primatol. 2008, 29, 885–905. [Google Scholar] [CrossRef]
- Jänig, S.; Kücklich, M.; Kulik, L.; Zetzsche, M.; Weiß, B.M.; Widdig, A. Olfactory inspection of female reproductive states in chimpanzees. Front. Ecol. Evol. 2022, 10, 884661. [Google Scholar] [CrossRef]
- Pihl, L.; Hau, J. Faecal corticosterone and immunoglobulin A in young adult rats. Lab. Anim. 2003, 37, 166–171. [Google Scholar] [CrossRef]
- Behringer, V.; Borchers, C.; Deschner, T.; Möstl, E.; Selzer, D.; Hohmann, G. Measurements of salivary alpha amylase and salivary cortisol in hominoid primates reveal within-species consistency and between-species differences. PLoS ONE 2013, 8, e60773. [Google Scholar] [CrossRef] [PubMed]
- Yamanashi, Y.; Morimura, N.; Mori, Y.; Hayashi, M.; Suzuki, J. Cortisol analysis of hair of captive chimpanzees (Pan troglodytes). Gen. Comp. Endocr. 2013, 194, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Yamanashi, Y.; Teramoto, M.; Morimura, N.; Hirata, S.; Inoue-Murayama, M.; Idani, G.I. Effects of relocation and individual and environmental factors on the long-term stress levels in captive chimpanzees (Pan troglodytes): Monitoring hair cortisol and behaviors. PLoS ONE 2016, 11, e0160029. [Google Scholar] [CrossRef] [PubMed]
- Emery Thompson, M.; Muller, M.N.; Kahlenberg, S.M.; Wrangham, R.W. Dynamics of social and energetic stress in wild female chimpanzees. Horm. Behav. 2010, 58, 440–449. [Google Scholar] [CrossRef]
- Jacobson, S.L.; Freeman, H.D.; Santymire, R.M.; Ross, S.R. Atypical experiences of captive chimpanzees (Pan troglodytes) are associated with higher hair cortisol concentrations as adults. R. Soc. Open Sci. 2017, 4, 170932. [Google Scholar] [CrossRef] [Green Version]
Variable | Data Set | n * | Equation | r2 |
---|---|---|---|---|
Aggressive, Contact, Agent | Training | 28 | 0.005 + −0.005 × Sex | 0.431 |
Testing | 12 | 0.018 + −0.016 × Sex | 0.699 | |
Display, Chimps | Training | 28 | 0.072 + −0.067 × Sex | 0.457 |
Testing | 12 | 0.125 + −0.099 × Sex | 0.642 | |
Groom, Social, Mutual/Multiple | Training | 28 | 24.568 + −1.440 × Age + 0.022 × Age2 | 0.536 |
Testing | 12 | 1.417 + 0.332 × Age + −0.007 × Age2 | 0.356 | |
Sex Exam, Agent | Training | 28 | 0.003 + −0.002 × Sex | 0.469 |
Testing | 12 | 0.012 + −0.012 × Sex | 0.716 |
Model | Variable | Parameter | Estimate | Standard Error | t | p |
---|---|---|---|---|---|---|
i | Aggressive, Contact, Agent | Intercept | 0.005 | 0.002 | 3.122 | 0.004 |
Sex | −0.005 | 0.002 | −2.433 | 0.022 | ||
ii | Display, Chimps | Intercept | 0.072 | 0.020 | 3.626 | 0.001 |
Sex | −0.067 | 0.025 | −2.617 | 0.015 | ||
iii | Groom, Social, Mutual/Multiple | Intercept | 24.568 | 6.800 | 3.613 | 0.001 |
Age | −1.440 | 0.475 | −3.029 | 0.006 | ||
Age2 | 0.022 | 0.008 | 2.854 | 0.009 | ||
iv | Sex Exam, Agent | Intercept | 0.003 | 0.001 | 4.368 | <0.001 |
Sex | −0.002 | 0.001 | −2.708 | 0.012 |
Variable | Age Range | n * | Reference Interval |
---|---|---|---|
Physiological Measures | (Years) | ||
Fecal GCM | 13–48 | 40 | 27.21–587.93 ng/g |
Fecal IgA | 13–48 | 40 | 11.43–45.94 µg/g |
Indices | (Years) | ||
Behavioral Diversity | 13–48 | 40 | 1.22–2.00 |
Event Behaviors | (Years) | (Behaviors per minute) | |
Affiliative Touch, Agent | 13–48 | 40 | 0.00–0.02 |
Copulation | 13–48 | 40 | 0.00–0.01 |
Sexual-Exam, Agent (Male) | 13–48 | 18 | 0.00–0.21 |
Sexual-Exam, Agent (Female) | 16–45 | 22 | 0.00–0.03 |
Sexual-Present, Agent | 13–48 | 40 | 0.00–0.00 |
Supplant, Agent | 13–48 | 40 | 0.00–0.01 |
Yawn | 13–48 | 40 | 0.00–0.08 |
State Behaviors | (Years) | (%) | |
Aggressive, Contact, Agent (Male) | 13–48 | 18 | 0.00–0.03 |
Aggressive, Contact, Agent (Female) | 16–45 | 22 | 0.00–0.01 |
Aggressive, Non-Contact, Agent | 13–48 | 40 | 0.00–0.08 |
Contact | 13–48 | 40 | 0.07–12.24 |
Display, Chimps (Male) | 13–48 | 18 | 0.00–0.31 |
Display, Chimps (Female) | 16–45 | 22 | 0.00–0.06 |
Display, Humans | 13–48 | 40 | 0.00–0.14 |
Feed/Forage | 13–48 | 40 | 3.13–27.15 |
Groom, Social, Mutual/Multiple (Adults) | 13–34 | 27 | 0.00–15.31 |
Groom, Social, Mutual/Multiple (Geriatric) | 37–48 | 13 | 0.02–9.58 |
Groom, Self-Directed | 13–48 | 40 | 1.25–13.89 |
Groom, Social, Agent | 13–48 | 40 | 0.03–9.49 |
Human Interaction, Orientation, Public | 13–48 | 40 | 0.00–2.73 |
Human Interaction, Orientation, Staff | 13–48 | 40 | 0.00–2.94 |
Inactive | 13–48 | 40 | 29.28–69.00 |
Locomotion, Horizontal | 13–48 | 40 | 2.94–15.90 |
Locomotion, Vertical | 13–48 | 40 | 0.20–3.71 |
Masturbation | 13–48 | 40 | 0.00–0.00 |
Object Manipulation, Enrichment | 13–48 | 40 | 0.00–2.53 |
Object Manipulation, Prepared Enrichment | 13–48 | 40 | 0.00–6.22 |
Object Manipulation, Other | 13–48 | 40 | 0.17–5.82 |
Play, Social | 13–48 | 40 | 0.00–3.76 |
Play, Solitary | 13–48 | 40 | 0.00–0.22 |
Scratch, Gentle | 13–48 | 40 | 0.10–1.03 |
Scratch, Rough | 13–48 | 40 | 0.07–1.40 |
Submission, Agent | 13–48 | 40 | 0.00–0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whitham, J.C.; Hall, K.; Lauderdale, L.K.; Bryant, J.L.; Miller, L.J. Integrating Reference Intervals into Chimpanzee Welfare Research. Animals 2023, 13, 639. https://doi.org/10.3390/ani13040639
Whitham JC, Hall K, Lauderdale LK, Bryant JL, Miller LJ. Integrating Reference Intervals into Chimpanzee Welfare Research. Animals. 2023; 13(4):639. https://doi.org/10.3390/ani13040639
Chicago/Turabian StyleWhitham, Jessica C., Katie Hall, Lisa K. Lauderdale, Jocelyn L. Bryant, and Lance J. Miller. 2023. "Integrating Reference Intervals into Chimpanzee Welfare Research" Animals 13, no. 4: 639. https://doi.org/10.3390/ani13040639
APA StyleWhitham, J. C., Hall, K., Lauderdale, L. K., Bryant, J. L., & Miller, L. J. (2023). Integrating Reference Intervals into Chimpanzee Welfare Research. Animals, 13(4), 639. https://doi.org/10.3390/ani13040639