Warm Season Turfgrass Equine Sports Surfaces: An Experimental Comparison of the Independence of Simple Measurements Used for Surface Characterization
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. General Overview
2.2. Study Design
2.3. In Situ Measurement of Test Boxes
2.4. Statistical Analysis
3. Results
3.1. In Situ Measurement of Test Boxes
3.2. Moisture Probe
3.3. Rotational Peak Shear
3.4. Impact Test Device
3.5. Cone Penetration
3.6. Going Stick
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
B1 and B2 | indication of the two blocks (dates of testing) |
Dr1 and Dr2 | indication of the absence, 1, or existence, 2, of a drainage system |
G1 and G2 | indication of the absence, 1, or addition, 2 of a geotextile |
GMC | gravimetric moisture content |
GSI | Going Stick Index |
ITI | Impact Test Index |
RPS | rotational peak shear |
SCP | soil cone penetrometer |
TDR | time domain reflectometry |
VMC | volumetric moisture content |
WRC | water retention capacity (10 hPa) |
AC | aeration capacity |
EAW | easily available water |
AWS | available water storage |
RAW | readily available water (100 hPa) |
Dd | dry density (kg/m3) |
TP | total porosity |
Appendix A
Group 1 | Group 2 | Media 1 | Media 2 | T | p-Value | |
---|---|---|---|---|---|---|
Dds (Kg/m3) | Dr1:G1 | Dr1:G2 | 1197.47 | 1083.88 | 2.75 | 0.1105 |
Dds (Kg/m3) | Dr1:G1 | Dr2:G1 | 1197.47 | 973.81 | 4.14 | 0.0536 |
Dds (Kg/m3) | Dr1:G1 | Dr2:G2 | 1197.47 | 982.27 | 4.00 | 0.0572 |
Dds (Kg/m3) | Dr1:G2 | Dr2:G1 | 1083.88 | 973.81 | 3.00 | 0.0956 |
Dds (Kg/m3) | Dr1:G2 | Dr2:G2 | 1083.88 | 982.27 | 2.79 | 0.1080 |
Dds (Kg/m3) | Dr2:G1 | Dr2:G2 | 973.81 | 982.27 | −0.17 | 0.8821 |
TP | Dr1:G1 | Dr1:G2 | 0.47 | 0.52 | −2.75 | 0.1105 |
TP | Dr1:G1 | Dr2:G1 | 0.47 | 0.57 | −4.14 | 0.0536 |
TP | Dr1:G1 | Dr2:G2 | 0.47 | 0.56 | −4.00 | 0.0572 |
TP | Dr1:G2 | Dr2:G1 | 0.52 | 0.57 | −3.00 | 0.0956 |
TP | Dr1:G2 | Dr2:G2 | 0.52 | 0.56 | −2.79 | 0.1080 |
TP | Dr2:G1 | Dr2:G2 | 0.57 | 0.56 | 0.17 | 0.8821 |
WRC | Dr1:G1 | Dr1:G2 | 0.43 | 0.43 | 0.29 | 0.7998 |
WRC | Dr1:G1 | Dr2:G1 | 0.43 | 0.49 | −1.86 | 0.2036 |
WRC | Dr1:G1 | Dr2:G2 | 0.43 | 0.51 | −1.90 | 0.1983 |
WRC | Dr1:G2 | Dr2:G1 | 0.43 | 0.49 | −2.23 | 0.1558 |
WRC | Dr1:G2 | Dr2:G2 | 0.43 | 0.51 | −2.16 | 0.1628 |
WRC | Dr2:G1 | Dr2:G2 | 0.49 | 0.51 | −0.49 | 0.6712 |
20 hPa | Dr1:G1 | Dr1:G2 | 0.40 | 0.39 | 0.45 | 0.6988 |
20 hPa | Dr1:G1 | Dr2:G1 | 0.40 | 0.45 | −2.03 | 0.1798 |
20 hPa | Dr1:G1 | Dr2:G2 | 0.40 | 0.48 | −2.10 | 0.1706 |
20 hPa | Dr1:G2 | Dr2:G1 | 0.39 | 0.45 | −2.49 | 0.1304 |
20 hPa | Dr1:G2 | Dr2:G2 | 0.39 | 0.48 | −2.42 | 0.1367 |
20 hPa | Dr2:G1 | Dr2:G2 | 0.45 | 0.48 | −0.78 | 0.5194 |
30 hPa | Dr1:G1 | Dr1:G2 | 0.39 | 0.37 | 1.18 | 0.3583 |
30 hPa | Dr1:G1 | Dr2:G1 | 0.39 | 0.43 | −2.31 | 0.1475 |
30 hPa | Dr1:G1 | Dr2:G2 | 0.39 | 0.46 | −1.99 | 0.1847 |
30 hPa | Dr1:G2 | Dr2:G1 | 0.37 | 0.43 | −4.10 | 0.0547 |
30 hPa | Dr1:G2 | Dr2:G2 | 0.37 | 0.46 | −2.67 | 0.1164 |
30 hPa | Dr2:G1 | Dr2:G2 | 0.43 | 0.46 | −0.89 | 0.4678 |
40 hPa | Dr1:G1 | Dr1:G2 | 0.37 | 0.34 | 1.64 | 0.2435 |
40 hPa | Dr1:G1 | Dr2:G1 | 0.37 | 0.40 | −1.67 | 0.2372 |
40 hPa | Dr1:G1 | Dr2:G2 | 0.37 | 0.43 | −1.99 | 0.1854 |
40 hPa | Dr1:G2 | Dr2:G1 | 0.34 | 0.40 | −4.68 | 0.0427 * |
40 hPa | Dr1:G2 | Dr2:G2 | 0.34 | 0.43 | −3.31 | 0.0803 |
40 hPa | Dr2:G1 | Dr2:G2 | 0.40 | 0.43 | −1.02 | 0.4142 |
50 hPa | Dr1:G1 | Dr1:G2 | 0.36 | 0.33 | 2.15 | 0.1641 |
50 hPa | Dr1:G1 | Dr2:G1 | 0.36 | 0.39 | −2.12 | 0.1677 |
50 hPa | Dr1:G1 | Dr2:G2 | 0.36 | 0.43 | −2.16 | 0.1637 |
50 hPa | Dr1:G2 | Dr2:G1 | 0.33 | 0.39 | −6.82 | 0.0208 * |
50 hPa | Dr1:G2 | Dr2:G2 | 0.33 | 0.43 | −3.41 | 0.0762 |
50 hPa | Dr2:G1 | Dr2:G2 | 0.39 | 0.43 | −1.18 | 0.3597 |
60 hPa | Dr1:G1 | Dr1:G2 | 0.35 | 0.32 | 3.08 | 0.0912 |
60 hPa | Dr1:G1 | Dr2:G1 | 0.35 | 0.38 | −3.73 | 0.0651 |
60 hPa | Dr1:G1 | Dr2:G2 | 0.35 | 0.42 | −2.61 | 0.1209 |
60 hPa | Dr1:G2 | Dr2:G1 | 0.32 | 0.38 | −11.60 | 0.0073 * |
60 hPa | Dr1:G2 | Dr2:G2 | 0.32 | 0.42 | −3.76 | 0.0641 |
60 hPa | Dr2:G1 | Dr2:G2 | 0.38 | 0.42 | −1.30 | 0.3228 |
80 hPa | Dr1:G1 | Dr1:G2 | 0.34 | 0.31 | 4.09 | 0.0548 |
80 hPa | Dr1:G1 | Dr2:G1 | 0.34 | 0.38 | −4.50 | 0.0459 |
80 hPa | Dr1:G1 | Dr2:G2 | 0.34 | 0.42 | −2.75 | 0.1106 |
80 hPa | Dr1:G2 | Dr2:G1 | 0.31 | 0.38 | −10.50 | 0.0089 * |
80 hPa | Dr1:G2 | Dr2:G2 | 0.31 | 0.42 | −3.78 | 0.0635 |
80 hPa | Dr2:G1 | Dr2:G2 | 0.38 | 0.42 | −1.34 | 0.3117 |
RAW | Dr1:G1 | Dr1:G2 | 0.33 | 0.30 | 3.90 | 0.0599 |
RAW | Dr1:G1 | Dr2:G1 | 0.33 | 0.37 | −4.88 | 0.0395 * |
RAW | Dr1:G1 | Dr2:G2 | 0.33 | 0.41 | −2.83 | 0.1052 |
RAW | Dr1:G2 | Dr2:G1 | 0.30 | 0.37 | −10.49 | 0.0090 * |
RAW | Dr1:G2 | Dr2:G2 | 0.30 | 0.41 | −3.81 | 0.0625 |
RAW | Dr2:G1 | Dr2:G2 | 0.37 | 0.41 | −1.38 | 0.3007 |
EAW | Dr1:G1 | Dr1:G2 | 0.07 | 0.10 | −1.19 | 0.3564 |
EAW | Dr1:G1 | Dr2:G1 | 0.07 | 0.09 | −1.51 | 0.2703 |
EAW | Dr1:G1 | Dr2:G2 | 0.07 | 0.08 | −0.43 | 0.7120 |
EAW | Dr1:G2 | Dr2:G1 | 0.10 | 0.09 | 0.04 | 0.9682 |
EAW | Dr1:G2 | Dr2:G2 | 0.10 | 0.08 | 1.11 | 0.3840 |
EAW | Dr2:G1 | Dr2:G2 | 0.09 | 0.08 | 1.56 | 0.2593 |
AWS | Dr1:G1 | Dr1:G2 | 0.03 | 0.03 | 0.30 | 0.7904 |
AWS | Dr1:G1 | Dr2:G1 | 0.03 | 0.02 | 1.63 | 0.2452 |
AWS | Dr1:G1 | Dr2:G2 | 0.03 | 0.01 | 2.70 | 0.1141 |
AWS | Dr1:G2 | Dr2:G1 | 0.03 | 0.02 | 1.06 | 0.4008 |
AWS | Dr1:G2 | Dr2:G2 | 0.03 | 0.01 | 2.01 | 0.1816 |
AWS | Dr2:G1 | Dr2:G2 | 0.02 | 0.01 | 3.49 | 0.0732 |
AC | Dr1:G1 | Dr1:G2 | 0.03 | 0.09 | −2.38 | 0.1407 |
AC | Dr1:G1 | Dr2:G1 | 0.03 | 0.08 | −9.61 | 0.0107 * |
AC | Dr1:G1 | Dr2:G2 | 0.03 | 0.06 | −0.53 | 0.6474 |
AC | Dr1:G2 | Dr2:G1 | 0.09 | 0.08 | 0.54 | 0.6438 |
AC | Dr1:G2 | Dr2:G2 | 0.09 | 0.06 | 0.66 | 0.5758 |
AC | Dr2:G1 | Dr2:G2 | 0.08 | 0.06 | 0.46 | 0.6904 |
References
- Hobbs, S.J.; Northrop, A.J.; Mahaffey, C.; Martin, J.H.; Clayton, H.M.; Murray, R.; Thomason, J.; Peterson, J.; Tranquile, C.; Walker, V. Equestrian Surfaces—A Guide. 2014. Available online: https://inside.fei.org/system/files/Equestrian_Surfaces-A_Guide.pdf (accessed on 9 January 2023).
- Wieder, W.L.; Shoop, S.A. State of the knowledge of vegetation impact on soil strength and trafficability. J. Terramech. 2018, 78, 1–14. [Google Scholar] [CrossRef]
- Liu, K.F.; Yang, X.R.; Xie, X.Y.; Wu, C.F.; Liu, Y.H. Laboratory Triaxial Test Study on Soil Reinforced with Roots of Manilagrass. Adv. Mater. Res. 2011, 250–253, 1366–1370. [Google Scholar] [CrossRef]
- Serensits, T.J.; McNitt, A.S.; Petrunak, D.M. Improving surface stability on natural turfgrass athletic fields. Proc. Inst. Mech. Eng. Part P: J. Sports Eng. Technol. 2011, 225, 85–92. [Google Scholar] [CrossRef]
- Chang, Z.; Wang, C.; Zhu, H.; Li, D. Physical properties of sports turf rootzones modified with organic fibers. Int. Turfgrass Soc. Res. J. 2022, 14, 176–181. [Google Scholar] [CrossRef]
- Maher, M.H.; Woods, R.D. Dynamic Response of Sand Reinforced with Randomly Distributed Fibers. J. Geotech. Eng. 1990, 116, 1116–1131. [Google Scholar] [CrossRef]
- Parkin, T.; Clegg, P.D.; French, N.; Proudman, C.J.; Riggs, C.; Singer, E.R.; Webbon, P.M.; Morgan, K.L. Race- and course-level risk factors for fatal distal limb fracture in racing Thoroughbreds. Equine Vet. J. 2010, 36, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, J.; Hawkins, D.L.; Scollay, M.C. Race-start characteristics and risk of catastrophic musculoskeletal injury in Thoroughbred racehorses. J. Am. Vet. Med. Assoc. 2001, 218, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Hitchens, P.; Morrice-West, A.; Stevenson, M.; Whitton, R. Meta-analysis of risk factors for racehorse catastrophic musculoskeletal injury in flat racing. Vet. J. 2019, 245, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Heleski, C.; Stowe, C.J.; Fiedler, J.; Peterson, M.L.; Brady, C.; Wickens, C.; MacLeod, J.N. Thoroughbred Racehorse Welfare through the Lens of ‘Social License to Operate—With an Emphasis on a U.S. Perspective. Sustainability 2020, 12, 1706. [Google Scholar] [CrossRef] [Green Version]
- McGreevy, P.; McManus, P. Why Horse-Racing in Australia Needs a Social Licence to Operate. Conversation. 2017. Available online: https://theconversation.com/why-horse-racing-in-australia-needs-a-social-licence-to-operate-79492 (accessed on 9 January 2023).
- Peterson, M.; Reiser, R.F., II; McIlwraith, W. Dynamic response of racetrack surfaces. In Proceedings of the 2005 SEM Annual Conference and Exposition, Society for Experimental Mechanics, Portland, OR, USA, 7–9 June 2005; p. 258. [Google Scholar]
- Thomas, V.; Murphy, J.W.; Field, T.R.O. Racetrack Assessment by Penetrometer. Part I: The Model. J. Turfgrass Manag. 1996, 1, 37–49. [Google Scholar] [CrossRef]
- Murphy, J.W.; Field, T.R.O.; Thomas, V.J. Racetrack Traction Assessment by Penetrometer Part II. Application of the Model. J. Turfgrass Manag. 1996, 1, 51–62. [Google Scholar] [CrossRef]
- Rogers, C.W.; Bolwell, C.F.; Gee, E.K.; Peterson, M.L.; McIlwraith, C.W. Profile and Surface Conditions of New Zealand Thoroughbred Racetracks. J. Equine Vet. Sci. 2014, 34, 1105–1109. [Google Scholar] [CrossRef]
- Maeda, Y.; Tomioka, M.; Hanada, M.; Oikawa, M.-A. Influence of Track Surface Condition on Racing Times of Thoroughbred Racehorses in Flat Races. J. Equine Vet. Sci. 2012, 32, 689–695. [Google Scholar] [CrossRef]
- Rosanowski, S.M.; Chang, Y.-M.; Stirk, A.J.; Verheyen, K.L.P. Risk factors for race-day fatality in flat racing Thoroughbreds in Great Britain (2000 to 2013). PLoS ONE 2018, 13, e0194299. [Google Scholar] [CrossRef] [PubMed]
- Neylan, J. A Review of Devices Currently Available for Assessing Racetrack Conditions. Project Number PTP-5A. Rural Industries Research and Development Corporation. RIRDC; 1997. Available online: http://www.rirdc.gov.au/fullreports/hor.html (accessed on 9 January 2023).
- Holt, D.; Northrop, A.; Owen, A.; Martin, J.; Hobbs, S. Use of Surface Testing Devices to Identify Potential Risk Factors for Synthetic Equestrian Surfaces. Procedia Eng. 2014, 72, 949–954. [Google Scholar] [CrossRef]
- Lewis, K.; Northrop, A.J.; Crook, G.M.; Mather, J.; Martin, J.H.; Holt, D.; Clayton, H.M.; Roepstorff, L.; Peterson, M.L.; Hobbs, S.J. Comparison of equipment used to measure shear properties in equine arena surfaces. Biosyst. Eng. 2015, 137, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Blanco, M.A.; Hourquebie, R.; Dempsey, K.; Schmitt, P.; Peterson, M. An Experimental Comparison of Simple Measurements Used for the Characterization of Sand Equestrian Surfaces. Animals 2021, 11, 2896. [Google Scholar] [CrossRef]
- Canaway, P.M.; Bell, M.J. An apparatus for measuring traction and friction on natural and artificial playing surfaces. J. Sport. Turf Res. Inst. 1986, 62, 211–214. [Google Scholar]
- Baker, S.W.; Hunt, J.A. Effect of shade by stands on grass species and cultivars selection for football pitches. Int. Turfgrass Soc. Res. J. 1997, 8, 593–601. [Google Scholar]
- Adams, W.A. The effect of ‘fibermaster’ fibres on the stability and other properties of sand rootzones. Int. Turfgrass Soc. Res. J. 1997, 8, 15–26. [Google Scholar]
- Dest, W.M.; Guillard, K.; Ebdon, S. The effects of reinforcement inclusions on wear tolerance, playing quality and physical properties in a silt loam and sand root zone matrix. Int. Turfgrass Soc. Res. J. 2005, 10, 1049–1059. [Google Scholar]
- Minner, D.D.; Hudson, J.S. Evaluating a reinforced natural grass/synthetic turf system. Int. Turfgrass Soc. Res. J. 2005, 10, 398–408. [Google Scholar]
- Li, D.; Minner, D.D.; Christians, N.E. Evaluation of factors contributing to surface stability of sand-based turf. Agron. J. 2009, 101, 1160–1167. [Google Scholar] [CrossRef]
- Baker, S.W. The effect of the frequency of slit tine aeration on the quality of soccer and rugby pitches. J. Sport. Turf Res. Inst. 1994, 70, 44–54. [Google Scholar]
- Goodall, S.A.; Guillard, K.; Dest, W.M.; Demars, K.R. Ball response and traction of skinned infi elds amended with calcined clay at varying soil moisture contents. Int. Turfgrass Soc. Res. J. 2005, 10, 1085–1093. [Google Scholar]
- Minner, D.D.; Valverde, F.J. The effect of traffic intensity and periodicity on Poa pratensis L. performance. Int. Turfgrass Soc. Res. J. 2005, 10, 387–392. [Google Scholar]
- Guertal, E.A.; Han, D.Y. Footing assessment of equine event courses. Int. Turfgrass Soc. Res. J. 2009, 11, 365–374. [Google Scholar]
- Stubbs, A.K.; Neylan, J. Racetrack Management. A Manual for Racecourse Managers: A Report for the Rural Industries Research and Development Corporation; Rural Industries Research and Development Corporation: Canberra, Australia, 2002; pp. 1–135. Available online: https://agrifutures.com.au/wp-content/uploads/publications/02-002.pdf (accessed on 9 January 2023).
- ASTM D 6951-03; Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications. American Society for Testing and Materials: West Conshohocken, MI, USA, 2015; pp. 1–7.
- ISO 17892-1:2014; Geotechnical Investigation and Testing. Laboratory Testing of Soil. Part 1: Determination of Water Content. International Organization for Standarization: Geneva, Switzerland, 2014.
- Setterbo, J.J.; Yamaguchi, A.; Hubbard, M.; Upadhyaya, S.K.; Stover, S.M. Effects of equine racetrack surface type, depth, boundary area, and harrowing on dynamic surface properties measured using a track-testing device in a laboratory setting. Sports Eng. 2011, 14, 119–137. [Google Scholar] [CrossRef]
- Compo Expert. Controlled Release Fertilizers: Basacote Plus 6M 16-8-12(+2+TE); Compo Expert: Münster, Germany, 2017; Volume 12, pp. 6–12. Available online: https://www.compo-expert.com/products/basacote-plus-6m-16-8-122te (accessed on 10 July 2020).
- Compo Expert. Slow-Release Fertilizers; Floranid® Twin. Compo Expert: Münster, Germany, 2017; Volume 15, pp. 1–7. Available online: https://www.compo-expert.com/pt-PT/produtos/floranid-twin-permanent-16-7-152 (accessed on 27 October 2020).
- ASTM-D422-63 (2007)e2; Standard Test Method for Particle-Size Analysis of Soils. American Society for Testing and Materials: West Conshohocken, MI, USA, 2007; pp. 1–8.
- ASTM F3416-21; Standard Guide For Using Fourier Transform Infrared Spectrometry to Evaluate Synthetic Equine Surface Components. American Society for Testing and Materials: West Conshohocken, MI, USA, 2021.
- Vence, L.B. Métodos de Determinación de Parámetros que Estiman la Disponibilidad de Agua-Aire en Sustratos para Plantas y su Relación con la Respuesta Vegetal. Master’s Thesis, Universidad de Buenos Aires, Buenos Aires, Argentina, 2012; p. 223. Available online: http://ri.agro.uba.ar/files/download/tesis/maestria/2012venceliliabeatriz.pdf (accessed on 9 January 2023).
- CEN-EN 13041; Soil Improvers and Growing Media—Determination of Physical Properties—Dry Bulk Density, Air Volume, Water Volume, Shrinkage Value and Total Pore Space. European Committee for Estandarization (CEN): Brussels, Belgium, 2011; p. 30.
- ASTM D6780/D6780-19; Standard Test Methods for Water Content and Density of Soil In situ by Time Domain Reflectometry (TDR). American Society for Testing and Materials: West Conshohocken, MI, USA, 2019.
- ASTM F2333-04(2017); Standard Test Method for Traction Characteristics of the Athletic Shoe-Sports Surface Interface. American Society for Testing and Materials: West Conshohocken, MI, USA, 2017. Available online: www.astm.org (accessed on 9 January 2023).
- ASTM D5874-16; Standard Test Methods for Determination of the Impact Value (IV) of a Soil. American Society for Testing and Materials: West Conshohocken, MI, USA, 2016. Available online: www.astm.org (accessed on 9 January 2023).
- Dufour, M.J.D.; Mumford, C. GoingStick® technology and electromagnetic induction scanning for naturally-turfed sports surfaces. Sports Technol. 2008, 1, 125–131. [Google Scholar] [CrossRef]
- Mumford, C. The Optimization of Going Management on UK Racecourses Using Controlled Water Applications. Ph.D. Thesis, Cranfield University at Silsoe, National Soil Resources Institute, Luton, UK, 2006; p. 297. Available online: https://dspace.lib.cranfield.ac.uk/handle/1826/1742 (accessed on 9 January 2023).
- Blundell, E. The Effects of Dressage Competitions on the Mechanical Properties of a Synthetic Equestrian Arena Surface. Ph.D. Thesis, University of Central Lancashire, Preston, UK, 2010. Available online: https://clok.uclan.ac.uk/1861/1/BlundellMSCthesisfinal.pdf (accessed on 9 January 2023).
- Mohammadi, S.; Nikoudel, M.; Rahimi, H.; Khamehchiyan, M. Application of the Dynamic Cone Penetrometer (DCP) for determination of the engineering parameters of sandy soils. Eng. Geol. 2008, 101, 195–203. [Google Scholar] [CrossRef]
- Vanags, C.; McBratney, A.; Budiman, M. The Dynamic Penetrometer for Assessment of Soil Mechanical Resistance. In Proceedings of the 3rd Australian New Zealand Soils Conference, Sidney, Australia, 5–9 December 2004; pp. 1–9. Available online: https://www.researchgate.net/profile/Budiman_Minasny/publication/237557382_The_dynamic_penetrometer_for_assessment_of_soil_mechanical_resistance/links/0046351d9fe9c8c895000000.df (accessed on 9 January 2023).
- Ratzlaff, M.H.; Wilson, P.D.; Hutton, D.V.; Slinker, B.K. Relationships between hoof-acceleration patterns of galloping horses and dynamic properties of the track. Am. J. Vet. Res. 2005, 66, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Twomey, D.M.; Ullah, S.; Petrass, L.A. One, two, three or four: Does the number of Clegg hammer drops alter ground hardness readings on natural grass? Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2013, 228, 33–39. [Google Scholar] [CrossRef]
- Lulli, F.; de Bertoldi, C.; Armeni, R.; Guglielminetti, L.; Volterrani, M. Warm-season Turfgrass Species Generate Sports Surfaces with Different Playability. Horttechnology 2014, 24, 749–756. [Google Scholar] [CrossRef] [Green Version]
- Sion, B.D.; Shoop, S.A.; McDonald, E.V. Evaluation of in-situ relationships between variable soil moisture and soil strength using a plot-scale experimental design. J. Terramech. 2022, 103, 33–51. [Google Scholar] [CrossRef]
- Rose-Harvey, K.; McInnes, K.J.; Thomas, J.C. Water Flow Through Sand-based Root Zones Atop Geotextiles. Hortscience 2012, 47, 1543–1547. [Google Scholar] [CrossRef] [Green Version]
Replications | Drainage Package (Dr = 2 Repetitions) | Geotextile (G = 2 Repetitions) | Drainage Package × Geotextile | ||||
---|---|---|---|---|---|---|---|
Variables | Dates | 3 March 2018 | 30 March 2018 | 3 March 2018 | 30 March 2018 | 3 March 2018 | 30 March 2018 |
VMC | 2 | 3 | 5 | 3 | 5 | 3 | 5 |
RPS | 2 | 3 | 5 | 3 | 5 | 3 | 5 |
ITI | 2 | 3 | 5 | 3 | 5 | 3 | 5 |
SCP | 2 | 3 | 5 | 3 | 5 | 3 | 5 |
GSI | 2 | 3 | 5 | 3 | 5 | 3 | 5 |
Variable | Drainage (Dr) | Geotextile (G) | Blocks (B) | |||
---|---|---|---|---|---|---|
f (H) | p | f (H) | p | f (H) | p | |
VMC (%) 1 | 4.94 | 0.0262 * | 27.92 | 0.0001 * | 1.46 | 0.2275 |
RPS | 2.46 | 0.1221 | 1.38 | 0.2445 | 5.13 | 0.0275 * |
ITI | 1.01 | 0.3193 | 0.07 | 0.7975 | 0.22 | 0.6377 |
SCP 1 | 1.01 | 0.287 | 5.52 | 0.0118 * | 2.50 | 0.094 |
GSI 1 | 4.79 | 0.0286 * | 2.16 | 0.1413 | 10.04 | 0.0015 * |
Variable | Dr × G | Dr × B | G × B | Dr × G × B | ||||
---|---|---|---|---|---|---|---|---|
f (H) | p | f (H) | p | f (H) | p | f (H) | p | |
VMC 1 (%) | 33.75 | 0.0001 * | 6.75 | 0.082 | 30.32 | 0.0001 * | 37.87 | 0.0001 * |
RPS | 0.04 | 0.8500 | 0.13 | 0.7161 | 0.99 | 0.3240 | 0.72 | 0.4001 |
ITI | 0.57 | 0.4539 | 1.03 | 0.3152 | 0.16 | 0.6825 | 0.13 | 0.7237 |
SCP 1 | 6.76 | 0.055 | 3.73 | 0.2325 | 8.35 | 0.0225 * | 9.72 | 0.132 |
GSI 1 | 10.46 | 0.015 * | 14.84 | 0.0020 * | 12.78 | 0.0054 * | 21.19 | 0.0035 * |
Variables | R2 | Linear Model Coefficients | |||
---|---|---|---|---|---|
Constant | Dr | G | B | ||
VMC (%) | 0.54 | 45.55 * | 5.46 * | −11.87 * | 2.52 |
RPS | 0.13 | 35.49 * | 2.16 | 1.63 | 3.23 * |
ITI | 0.02 | 0.02 * | −0.0013 | 0.0003 | −0.00006 |
SCP | 0.17 | 1.67 * | 0.30 | 0.82 * | 0.54 |
GSI | 0.22 | −1.12 | 0.97 | 1.43 * | 1.54 * |
Variables | VMC (%) | RPS | ITI | SCP | GSI | |||||
---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | |
VMC (%) | 1 | 0.001 | −0.07 | 0.6083 | 0.07 | 0.5654 | −0.29 | 0.0216 * | −0.15 | 0.2439 |
RPS | −0.07 | 0.6083 | 1 | 0.001 | −0.01 | 0.9451 | 0.05 | 0.6807 | 0.17 | 0.1746 |
ITI | 0.07 | 0.5654 | −0.01 | 0.9451 | 1 | 0.001 | −0.19 | 0.1418 | −0.09 | 0.4655 |
SCP | −0.29 | 0.0216 * | 0.05 | 0.6807 | −0.19 | 0.1418 | 1 | 0.001 | 0.37 | 0.0025 * |
GSI | −0.15 | 0.2439 | 0.17 | 0.1746 | −0.09 | 0.4655 | 0.37 | 0.0025 * | 1 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco, M.A.; Di Rado, F.N.; Peterson, M. Warm Season Turfgrass Equine Sports Surfaces: An Experimental Comparison of the Independence of Simple Measurements Used for Surface Characterization. Animals 2023, 13, 811. https://doi.org/10.3390/ani13050811
Blanco MA, Di Rado FN, Peterson M. Warm Season Turfgrass Equine Sports Surfaces: An Experimental Comparison of the Independence of Simple Measurements Used for Surface Characterization. Animals. 2023; 13(5):811. https://doi.org/10.3390/ani13050811
Chicago/Turabian StyleBlanco, María Alejandra, Facundo Nicolas Di Rado, and Michael (Mick) Peterson. 2023. "Warm Season Turfgrass Equine Sports Surfaces: An Experimental Comparison of the Independence of Simple Measurements Used for Surface Characterization" Animals 13, no. 5: 811. https://doi.org/10.3390/ani13050811