The Effect of BSCL2 Gene on Fat Deposition Traits in Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Biological Materials
2.2. RNA Sequencing and Transcript Variant Identification
2.3. BSCL2 Genotyping, Frequency Calculation and Statistical Analyses
- Yijkl—observation;
- µ—mean;
- di—fixed effect of genotype group;
- cj—fixed effect of sire;
- fj—fixed effect of farm origin;
- α(xijk)—covariate for the weight of the right side of the carcass;
- eijkl—random error.
3. Results
3.1. Animals Characteristics and Variant Calling Results
3.2. Genes with Missense Variants Functional Analysis
3.3. Influence of BSCL2 Mutations on Pig Phenotypes
3.4. BSCL2 Frequency in Polish Pig Populations and Comprehensive Association Analysis
4. Discussion
4.1. Adipogenesis in Terms of the Role of the BSCL2 Gene in Fat Deposition
4.2. BSCL2 Variants as Potential Selective Markers for Complex Pig Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roumane, A.; McIlroy, G.D.; Balci, A.; Han, W.; Delibegović, M.; Baldassarre, M.; Newsholme, P.; Rochford, J.J. Bscl2 Deficiency Does Not Directly Impair the Innate Immune Response in a Murine Model of Generalized Lipodystrophy. J. Clin. Med. 2021, 10, 441. [Google Scholar] [CrossRef]
- Magré, J.; Delépine, M.; Khallouf, E.; Gedde-Dahl, T.; Van Maldergem, L.; Sobel, E.; Papp, J.; Meier, M.; Mégarbané, A.; Bachy, A.; et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat. Genet. 2001, 28, 365–370. [Google Scholar] [CrossRef]
- Dollet, L.; Magré, J.; Cariou, B.; Prieur, X. Function of seipin: New insights from Bscl2/seipin knockout mouse models. Biochimie 2014, 96, 166–172. [Google Scholar] [CrossRef]
- Hsiao, C.T.; Tsai, P.C.; Lin, C.C.; Liu, Y.T.; Huang, Y.H.; Liao, Y.C.; Huang, H.W.; Lin, K.P.; Soong, B.W.; Lee, Y.C. Clinical and Molecular Characterization of BSCL2 Mutations in a Taiwanese Cohort with Hereditary Neuropathy. PLoS ONE 2016, 11, e0147677. [Google Scholar] [CrossRef]
- Rahman, O.U.; Khawar, N.; Khan, M.A.; Ahmed, J.; Khattak, K.; Al-Aama, J.Y.; Naeem, M.; Jelani, M. Deletion mutation in BSCL2 gene underlies congenital generalized lipodystrophy in a Pakistani family. Diagn. Pathol. 2013, 8, 1–7. [Google Scholar] [CrossRef]
- McIlroy, G.D.; Mitchell, S.E.; Han, W.; Delibegović, M.; Rochford, J.J. Ablation of Bscl2/seipin in hepatocytes does not cause metabolic dysfunction in congenital generalised lipodystrophy. Dis. Model. Mech. 2020, 13, dmm042655. [Google Scholar] [CrossRef] [PubMed]
- Kociucka, B.; Flisikowska, T.; Mróz, D.; Szczerbal, I. Expression of genes involved in lipid droplet formation (BSCL2, SNAP23 and COPA) during porcine in vitro adipogenesis. J. Appl. Genet. 2016, 57, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Switonski, M.; Stachowiak, M.; Cieslak, J.; Bartz, M.; Grzes, M. Genetics of fat tissue accumulation in pigs: A comparative approach. J. Appl. Genet. 2010, 51, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Houpt, K.A.; Houpt, T.R.; Pond, W.G. The pig as a model for the study of obesity and of control of food intake: A review. Yale J. Biol. Med. 1979, 52, 307–329. [Google Scholar]
- Jo, J.; Gavrilova, O.; Pack, S.; Jou, W.; Mullen, S.; Sumner, A.E.; Cushman, S.W.; Periwal, V. Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth. PLoS Comput. Biol. 2009, 5, e1000324. [Google Scholar] [CrossRef]
- Rutkowski, J.M.; Stern, J.H.; Scherer, P.E. The cell biology of fat expansion. J. Cell Biol. 2015, 208, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Szczerbal, I.; Chmurzynska, A. Chromosomal localization of nine porcine genes encoding transcription factors involved in adipogenesis. Cytogenet. Genome Res. 2008, 121, 50–54. [Google Scholar] [CrossRef]
- Szczerbal, I.; Chmurzynska, A.; Switonski, M. Cytogenetic mapping of eight genes encoding fatty acid binding proteins (FABPs) in the pig genome. Cytogenet. Genome Res. 2007, 118, 63–66. [Google Scholar] [CrossRef]
- Xing, K.; Zhu, F.; Zhai, L.; Chen, S.; Tan, Z.; Sun, Y.; Hou, Z.; Wang, C. Identification of genes for controlling swine adipose deposition by integrating transcriptome, whole-genome resequencing, and quantitative trait loci data. Sci. Rep. 2016, 6, 23219. [Google Scholar] [CrossRef]
- Piskol, R.; Ramaswami, G.; Li, J.B. Reliable identification of genomic variants from RNA-seq data. Am. J. Hum. Genet. 2013, 93, 641–651. [Google Scholar] [CrossRef]
- Różycki, M.; Tyra, M. Rules at evaluating the pigs in Pig Slaughter Testing Station. In State of Pig Breeding and Pig Evaluation Results; Instytut Zootechniki: Kraków, Poland, 1996; pp. 69–82. [Google Scholar]
- Tyra, M.; Żak, G. Analysis of the possibility of improving the indicators of pork quality through selection with particular consideration of intramuscular fat (imf) conntenttent*. Ann. Anim. Sci. 2013, 13, 33–44. [Google Scholar] [CrossRef]
- Piórkowska, K.; Żukowski, K.; Ropka-Molik, K.; Tyra, M. New long-non coding RNAs related to fat deposition based on pig model. Ann. Anim. Sci. 2022, 22, 1211–1224. [Google Scholar] [CrossRef]
- Piórkowska, K.; Zukowski, K.; Ropka-Molik, K.; Tyra, M. Variations in Fibrinogen-like 1 (FGL1) Gene Locus as a Genetic Marker Related to Fat Deposition Based on Pig Model and Liver RNA-Seq Data. Genes 2022, 13, 1419. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Sherman, B.; Huang, D.W.; Stephens, R.; Baseler, M.; Lane, H.; Lempicki, R. DAVID-WS: A stateful web service to facilitate gene/protein list analysis. Bioinformatics 2012, 28, 1805–1806. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Huber, C.D.; Kim, B.Y.; Lohmueller, K.E. Population genetic models of GERP scores suggest pervasive turnover of constrained sites across mammalian evolution. PLoS Genet. 2020, 16, e1008827. [Google Scholar] [CrossRef] [PubMed]
- Sim, N.L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012, 40, W452. [Google Scholar] [CrossRef]
- Škrlep, M.; Kavar, T.; Čandek-Potokar, M. Comparison of PRKAG3 and RYR1 gene effect on carcass traits and meat quality in Slovenian commercial pigs. Czech J. Anim. Sci. 2010, 55, 149–159. [Google Scholar] [CrossRef]
- Tchkonia, T.; Morbeck, D.E.; Von Zglinicki, T.; Van Deursen, J.; Lustgarten, J.; Scrable, H.; Khosla, S.; Jensen, M.D.; Kirkland, J.L. Fat tissue, aging, and cellular senescence. Aging Cell 2010, 9, 667–684. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Mottillo, E.P.; Granneman, J.G. Adipose tissue plasticity from WAT to BAT and in between. Biochim. Biophys. Acta 2014, 1842, 358–369. [Google Scholar] [CrossRef]
- Rosen, E.D.; Spiegelman, B.M. What we talk about when we talk about fat. Cell 2014, 156, 20–44. [Google Scholar] [CrossRef]
- Rosen, E.D.; Spiegelman, B.M. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 2000, 16, 145–171. [Google Scholar] [CrossRef]
- Cristancho, A.G.; Lazar, M.A. Forming functional fat: A growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 2011, 12, 722–734. [Google Scholar] [CrossRef]
- Ambele, M.A.; Dhanraj, P.; Giles, R.; Pepper, M.S. Adipogenesis: A Complex Interplay of Multiple Molecular Determinants and Pathways. Int. J. Mol. Sci. 2020, 21, 4283. [Google Scholar] [CrossRef]
- Chen, W.; Chang, B.; Saha, P.; Hartig, S.M.; Li, L.; Reddy, V.T.; Yang, Y.; Yechoor, V.; Mancini, M.A.; Chan, L. Berardinelli-seip congenital lipodystrophy 2/seipin is a cell-autonomous regulator of lipolysis essential for adipocyte differentiation. Mol. Cell. Biol. 2012, 32, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Lei, X.; Yan, Y.; Lydic, T.; Li, J.; Weintraub, N.L.; Su, H.; Chen, W. Targeting ATGL to rescue BSCL2 lipodystrophy and its associated cardiomyopathy. JCI Insight 2019, 4, e129781. [Google Scholar] [CrossRef] [PubMed]
- Ropka-Molik, K.; Piórkowska, K.; Piestrzyńska-Kajtoch, A.; Fornal, A.; Zyskowska, Z.; Pruś, A.; Tyra, M. The Potential Role of MYOM1 and ATGL Genes in Pig Production Improvement. Ann. Anim. Sci. 2021, 21, 833–842. [Google Scholar] [CrossRef]
- Prieur, X.; Dollet, L.; Takahashi, M.; Nemani, M.; Pillot, B.; Le May, C.; Mounier, C.; Takigawa-Imamura, H.; Zelenika, D.; Matsuda, F.; et al. Thiazolidinediones partially reverse the metabolic disturbances observed in Bscl2/seipin-deficient mice. Diabetologia 2013, 56, 1813–1825. [Google Scholar] [CrossRef]
- Bahmad, H.F.; Daouk, R.; Azar, J.; Sapudom, J.; Teo, J.C.M.; Abou-Kheir, W.; Al-Sayegh, M. Modeling Adipogenesis: Current and Future Perspective. Cells 2020, 9, 2326. [Google Scholar] [CrossRef] [PubMed]
- Yoo, C.K.; Lim, H.T.; Han, S.H.; Lee, S.S.; Ko, M.S.; Kang, T.; Lee, J.H.; Park, H.B.; Cho, I.C. QTL analysis of back fat thickness and carcass pH in an F2 intercross between Landrace and Korean native pigs. Mol. Biol. Rep. 2012, 39, 8327–8333. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Ren, J.; Li, W.; Huang, X.; Yan, X.; Yang, B.; Zhao, Y.; Guo, Y.; Mao, H.; Huang, L. A genome-wide scan for quantitative trait loci affecting serum glucose and lipids in a White Duroc x Erhualian intercross F(2) population. Mamm. Genome 2009, 20, 386–392. [Google Scholar] [CrossRef]
- Qiu, Y.; Ding, R.; Zhuang, Z.; Wu, J.; Yang, M.; Zhou, S.; Ye, Y.; Geng, Q.; Xu, Z.; Huang, S.; et al. Genome-wide detection of CNV regions and their potential association with growth and fatness traits in Duroc pigs. BMC Genom. 2021, 22, 332. [Google Scholar] [CrossRef]
Mutation (Gene Variant) | Quantity | |
---|---|---|
Total | χ2 Test * | |
Total | 69,102 | 5870 |
Known variant % (having “rs” number) | 73.2 | 76.5 |
Analyzed genes | 12,473 | 2598 |
Insertion | 3220 | 180 |
Deletion | 2597 | 109 |
SNP | 63,283 | 19,789 |
High effect | 1933 | 43 |
Low effect | 11,675 | 1070 |
Moderate effect | 4538 | 370 |
Missense variant | 4400 | 363 |
Silent variant | 10,570 | 994 |
3′UTR | 25,550 | 2497 |
5′UTR with the premature start codon | 576 | 55 |
5′UTR | 3777 | 323 |
Frameshift variant | 1134 | 25 |
Splice region variant | 1386 | 45 |
Inframe variant | 51 | 8 |
Downstream gene | 25,849 | 2000 |
Upstream gene | 10,867 | 865 |
Intergenic region | 7641 | 580 |
Intron | 23,612 | 1733 |
Start lost | 9 | 2 |
Stop gain | 27 | 3 |
Stop lost | 14 | 1 |
Traits | BSCL2 Genotype | |||
---|---|---|---|---|
AA (3) TT | AG (7) GT | GG (6) GG | p-Value | |
Daily gain (g) | 767 ± 0.71 | 721 ± 0.99 | 649 ± 0.30 | 0.068 |
All forage used (kg) | 234 ± 26 ab | 236 ± 30 a | 268 ± 20 b | 0.03 |
Carcass yield (kg) | 74.70 ± 1.56ab | 74.36 ± 1.18 a | 76.03 ± 1.50 b | 0.036 |
Loin fat with skin (kg) | 1.71 ± 0.13 A | 1.94 ± 0.62 ABa | 2.55 ± 0.15 Bb | 0.0007 |
Ham fat with skin (kg) | 1.97 ± 0.16 A | 1.96 ± 0.41 A | 2.53 ± 0.23 B | 0.008 |
Peritoneal fat (kg) | 0.46 ± 0.05 A | 0.57 ± 0.21 ABa | 0.77 ± 0.12 Bb | 0.001 |
Backfat over shoulder (cm) | 2.10 ± 0.42 a | 2.70 ± 0.67 ab | 2.95 ± 0.33 b | 0.04 |
Backfat over lumbar I | 1.53 ± 0.25 A | 2.01 ± 0.72 AB | 2.52 ± 0.30B | 0.005 |
Backfat over lumbar II | 1.43 ± 0.13 A | 1.79 ± 0.74 B | 2.12 ± 0.33 B | 0.003 |
Backfat over lumbar III | 1.93 ± 0.09 Aa | 2.16 ± 0.61 B | 2.60 ± 0.65 b | 0.03 |
Backfat thickness (cm) | 1.73 ± 0.04 A | 2.11 ± 0.64 B | 2.47 ± 0.26 B | 0.0005 |
Feet mass (kg) | 1.08 ± 0.05 Aa | 0.97 ± 0.06 ABb | 0.91 ± 0.07 B | 0.008 |
Loin mass without skin and fat (kg) | 4.98 ± 0.53 | 4.68 ± 0.34 | 4.40 ± 0.26 | 0.07 |
Ham mass (kg) | 9.28 ± 0.57 ab | 8.63 ± 0.57 a | 9.2 ± 0.37 b | 0.04 |
Knuckle fat with skin (kg) | 0.21 ± 0.01 A | 0.23 ± 0.03 AB | 0.24 ± 0.02 B | 0.007 |
Loin eye height (cm) | 6.7 ± 0.081A | 6.5 ± 076 AB | 6.22 ± 0.28 B | 0.005 |
Meat percentage % | 55.8 ± 2.18 a | 52.8 ± 5.01 ab | 49.8 ± 2.09 b | 0.02 |
Backfat at the point K1 | 1.60 ± 0.08 A | 1.87 ± 0.76 AB | 2.48 ± 0.50 B | 0.005 |
Meat percentage in primary cuts (kg) | 64.3 ± 2.21 A | 60.7 ± 5.42 AB | 57.7 ± 2.63 B | 0.01 |
pH24 | 5.43 ± 0.02 AB | 5.40 ± 0.04 A | 5.47 ± 0.04 B | 0.009 |
Traits | BSCL2 Genotype | |||
---|---|---|---|---|
AA (3) | AG (8) | GG (5) | p-Value | |
Carcass yield (kg) | 74.70 ± 1.56 AB | 74.2 ± 1.17 A | 76.6 ± 0.88 B | 0.0016 |
Peritoneal fat (kg) | 0.46 ± 0.05 A | 0.57 ± 0.20 ABa | 0.81 ± 0.10 Bb | 0.0007 |
Feet mass (kg) | 1.09 ± 0.05 Aa | 0.96 ± 0.06 ABb | 0.90 ± 0.07 B | 0.0076 |
Loin mass (kg) | 6.69 ± 0.53 ab | 6.64 ± 0.44 a | 6.99 ± 0.12 b | 0.04 |
Loin fat with skin (kg) | 1.71 ± 0.13 A | 2.01 ± 0.61 ABa | 2.56 ± 0.17 Bb | 0.006 |
Ham fat with skin (kg) | 1.97 ± 0.22 a | 2.13 ± 0.47ab | 2.54 ± 0.17 b | 0.04 |
Knuckle fat with skin (kg) | 0.24 ± 0.02 a | 0.24 ± 0.03 a | 0.21 ± 0.01 b | 0.019 |
Backfat over lumbar I | 1.53 ± 0.25 A | 2.06 ± 0.68 AB | 2.54 ± 0.32B | 0.004 |
Backfat over lumbar II | 1.43 ± 0.13 A | 1.81 ± 0.69 AB | 2.14 ± 0.35 B | 0.007 |
Backfat thickness (cm) | 1.73 ± 0.04 A | 2.16 ± 0.61 AB | 2.47 ± 0.29 B | 0.003 |
Loin eye height (cm) | 6.70 ± 0.081A | 6.49 ± 0.72 AB | 6.18 ± 0.29 B | 0.01 |
Loin mass without skin and fat (kg) | 4.98 ± 0.53 | 4.68 ± 0.34 | 4.40 ± 0.26 | 0.07 |
Backfat at the point K1 | 1.60 ± 0.08 A | 1.92 ± 0.72 AB | 2.52 ± 0.54 B | 0.01 |
Primary cuts (kg) | 64.3 ± 2.21 A | 60.3 ± 5.17 AB | 57.7 ± 2.63 B | 0.01 |
Meat percentage % | 55.8 ± 2.18 a | 52.8 ± 5.01 ab | 49.8 ± 2.09 b | 0.02 |
pH24 | 5.44 ± 0.02 AB | 5.41 ± 0.04 A | 5.47 ± 0.04 B | 0.02 |
Traits | BSCL2 Genotype | |||
---|---|---|---|---|
CC | CG | GG | p-Value | |
Daily gain | 638 ± 29 a | 710 ± 90 b | 761 ± 71 b | 0.04 |
Peritoneal fat (kg) | 0.69 ± 0.06 A | 0.65 ± 0.23 ABa | 0.46 ± 0.05 Bb | 0.008 |
Feet mass (kg) | 0.95 ± 0.03 a | 0.94 ± 0.08 a | 1.09 ± 0.05 b | 0.013 |
Loin mass (kg) | 7.13 ± 0.02 A | 6.67 ± 0.39 B | 6.69 ± 0.53 AB | 0.003 |
Loin fat with skin (kg) | 2.41 ± 0.07 A | 2.17 ± 0.62 ABa | 1.71 ± 0.13 Bb | 0.003 |
Ham fat with skin (kg) | 2.31 ± 0.10 a | 2.20 ± 0.50 ab | 1.97 ± 0.17 b | 0.04 |
Knuckle fat with skin (kg) | 0.24 ± 0.02 ab | 0.23 ± 0.03 a | 0.21 ± 0.01 b | 0.018 |
Backfat over lumbar I | 2.37 ± 0.26 a | 2.21 ± 0.68 a | 1.53 ± 0.25 b | 0.016 |
Backfat over lumbar II | 2.10 ± 0.29 a | 1.89 ± 0.66 ab | 1.43 ± 0.12 b | 0.03 |
Backfat thickness (cm) | 2.34 ± 0.14 A | 2.26 ± 0.60ABa | 1.73 ± 0.04 Bb | 0.008 |
Loin mass (kg) | 7.56 ± 0.25a | 6.79 ± 0.37 b | 7.57 ± 0.40 a | 0.01 |
Backfat at the point K1 | 2.47 ± 0.33 a | 2.06 ± 0.76 ab | 1.6 ± 0.08 b | 0.03 |
Meat percentage in primary cuts (kg) | 59.5 ± 0.30 a | 59.3 ± 5.27 a | 64.3 ± 2.21 b | 0.03 |
Meat percentage % | 51.6 ± 2.18 ab | 51.4 ± 4.80 a | 55.8 ± 2.17 b | 0.04 |
Mutation | Traits | Genotype | GLM Significance | Effect | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LSM | SE | LSM | SE | LSM | SE | BSCL2 p-Value | X2P | Farm | Sire | Additive | Dominance | ||
AA (n = 11) | AG (n = 27) | GG (n = 34) | A→G | het→hom | |||||||||
rs341493267 | Feet mass (kg) | 0.98 a | 0.03 | 0.94 ab | 0.01 | 0.92 b | 0.01 | 0.0496 | ** | ns | ns | −0.03 * | - |
Loin fat with skin (kg) | 1.89 AB | 0.13 | 1.93 A | 0.12 | 2.13 B | 0.09 | 0.0048 | ** | * | ns | - | - | |
Ham fat with skin (kg) | 2.04 ab | 0.09 | 2.03 a | 0.08 | 2.16 b | 0.09 | 0.0125 | ** | * | ns | - | - | |
Loin mass without skin and fat (kg) | 4.46 ab | 0.17 | 4.53 a | 0.10 | 4.35 b | 0.08 | 0.0395 | *** | ns | ns | - | - | |
Backfat at lumbar I (cm) | 1.97 a | 0.21 | 2.11 ab | 0.11 | 2.34 b | 0.09 | 0.0462 | ** | * | ns | +0.19 T | - | |
Backfat at lumbar II (cm) | 1.83 ab | 0.19 | 1.86 a | 0.11 | 2.05 b | 0.09 | 0.0413 | ** | * | ns | - | - | |
rs346079334 | GG (n = 11) | GT (n = 24) | TT (n = 37) | ||||||||||
Feet mass (kg) | 0.98 a | 0.03 | 0.95 ab | 0.01 | 0.92 b | 0.01 | 0.0427 | *** | ns | ns | −0.03 * | - | |
Loin fat with skin (kg) | 1.89 ab | 0.13 | 2.00 a | 0.13 | 2.07 b | 0.09 | 0.0167 | * | * | ns | - | - | |
Ham fat with skin (kg) | 2.04 a | 0.09 | 2.08 ab | 0.08 | 2.12 b | 0.08 | 0.0493 | - | |||||
Meat color redness | 15.8 ab | 0.21 | 15.1 a | 0.19 | 15.6 b | 0.29 | 0.0492 | - | - | ns | - | +0.30 T | |
rs330154033 | AA (n = 11) | AG (n = 28) | GG (n = 33) | ||||||||||
Feet mass (kg) | 0.98 a | 0.03 | 0.94 ab | 0.11 | 0.92 b | 0.01 | 0.0488 | *** | * | ns | +0.03 * | - | |
Loin fat with skin (kg) | 1.89 a | 0.13 | 1.97 ab | 0.12 | 2.11 b | 0.10 | 0.0125 | ** | * | ns | - | - | |
Ham fat with skin (kg) | 2.04 a | 0.09 | 2.06 ab | 0.08 | 2.14 b | 0.09 | 0.0387 | ||||||
Feed conversion (kg/kg) | 3.21 a | 0.11 | 3.39 ab | 0.10 | 3.45 b | 0.09 | 0.0477 | - | +0.12 T | ||||
rs81333153 | GG (n = 12) | GC (n = 37) | CC (n = 23) | ||||||||||
Loin mass (kg) | 6.57 a | 0.12 | 6.40 b | 0.09 | 6.40 b | 0.19 | 0.0085 | *** | ns | ns | - | - | |
Loin fat with skin (kg) | 1.93 a | 0.12 | 2.03 ab | 0.10 | 2.07 b | 0.11 | 0.0224 | *** | ** | ns | - | - | |
Backfat at lumbar II (cm) | 1.82 a | 0.17 | 1.94 b | 0.09 | 2.03 ab | 0.13 | 0.0468 | ** | * | ns | - | - | |
Daily feed intake (kg) | 2.37 ab | 0.04 | 2.42 b | 0.04 | 2.24 a | 0.06 | 0.0359 | - | - | * | - | +0.14 T |
Mutation | Traits | Genotype | GLM Significance | Effect | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LSM | SE | LSM | SE | LSM | SE | BSCL2 p-Value | X2P | Farm | sire | Additive | Dominance | ||
AA (n = 9) | AG (n = 86) | GG (n = 105) | A→G | het→hom | |||||||||
rs341493267 | Knuckle fat with skin (kg) | 1.30 a | 0.02 | 1.37 ab | 0.01 | 1.39 b | 0.01 | 0.0437 | ** | * | ns | - | +0.044 * |
Backfat at the point K1 | 1.70 AB | 0.50 | 1.63 A | 0.08 | 1.35 B | 0.05 | 0.0447 | *** | ns | ns | - | −0.2 3* | |
Feed conversion (kg/kg) | 2.93 ab | 0.13 | 2.90 a | 0.04 | 2.94 b | 0.05 | 0.0471 | - | ns | * | −0.22 * | +0.13 * | |
Slaughter age (days) | 190 a | 8 | 188 b | 2 | 188 b | 1 | 0.0490 | - | ns | ns | - | - | |
Days in test (days) | 107 a | 5 | 103 b | 1 | 104 b | 1 | 0.0224 | - | ns | ns | - | - | |
Loin pH24 | 5.49 a | 0.02 | 5.54 b | 0.01 | 5.52 b | 0.008 | 0.0153 | - | ns | ns | +0.044 * | −0.016 T | |
rs346079334 | GG (n = 108) | GT (n = 73) | TT (n = 20) | ||||||||||
Feed conversion | 2.92 ab | 0.04 | 2.94 a | 0.04 | 2.87 b | 0.06 | 0.0471 | - | ns | * | - | - | |
Loin pH24 | 5.48 a | 0.02 | 5.5 ab | 0.01 | 5.50 b | 0.009 | 0.0153 | - | ns | ns | +0.04 * | −0.028 ** | |
rs330154033 | AA (n = 12) | AG (n = 68) | GG (n = 120) | ||||||||||
Knuckle fat with skin (kg) | 1.37 ab | 0.05 | 1.34 a | 0.01 | 1.40 b | 0.01 | 0.0161 | * | ** | ns | - | +0.02 T | |
Backfat at the point C1 | 1.90 a | 0.37 | 1.49 ab | 0.06 | 1.46 b | 0.05 | 0.0292 | *** | ** | ns | −0.23 * | +0.095 T |
Mutation | Traits | Genotype | GLM Significance | Effect | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LSM | SE | LSM | SE | LSM | SE | BSCL2 | X2P | Farm | Sire | Additive | Dominance | ||
AA (n = 8) | AG (n = 70) | GG (n = 91) | A→G | het→hom | |||||||||
rs341493267 | Loin fat with skin (kg) | 1.64 a | 0.11 | 1.74 a | 0.05 | 1.92 b | 0.03 | 0.0477 | ** | ns | ns | +0.14 T | - |
Daily gain (30–100 kg) (g) | 998 A | 70 | 900 AB | 13 | 865 B | 11 | 0.0067 | - | ns | ns | −67 ** | - | |
Daily gain (0–100 kg) (g) | 698 a | 32 | 655 ab | 7 | 633 b | 7 | 0.0351 | - | ns | ns | −33 * | - | |
Feed conversion (kg/kg) | 2.70 a | 0.14 | 2.90 ab | 0.034 | 3.02 b | 0.031 | 0.0165 | - | ns | ns | +0.16 ** | - | |
Slaughter age (days) | 173 a | 9 | 186 ab | 2 | 194 b | 2 | 0.0303 | - | ns | ns | −6.72 T | - | |
Days in test (days) | 92 a | 7 | 103 ab | 2 | 107 b | 1 | 0.0196 | - | ns | ns | −4.37 T | - | |
rs346079334 | GG (n = 58) | GT (n = 56) | TT (n = 55) | ||||||||||
Peritoneal fat (kg) | 0.64 a | 0.02 | 0.60 b | 0.02 | 0.60 b | 0.03 | 0.0246 | ** | ns | ns | - | - | |
Loin fat with skin (kg) | 1.85 ab | 0.06 | 1.79 a | 0.06 | 1.84 b | 0.07 | 0.0356 | *** | ns | ns | - | - | |
Loin eye height (cm) | 7.29 ab | 0.07 | 7.43 a | 0.08 | 7.18 b | 0.08 | 0.0093 | *** | ** | ns | −0.10 * | ||
Loin eye area (cm2) | 58.7 ab | 0.77 | 60.1 a | 0.81 | 58.3 b | 0.77 | 0.0138 | ** | ** | ns | −1.16 * | ||
pH loin45 | 6.12 A | 0.03 | 6.28 B | 0.03 | 6.19 AB | 0.04 | 0.0011 | - | ns | ns | +0.03 T | −0.07 ** | |
rs330154033 | AA (n = 9) | AG (n = 76) | GG (n = 84) | ||||||||||
Carcass yield (kg) | 74.7 a | 0.33 | 75.8 b | 0.14 | 75.8 b | 0.13 | 0.0415 | ** | ns | ns | +0.55 * | −0.26 * | |
Loin mass (kg) | 7.55 a | 0.13 | 8.13 b | 0.070 | 8.19 b | 0.066 | 0.0162 | ** | ns | ns | - | - | |
Ham fat with skin (kg) | 1.55 a | 0.14 | 1.84 b | 0.043 | 1.91 b | 0.033 | 0.0455 | ** | ns | ns | 0.18 ** | −0.067 T | |
Loin eye height (cm) | 6.70 a | 0.17 | 7.34 b | 0.07 | 7.33 b | 0.06 | 0.0143 | *** | ns | ns | 0.31 ** | −0.16 * | |
Loin eye area (cm2) | 51.8 A | 2.67 | 59.8 B | 0.64 | 59.6 B | 0.64 | 0.0015 | ** | ns | ns | 3.93 *** | −2.07 ** | |
Daily gain (30–100 kg) (g) | 1034 A | 56 | 883 B | 14 | 875 B | 11 | 0.0009 | - | ns | ns | −79 *** | ||
Daily gain (0–100 kg) (g) | 709 a | 27 | 647 ab | 8 | 625 b | 16 | 0.0207 | - | ns | ns | −36 ** | 13.03 T | |
Feed conversion (kg/kg) | 2.55 A | 0.081 | 2.92 AB | 0.033 | 3.01 B | 0.032 | 0.0002 | - | ns | ns | 0.23 *** | −0.07 * | |
Slaughter age (days) | 168 a | 8 | 189 b | 3 | 192 b | 2 | 0.0158 | - | ns | ns | - | - | |
Days in test (days) | 87 A | 5 | 105 B | 2 | 105 B | 1 | 0.0025 | - | ns | ns | - | - | |
rs81333153 | CC (n = 10) | GC (n = 69) | GG (n = 90) | ||||||||||
Feed conversion (kg/kg) | 3.16a | 0.068 | 2.97ab | 0.033 | 2.92b | 0.034 | 0.0482 | - | ns | ns | −0.12 * | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piórkowska, K.; Sroka, J.; Żukowski, K.; Zygmunt, K.; Ropka-Molik, K.; Tyra, M. The Effect of BSCL2 Gene on Fat Deposition Traits in Pigs. Animals 2023, 13, 641. https://doi.org/10.3390/ani13040641
Piórkowska K, Sroka J, Żukowski K, Zygmunt K, Ropka-Molik K, Tyra M. The Effect of BSCL2 Gene on Fat Deposition Traits in Pigs. Animals. 2023; 13(4):641. https://doi.org/10.3390/ani13040641
Chicago/Turabian StylePiórkowska, Katarzyna, Julia Sroka, Kacper Żukowski, Karolina Zygmunt, Katarzyna Ropka-Molik, and Mirosław Tyra. 2023. "The Effect of BSCL2 Gene on Fat Deposition Traits in Pigs" Animals 13, no. 4: 641. https://doi.org/10.3390/ani13040641
APA StylePiórkowska, K., Sroka, J., Żukowski, K., Zygmunt, K., Ropka-Molik, K., & Tyra, M. (2023). The Effect of BSCL2 Gene on Fat Deposition Traits in Pigs. Animals, 13(4), 641. https://doi.org/10.3390/ani13040641