Effect of the Supplementation Using an Herbal Mixture as a Choline Source during Early Gestation in Rambouillet Ewes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Location
2.3. Animals, Treatments, and Sampling
2.3.1. Selection of Ewes
2.3.2. Mating
2.3.3. Supplementation and Gestation
2.3.4. Births, Breeding, and Sampling
2.4. Statistical Analysis
3. Results
3.1. Productive Performance
3.2. Colostrum and Milk Quality
3.3. Placental Weight and Time of Membrane Expulsion
3.4. Offspring Development
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, M.; Wang, B.; Fu, X.; Yang, Q.; Zhu, M.J. Fetal programming in meat production. Meat Sci. 2015, 109, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S. Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients 2015, 7, 9492–9507. [Google Scholar] [CrossRef] [PubMed]
- Namous, H.; Peñagaricano, F.; Del Corvo, M.; Capra, E.; Thomas, D.L.; Stella, A.; Williams, J.L.; Marsan, P.A.; Khatib, H. Integrative analysis of methylomic and transcriptomic data in fetal sheep muscle tissues in response to maternal diet during pregnancy. BMC Genom. 2018, 19, 123. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J. Maternal nutrition, fetal nutrition, and disease in later life. Nutrition 1997, 13, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Larqué, E.; Zamora, S.; Gil, A. Dietary trans fatty acids in early life: A review. Early Hum. Dev. 2001, 65, S31–S41. [Google Scholar] [CrossRef]
- Roque-Jiménez, J.A.; Rosa-Velázquez, M.; Pinos-Rodríguez, J.M.; Vicente-Martínez, J.G.; Mendoza-Cervantes, G.; Flores-Primo, A.; Lee-Rangel, H.A.; Relling, A.E. Role of Long Chain Fatty Acids in Developmental Programming in Ruminants. Animals 2021, 11, 762. [Google Scholar] [CrossRef]
- Ji, Y.; Wu, Z.; Dai, Z.; Sun, K.; Wang, J.; Wu, G. Nutritional epigenetics with a focus on amino acids: Implications for the development and treatment of metabolic syndrome. J. Nutr. Biochem. 2016, 27, 1–8. [Google Scholar] [CrossRef]
- Pinotti, L.; Baldi, A.; Dell’Orto, V. Comparative mammalian choline metabolism with emphasis on the high-yielding dairy cow. Nutr. Res. Rev. 2002, 15, 315–332. [Google Scholar] [CrossRef]
- Jayaprakash, G.; Sathiyabarathi, M.; Robert, M.A.; Tamilmani, T. Rumen-protected choline: A significance effect on dairy cattle nutrition. Vet. World 2016, 9, 837–841. [Google Scholar] [CrossRef]
- Swartz, T.H.; Swartz, T.; Bradford, B.J.; Bradford, B.; Malysheva, O.; Malysheva, O.; Caudill, M.A.; Caudill, M.; Mamedova, L.K.; Mamedova, L.; et al. Effects of dietary rumen-protected choline supplementation on colostrum yields, quality, and choline metabolites from dairy cattle. JDS Commun. 2022, 3, 296–300. [Google Scholar] [CrossRef]
- Mendoza, G.D.; Oviedo, M.F.; Pinos, J.M.; Lee-Rangel, H.A.; Vázquez, A.; Flores, R.; Pérez, F. Milk production in dairy cows supplemented with herbal choline and methionine. Rev. Fac. Cienc. Agrar. 2020, 52, 332–343. [Google Scholar]
- Roque-Jiménez, J.A.; Mendoza-Martínez, G.D.; Vázquez-Valladolid, A.; Guerrero-González, M.L.; Flores-Ramírez, R.; Pinos-Rodriguez, J.M.; Loor, J.J.; Relling, A.E.; Lee-Rangel, H.A. Supplemental Herbal Choline Increases 5-hmC DNA on Whole Blood from Pregnant Ewes and Offspring. Animals 2020, 10, 1277. [Google Scholar] [CrossRef]
- Frankič-Korošec, T.; Voljč, M.; Salobir, J.; Rezar, V. Use of herbs and spices and their extracts in animal nutrition. Acta Agric. Slov. 2009, 94, 95–102. [Google Scholar]
- Martínez-Aispuro, J.M.; Mendoza, G.D.; Cordero-Mora, J.L.; Ayala-Monter, M.A.; Sánchez-Torres, M.T.; Figueroa-Velasco, J.L.; Vázquez-Silva, G.; Gloria-Trujillo, A. Evaluation of an herbal choline feed plant additive in lamb feedlot rations. Rev. Bras. Zootec. 2019, 48, e20190020. [Google Scholar] [CrossRef]
- Crosby, M.; Mendoza-Martínez, A.; Relling, A.; Vázquez, A.; Lee-Rangel, H.A.; Martinez, J.A.; Oviedo, M. Influence of supplemental choline on milk yield, fatty acid profile, and postpartum weight changes in suckling ewes. J. Dairy Sci. 2017, 100, 125. [Google Scholar]
- Rodriguez-Guerrero, V.; Lizarazo, A.C.; Ferraro, S.; Suárez, N.; Miranda, L.A.; Mendoza, G.D. Effect of herbal choline and rumen-protected methionine on lamb performance and blood metabolites. S. Afr. J. Anim. Sci. 2018, 48, 427–434. [Google Scholar] [CrossRef]
- Toschi, P.; Baratta, M. Ruminant Placental Adaptation in Early Maternal Undernutrition: An Overview. Front. Vet. Sci. 2021, 8, 755034. [Google Scholar] [CrossRef]
- Wooding, F.B.P.; Flint, A.P.F. Placentation. In Marshall’s Physiology of Reproduction; Lamming, G.E., Ed.; Springer: Dordrecht, The Netherland, 1994; pp. 233–460. [Google Scholar]
- Zeisel, S.H. Choline: Critical role during fetal development and dietary requirements in adults. Annu. Rev. Nutr. 2006, 26, 229–250. [Google Scholar] [CrossRef]
- SAGARPA. Norma Oficial Mexicana (NOM-062-ZOO-1999), Especificaciones Técnicas para la Producción, Cuidado y uso de los Animales de Laboratorio; Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación: México City, México, 1999. [Google Scholar]
- Gutiérrez, A.R.; Gutiérrez, A.; Sánchez, C.; Mendoza, G.D. Effect of including herbal choline in the diet of a dairy herd; a multiyear evaluation. Emir. J. Food Agric. 2019, 31, 447–481. [Google Scholar]
- Reynolds, C.K.; Cannon, V.L.; Loerch, S.C. Effects of forage source and supplementation with soybean and marine algal oil on milk fatty acid. Anim. Feed Sci. Technol. 2006, 131, 333–357. [Google Scholar] [CrossRef]
- Bollatti, J.M.; Zenobi, M.G.; Artusso, N.A.; Alfaro, G.F.; Lopez, A.M.; Barton, B.A.; Nelson, C.D.; Staples, C.R.; Santos, J. Timing of initiation and duration of feeding rumen-protected choline affects performance of lactating Holstein cows. J. Dairy Sci. 2020, 103, 4174–4191. [Google Scholar] [CrossRef]
- Larqué, E.; Krauss-Etschmann, S.; Campoy, C.; Hartl, D.; Linde, J.; Klingler, M.; Demmelmair, H.; Caño, A.; Gil, A.; Bondy, B.; et al. Docosahexaenoic acid supply in pregnancy affects placental expression of fatty acid transport proteins. Am. J. Clin. Nutr. 2006, 84, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Sigdel, A.; Bisinotto, R.S.; Peñagaricano, F. Genes and pathways associated with pregnancy loss in dairy cattle. Sci. Rep. 2021, 11, 13329. [Google Scholar] [CrossRef] [PubMed]
- Bollatti, J.M.; Zenobi, M.G.; Barton, B.A.; Staples, C.R.; Santos, J.E.P. Responses to rumen-protected choline in transition cows do not depend on prepartum body condition. J. Dairy. Sci. 2020, 103, 2272–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Rovira, L.; Pesantez-Pacheco, J.; Hernandez, F.; Elvira-Partida, L.; Perez-Solana, M.; Gonzalez-Martin, J.; Astiz, S. Identification of factors affecting colostrum quality of dairy Lacaune ewes assessed with the Brix refractometer. J. Dairy Res. 2017, 84, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.C.; Alves, N.G.; Ascari, I.J.; Junqueira, F.B.; Coutinho, A.S.; Lima, R.R.; Pérez, J.R.; De Paula, S.O.; Furusho-Garcia, I.F.; Abreu, L.R. Colostrum composition of Santa Inês sheep and passive transfer of immunity to lambs. J. Dairy Sci. 2015, 98, 3706–3716. [Google Scholar] [CrossRef]
- Vasquez-Hidalgo, M.A.; Swanson Kendall, C.; Vonnahme, K.A. Effects of Mid-Gestation Nutrient Restriction, Realimentation, and Parity on the Umbilical Hemodynamics of the Pregnant Ewe. Front. Anim. Sci. 2022, 3, 855345. [Google Scholar] [CrossRef]
- Magolski, J.D.; Luther, J.S.; Neville, T.L. Maternal nutrition during pregnancy influences offspring wool production and wool follicle development. J. Anim. Sci. 2011, 89, 3819–3823. [Google Scholar] [CrossRef]
- Rigano, S.; Bozzo, M.; Ferrazzi, E.; Bellotti, M.; Battaglia, F.C.; Galan, H.L. Early and Persistent Reduction in Umbilical Vein Blood Flow in the Growth-Restricted Fetus: A Longitudinal Study. Am. J. Obstet. Gynecol. 2001, 185, 834–838. [Google Scholar] [CrossRef]
- Ferrazzi, E.; Bozzo, M.; Rigano, S.; Bellotti, M.; Morabito, A.; Pardi, G. Temporal Sequence of Abnormal Doppler Changes in the Peripheral and Central Circulatory Systems of the Severely Growth-Restricted Fetus. Ultrasound Obstet. Gynecol. 2002, 19, 140–146. [Google Scholar] [CrossRef]
- Redmer, D.A.; Wallace, J.M.; Reynolds, L.P. Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development. Domest. Anim. Endocrinol. 2004, 27, 199–217. [Google Scholar] [CrossRef]
- King, J.H.; Kwan, S.; Yan, J.; Klatt, K.C.; Jiang, X.; Roberson, M.S.; Caudill, M.A. Maternal Choline Supplementation Alters Fetal Growth Patterns in a Mouse Model of Placental Insufficiency. Nutrients 2017, 9, 765. [Google Scholar] [CrossRef]
- Kwan, S.; King, J.H.; Yan, J.; Wang, Z.; Jiang, X.; Hutzler, J.S.; Klein, H.R.; Brenna, J.T.; Roberson, M.S.; Caudill, M.A. Maternal Choline Supplementation Modulates Placental Nutrient Transport and Metabolism in Late Gestation of Mouse Pregnancy. J. Nutr. 2017, 147, 2083–2092. [Google Scholar] [CrossRef]
- Camacho, L.E.; Lemley, C.O.; Prezotto, L.D.; Bauer, M.L.; Freetly, H.C.; Swanson, K.C.; Vonnahme, K.A. Effects of maternal nutrient restriction followed by realimentation during midgestation on uterine blood flow in beef cows. Theriogenology 2014, 81, 1248–1256.e563. [Google Scholar] [CrossRef] [Green Version]
- Camacho, L.E.; Lemley, C.O.; Dorsam, S.T.; Swanson, K.C.; Vonnahme, K.A. Effects of maternal nutrient restriction followed by realimentation during early and mid-gestation in beef cows. II. Placental development, umbilical blood flow, and uterine blood flow responses to diet alterations. Theriogenology 2018, 116, 1–11. [Google Scholar] [CrossRef]
- Klewitz, J.; Struebing, C.; Rohn, K.; Goergens, A.; Martinsson, G.; Orgies, F. Effects of Age, Parity, and Pregnancy Abnormalities on Foal Birth Weight and Uterine Blood Flow in the Mare. Theriogenology 2015, 83, 721–729. [Google Scholar] [CrossRef]
- Estrada-Cortés, E.; Ortiz, W.; Rabaglino, M.B. Choline acts during preimplantation development of the bovine embryo to program postnatal growth and alter muscle DNA methylation. FASEB J. 2021, 35, e21926. [Google Scholar] [CrossRef]
Item | Treatments | SEM 1 | p-Values | |
---|---|---|---|---|
Control | Biocholine | |||
Item | ||||
Lactating Ewe weight (Kg) | ||||
At parturition | 56.55 | 62.35 | 5.29 | 0.63 |
At weaning (35-d) | 54.78 | 54.05 | 5.44 | 0.49 |
Total weight change (Kg) | 4.43 | 6.3 | 0.01 | 0.47 |
Daily weight changes (Kg) | 0.07 | 0.105 | 0.01 | 0.47 |
Average daily milk production (mL) | 681 | 690.8 | 31.98 | 0.65 |
Item | Treatments | SEM 1 | p-Values | |
---|---|---|---|---|
Control | Biocholine | |||
Colostrum quality, % | ||||
Fat | 9.54 | 11.67 | 1.59 | 0.36 |
Protein | 6.84 | 5.54 | 0.51 | 0.11 |
Solids | 18.66 | 13.82 | 1.68 | 0.08 |
Lactose | 10.25 | 8.21 | 0.92 | 0.14 |
Total solids | 26.64 | 25.44 | 2.01 | 0.67 |
Density (Kg/m3) | 1062.24 | 1044.01 | 6.37 | 0.07 |
Milk quality, % | ||||
Fat | 6.77 | 6.45 | 0.50 | 0.66 |
Protein | 3.44 | 3.30 | 0.09 | 0.30 |
Solids | 9.37 | 9.07 | 0.24 | 0.41 |
Lactose | 5.15 | 4.98 | 0.13 | 0.74 |
Total solids | 15.37 | 14.75 | 0.49 | 0.39 |
Density (Kg/m3) | 1029.65 | 1028.51 | 1.48 | 0.49 |
Item | Treatments | SEM 1 | p-Values | |
---|---|---|---|---|
Control | Biocholine | |||
Retention time (min) | 169.60 | 194.50 | 7.12 | 0.23 |
Placental weight (g) | 451.21 | 377.10 | 32.9 | 0.05 |
Item | Treatments | SEM 1 | p-Values | |
---|---|---|---|---|
Control | Biocholine | |||
Birth weight (Kg) | 5.25 | 6.16 | 0.67 | 0.02 |
Weaning weight (Kg) | 21.73 | 20.38 | 2.87 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Suárez, N.E.; Lee-Rangel, H.A.; Lizarazo-Chaparro, A.C.; Mendoza-Martínez, G.D.; Espinosa-Reyes, G.; Hernández-García, P.A.; García-López, J.C.; Martínez-García, J.A.; Álvarez-Fuentes, G.; Roque-Jiménez, J.A. Effect of the Supplementation Using an Herbal Mixture as a Choline Source during Early Gestation in Rambouillet Ewes. Animals 2023, 13, 645. https://doi.org/10.3390/ani13040645
Suárez-Suárez NE, Lee-Rangel HA, Lizarazo-Chaparro AC, Mendoza-Martínez GD, Espinosa-Reyes G, Hernández-García PA, García-López JC, Martínez-García JA, Álvarez-Fuentes G, Roque-Jiménez JA. Effect of the Supplementation Using an Herbal Mixture as a Choline Source during Early Gestation in Rambouillet Ewes. Animals. 2023; 13(4):645. https://doi.org/10.3390/ani13040645
Chicago/Turabian StyleSuárez-Suárez, Nydia Emilce, Héctor Aaron Lee-Rangel, Augusto César Lizarazo-Chaparro, German David Mendoza-Martínez, Guillermo Espinosa-Reyes, Pedro Abel Hernández-García, Juan Carlos García-López, José Antonio Martínez-García, Gregorio Álvarez-Fuentes, and José Alejandro Roque-Jiménez. 2023. "Effect of the Supplementation Using an Herbal Mixture as a Choline Source during Early Gestation in Rambouillet Ewes" Animals 13, no. 4: 645. https://doi.org/10.3390/ani13040645
APA StyleSuárez-Suárez, N. E., Lee-Rangel, H. A., Lizarazo-Chaparro, A. C., Mendoza-Martínez, G. D., Espinosa-Reyes, G., Hernández-García, P. A., García-López, J. C., Martínez-García, J. A., Álvarez-Fuentes, G., & Roque-Jiménez, J. A. (2023). Effect of the Supplementation Using an Herbal Mixture as a Choline Source during Early Gestation in Rambouillet Ewes. Animals, 13(4), 645. https://doi.org/10.3390/ani13040645