Physicochemical and Biochemical Properties of Trypsin-like Enzyme from Two Sturgeon Species
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish Samples
2.2. Preparation of Intestinal Crude Extracts for Trypsin Characterization
2.3. Reagents
2.4. Trypsin Assay
2.5. Protein Assay
2.6. Characterization of Trypsin by SDS-PAGE Electrophoresis
2.7. Optimum Temperature and Thermostability
2.8. Optimum pH and Stability
2.9. Effect of Inhibitors
2.10. Effect of Metal Ions
2.11. Effect of Surfactants and Oxidizing Agents
2.12. Statistical Analysis
3. Results and Discussion
3.1. Protein Pattern, Casein-Zymographyand Inhibitory Activity
3.2. Optimum Temperature and Thermostability
3.3. Effect of pH on Trypsin Activity and Stability
3.4. Effect of Inhibitors on Trypsin Activity
3.5. Effect of Metal Ions
3.6. Effect of Surfactants and Oxidizing Agents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalbassi, M.R.; Abdollahzadeh, E.; Salari-Joo, H. A review on aquaculture development in Iran. Ecopersia 2013, 1, 159–178. [Google Scholar]
- Vasilyeva, L.M.; Elhetawy, A.I.G.; Sudakova, N.V.; Astafyeva, S.S. History, current status and prospects of sturgeon aquaculture in Russia. Aquac. Res. 2019, 50, 979–993. [Google Scholar] [CrossRef]
- Aghilinejhad, S.M.; Gorgin, S.; van Uhm, D.; Joolaie, R.; Ghorbani, R.; Paighambari, S.Y.; Mohammadi, J.; Jalali, A. What are the drivers of the occurrence of illegal fishing and conservation barriers of sturgeons in the Caspian Sea? Aquat. Conserv. Mar. Freshw. Ecosyst. 2018, 28, 690–701. [Google Scholar] [CrossRef]
- Mirrasooli, E.; Ghorbani, R.; Gorgin, S.; Aghilinejhad, S.M.; Jalali, A. Factors associated with illegal fishing and fisher attitudes toward sturgeon conservation in the southern Caspian Sea. Mar. Policy 2019, 100, 107–115. [Google Scholar] [CrossRef]
- Iranian Fisheries Organization Statistical Yearbook. Budget and Planning Deputy; Iranian Fisheries Organization Statistical Yearbook: Tehran, Iran, 2022; p. 64. (In Persian) [Google Scholar]
- Furne, M.; García-Gallego, M.; Hidalgo, M.C.; Morales, A.E.; Domezain, A.; Domezain, J.; Sanz, A. Effect of starvation and refeeding on digestive enzyme activities in sturgeon (Acipenser naccarii) and trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. 2008, 149A, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Kolkovski, S. Digestive enzymes in fish larvae and juveniles-Implications and applications to formulated diets. Aquaculture 2001, 200, 181–201. [Google Scholar] [CrossRef]
- Yufera, M.; Darias, M.J. The onset of exogenous feeding in marine fish larvae. Aquaculture 2007, 268, 53–63. [Google Scholar] [CrossRef]
- Twining, S.S.; Alexander, P.A.; Huibregste, K.; Glick, D.M. A pepsinogen from rainbow trout. Comp. Biochem. Physiol. 1983, 75B, 109–112. [Google Scholar] [CrossRef]
- Navarro-Guillen, C.; Yufera, M.; Perera, E. Biochemical features and modulation of digestive enzymes by environmental temperature in the greater amberjack, Seriola dumerili. Front. Mar. Sci. 2022, 28, 1391. [Google Scholar] [CrossRef]
- Bolasina, S.; Perez, A.; Yamashita, Y. Digestive enzymes activity during ontogenetic development and effect of starvation in Japanese flounder, Paralichthys olivaceus. Aquaculture 2006, 252, 503–515. [Google Scholar] [CrossRef]
- Moraes, G.; de Almeida, L.C. Nutrition and functional aspects of digestion in fish. In Biology and Physiology of Freshwater Neotropical Fish; Academic Press: Cambridge, MA, USA, 2020; pp. 251–271. [Google Scholar]
- Glass, H.J.; MacDonald, N.L.; Moran, R.M.; Stark, J.R. Digestion of protein in different marine species. Comp. Biochem. Physiol. 1989, 94B, 607–611. [Google Scholar] [CrossRef]
- Eshel, A.; Lindner, P.; Smirnoff, P.; Newton, S.; Harpaz, S. Comparative study of proteolytic enzymes in the digestive tracts of the European sea bass and hybrid striped bass reared in freshwater. Comp. Biochem. Physiol. 1993, 106A, 627–634. [Google Scholar] [CrossRef]
- Rungruangsak-Torrissen, K.; Moss, R.; Andresen, L.H.; Berg, A.; Waagbo, R. Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.). Fish Physiol. Biochem. 2006, 32, 7–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolasco-Soria, H. Improving and standardizing protocols for alkaline protease quantification in fish. Rev. Aquac. 2021, 13, 43–65. [Google Scholar] [CrossRef]
- Nazdar, N.; Imani, A.; Noori, F.; Sarvi Moghanlou, K. Effect of silymarin supplementation on nickel oxide nanoparticle toxicity to rainbow trout (Oncorhynchus mykiss) fingerlings: Pancreas tissue histopathology and alkaline protease activity. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 353–361. [Google Scholar] [CrossRef]
- Krogdahl, A.; Lea, T.B.; Olli, J.J. Soybean proteinase inhibitors affect intestinal trypsin activities and amino acid digestibilities in rainbow trout (Oncorhyncus mykiss). Comp. Biochem. Physiol. 1994, 107A, 215–219. [Google Scholar] [CrossRef]
- Haard, N.F.; Dimes, L.E.; Arndt, R.E.; Dong, F.M. Estimation of protein digestibility: IV. Digestive proteinases from the pyloric caeca of coho salmon (Oncorhynchus kisutch) fed diets containing soybean meal. Comp. Biochem. Physiol. 1996, 115B, 533–540. [Google Scholar] [CrossRef]
- Chong, A.S.C.; Hashim, R.; Chow-Yang, L.; Ali, A.B. Partial characterization and activities of proteases from the digestive tract of discus fish, Symphysodon aeguifasciata. Aquaculture 2002, 203, 321–333. [Google Scholar] [CrossRef]
- Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev. 2002, 102, 4501–4524. [Google Scholar] [CrossRef]
- Gilannejad, N.; Martínez-Rodríguez, G.; Yúfera, M.; Moyano, F.J. Estimating the effect of different factors on the digestive bioaccessibility of protein by the Senegalese sole (Solea senegalensis); combination of response surface methodology and in vitro assays. Aquaculture 2017, 477, 28–34. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Wang, Z.; Xu, S.Y.; Xu, L.N. Two trypsin isoforms from the intestine of the grass carp (Ctenopharyngodon idellus). J. Comp. Physiol. 2007, 177B, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.A.; Amaral, I.P.; Santo, A.R.E.; Carvalho, J.R.L.B.; Bezerra, R.S. Trypsin-like enzyme from intestine and pyloric caeca of spotted goatfish (Pseudupeneus maculatus). Food Chem. 2007, 100, 1429–1434. [Google Scholar] [CrossRef]
- Jellouli, K.; Bougatef, A.; Daassi, D.; Balti, R.; Barkia, A.; Nasri, M. New alkaline trypsin from the intestine of grey triggerfish (Balistes capriscus) with high activity at low temperature: Purification and characterisation. Food Chem. 2009, 116, 644–650. [Google Scholar] [CrossRef]
- Klomklao, S.; Kishimura, H.; Nonami, Y.; Benjakul, S. Biochemical properties of two isoforms of trypsin purified from the intestine of skipjack tuna (Katsuwonus pelamis). Food Chem. 2009, 115, 155–162. [Google Scholar] [CrossRef]
- Bougatef, A.; Balti, R.; Nasri, R.; Jellouli, K.; Souissi, N.; Nasri, M. Biochemical properties of anionic trypsin acting at high concentration of NaCl purified from the intestine of a carnivorous fish: Smooth hound (Mustelus mustelus). J. Agric. Food Chem. 2010, 58, 5763–5769. [Google Scholar] [CrossRef] [PubMed]
- Candiotto, F.B.; Freitas-Junior, A.C.V.; Neri, R.C.A.; Bezerra, R.S.; Rodrigues, R.V.; Sampaio, L.A.; Tesser, M.B. Characterization of digestive enzymes from captive Brazilian flounder Paralichthys orbignyanus. Braz. J. Biol. 2017, 78, 281–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buddington, R.K.; Doroshov, S.I. Feeding trials with hatchery produced white sturgeon juveniles (Acipenser transmontanus). Aquaculture 1984, 36, 237–243. [Google Scholar] [CrossRef]
- Buddington, R.K. Digestive secretions of lake sturgeon, Acipenser fulvescens, during early development. J. Fish Biol. 1985, 26, 715–723. [Google Scholar] [CrossRef]
- Dabrowski, K.; Kaushik, S.J.; Fauconneau, B. Rearing of sturgeon (Acipenser baeri Brandt) larvae: I. Feeding trial. Aquaculture 1985, 47, 185–192. [Google Scholar] [CrossRef]
- Ostaszewska, T.; Kolman, R.; Kamaszewski, M.; Wiszniewski, G.; Adamek, D.; Duda, A. Morphological changes in digestive tract of Atlantic sturgeon (Acipenser oxyrinchus) during organogenesis. Int. Aquat. Res. 2011, 3, 101–105. [Google Scholar]
- Bardi, R.W.; Chapman, F.A.; Barrows, F.T. Feeding trials with hatchery-produced Gulf of Mexico sturgeon larvae. Prog. Fish Cult. 1998, 60, 25–31. [Google Scholar] [CrossRef]
- Babaei, S.S.; Abedian Kenari, A.; Rajabmohammad Nazari, R.M.; Gisbert, E. Developmental changes of digestive enzymes in Persian sturgeon (Acipenser persicus) during larval ontogeny. Aquaculture 2011, 318, 138–144. [Google Scholar] [CrossRef]
- Camacho, S.; Carmona, R.; Llorente, J.I.; Sanz, A.; Garcia-Gallego, M.; Domezain, A.; Dominguez, N.; Ostos-Garrido, M.V. Stomach development in the sturgeon Acipenser naccarii: Histoenzymatic and ultrastructural analysis. J. Appl. Ichthyol. 2011, 27, 693–700. [Google Scholar] [CrossRef]
- Sanz, A.; Llorente, J.I.; Furne, M.; Ostos-Garrido, M.V.; Carmona, R.; Domezain, A.; Hidalgo, M.C. Digestive enzymes during ontogeny of the sturgeon Acipenser naccarii: Intestine and pancreas development. J. Appl. Ichthyol. 2011, 27, 1139–1146. [Google Scholar] [CrossRef]
- Ghasemi, N.; Imani, A.; Noori, F.; Shahrooz, R. Ontogeny of digestive tract of stellate sturgeon (Acipenser stellatus) from hatching to juvenile stage: Digestive enzymes activity, stomach and proximal intestine. Aquaculture 2020, 519, 734751. [Google Scholar] [CrossRef]
- Asgari, R.; Rafiee, G.; Eagderi, S.; Noori, F.; Agh, N.; Poorbagher, H.; Gisbert, E. Ontogeny of the digestive enzyme activities in hatchery produced beluga (Huso huso). Aquaculture 2013, 416, 33–40. [Google Scholar] [CrossRef]
- Erlanger, B.F.; Kokowski, N.; Cohen, W. The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys. 1961, 95, 271–278. [Google Scholar] [CrossRef]
- Zamani, A.; Rezaei, M.; Madani, R.; Habibi Rezaie, M. Trypsin enzyme from viscera of common kilka (Clupeonella cultriventris caspia): Purification, characterization, and its compatibility with oxidants and surfactants. J. Aquat. Food Prod. Technol. 2014, 23, 237–252. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during assembly of the head bacteriophague T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Garcia-Carreno, F.L.; Dimes, L.E.; Haard, N.F. Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal. Biochem. 1993, 214, 65–69. [Google Scholar] [CrossRef]
- Ahmad, M.; Benjakul, S. Impact of legume seed extracts on degradation and functional properties of gelatin from unicorn leatherjacket skin. Process. Biochem. 2011, 46, 2021–2029. [Google Scholar] [CrossRef]
- Khantaphant, S.; Benjakul, S. Purification and characterization of trypsin from the pyloric caeca of brownstripe red snapper (Lutjanus vitta). Food Chem. 2010, 120, 658–664. [Google Scholar] [CrossRef]
- Alarcón, F.J.; Díaz, M.; Moyano, F.J. Characterization and functional properties of digestive proteases in two sparids; gilthead seabream (Sparus aurata) and common dentex (Dentex dentex). Fish Physiol. Biochem. 1998, 19, 257–267. [Google Scholar] [CrossRef]
- Gendry, P.; Launay, J.F. Pancreatic anionic trypsin: Evidence for the existence of a 30 kDa form. Comp. Biochem. Physiol. 1992, 102B, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Khangembam, B.K.; Chakrabarti, R. Trypsin from the digestive system of carp Cirrhinus mrigala: Purification, characterization and its potential application. Food Chem. 2015, 175, 386–394. [Google Scholar] [CrossRef] [PubMed]
- De Freitas-Junior, A.C.V.; da Costa, H.M.S.; Marcuschi, M.; Icimoto, M.Y.; Machado, M.F.; Machado, M.F.; Ferreira, J.C.; de Oliveira, V.M.; Buarque, D.S.; Bezerra, R.S. Substrate specificity, physicochemical and kinetic properties of a trypsin from the giant Amazonian fish pirarucu (Arapaima gigas). Biocatal. Agric. Biotechnol. 2021, 35, 102073. [Google Scholar] [CrossRef]
- Aissaoui, N.; Marzouki, M.N.; Abidi, F. Purification and biochemical characterization of a novel intestinal protease from Scorpaena notata. Int. J. Food Prop. 2017, 20, 2151–2165. [Google Scholar] [CrossRef]
- Klomklao, S.; Benjakul, S. Two trypsin isoforms from albacore tuna (Thunnus alalunga) liver: Purification and physicochemical and biochemical characterization. Int. J. Biol. Macromol. 2018, 107, 1864–1870. [Google Scholar] [CrossRef]
- Dos Santos, C.W.V.; da Costa Marques, M.E.; de AraujoTenorio, H.; de Miranda, E.C.; Pereira, H.J.V. Purification and characterization of trypsin from Luphiosilurus alexandri pyloric cecum. Biochem. Biophys. Rep. 2016, 8, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Felix, M.L.; De La Ree-Rodriguez, C.; Perez-Velazquez, M. Partial characterization, quantification and optimum activity of trypsin and lipase from the sciaenids Cynoscion othonopterus, Cynoscion parvipinnis and Cynoscion xanthulus. Arch. Biol. Sci. 2020, 72, 81–93. [Google Scholar] [CrossRef]
- Castillo-Yanez, F.J.; Pacheco-Aguilar, R.; Garcia-Carreno, F.L.; Del Toro, M.A.N. Isolation and characterization of trypsin from pyloric caeca of Monterey sardine (Sardinops sagax caerulea). Comp. Biochem. Physiol. 2005, 140B, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.M.R.C.; dos Santos, C.W.V.; de Souza, C.B.; de Albuquerque, F.S.; dos Santos Oliveira, J.M.; Pereira, H.J.V. Trypsin purified from Coryphaena hippurus (common dolphinfish): Purification, characterization, and application in commercial detergents. Biocatal. Agric. Biotechnol. 2020, 25, 101584. [Google Scholar] [CrossRef]
- Ktari, N.; Ben Khaled, H.; Nasri, R.; Jellouli, K.; Ghorbel, S.; Nasri, M. Trypsin from zebra blenny (Salaria basilisca) viscera: Purification, characterisation and potential application as a detergent additive. Food Chem. 2012, 130, 467–474. [Google Scholar] [CrossRef]
- Ben Khaled, H.; Jellouli, K.; Souissi, N.; Ghorbel, S.; Nasri, M. Purification and characterisation of three trypsin isoforms from viscera of sardinelle (Sardinella aurita). Fish Physiol. Biochem. 2011, 37, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Klomklao, S.; Benjakul, S.; Visessanguan, W.; Kishimura, H.; Simpson, B.K. 29 kDa trypsin from the pyloric ceca of Atlantic bonito (Sarda sarda): Recovery and characterization. J. Agric. Food Chem. 2007, 55, 4548–4553. [Google Scholar] [CrossRef]
- Bezerra, R.S.; Santos, J.F.; Paiva, P.M.; Correia, M.T.S.; Coelho, L.C.B.B.; Vieira, V.L.L.; Carvalho, J.R.L.B. Partial purification and characterization of a thermostable trypsin from pyloric caeca of tambaqui (Colossoma macropomum). J. Food Biochem. 2001, 25, 199–210. [Google Scholar] [CrossRef]
- Klomklao, S.; Benjakul, S.; Visessanguan, W.; Kishimura, H.; Simpson, B.K. Proteolytic degradation of sardine (Sardinella gibbosa) proteins by trypsin from skipjack tuna (Katsuwonus pelamis) spleen. Food Chem. 2006, 98, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.J.; Zhou, L.G.; Cai, Q.F.; Hara, K.; Maeda, A.; Su, W.J.; Cao, M.J. Purification and characterisation of trypsins from the pyloric caeca of Mandarin fish (Siniperca chuatsi). Food Chem. 2008, 110, 352–360. [Google Scholar] [CrossRef]
- Silva, J.F.; Esposito, T.S.; Marcuschi, M.; Ribeiro, K.; Cavalli, R.O.; Oliveira, V.; Bezerra, R.S. Purification and partial characterisation of a trypsin from the processing waste of the silver mojarra (Diapterus rhombeus). Food Chem. 2011, 129, 777–782. [Google Scholar] [CrossRef] [Green Version]
- Stefansson, B.; Sandholt, G.B.; Gudmundsdottir, Á. Elucidation of different cold-adapted Atlantic cod (Gadus morhua) trypsin X isoenzymes. Biochim. Biophys. Acta-Proteins Proteom. 2017, 1865, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Esposito, T.S.; Marcuschi, M.; Amaral, I.P.; Carvalho, L.B., Jr.; Bezerra, R.S. Trypsin from the processing waste of the lane snapper (Lutjanus synagris) and its compatibility with oxidants, surfactants and commercial detergents. J. Agric. Food Chem. 2010, 58, 6433–6439. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.F.; Jiang, Y.K.; Zhou, L.G.; Sun, L.C.; Li, G.M.; Osatomi, K.; Cao, M.J. Biochemical characterization of trypsins from the hepatopancreas of Japanese sea bass (Lateolabrax japonicus). Comp. Biochem. Physiol. 2011, 159B, 183–189. [Google Scholar] [CrossRef]
- Kishimura, H.; Klomklao, S.; Benjakul, S.; Chun, B.S. Characteristics of trypsin from the pyloric ceca of walleye pollock (Theragra chalcogramma). Food Chem. 2008, 106, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Klomklao, S.; Kishimura, H.; Benjakul, S. Anionic trypsin from the pyloric ceca of Pacific saury (Cololabis saira): Purification and biochemical characteristics. J. Aquat. Food. Prod. Technol. 2014, 23, 186–200. [Google Scholar] [CrossRef]
- Kurtovic, I.; Marshall, S.N.; Simpson, B.K. Isolation and characterization of a trypsin fraction from the pyloric ceca of chinook salmon (Oncorhynchus tshawytscha). Comp. Biochem. Physiol. 2006, 143B, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Sila, A.; Nasri, R.; Jridi, M.; Balti, R.; Nasri, M.; Bougatef, A. Characterisation of trypsin purified from the viscera of Tunisian barbel (Barbus callensis) and its application for recovery of carotenoproteins from shrimp wastes. Food Chem. 2012, 132, 1287–1295. [Google Scholar] [CrossRef]
- Kanno, G.; Kishimura, H.; Ando, S.; Nalinanon, S.; Klomklao, S.; Benjakul, S.; Chun, B.S.; Saeki, H. Structural properties of trypsin from cold-adapted fish, arabesque greenling (Pleurogrammus azonus). Eur. Food Res. Technol. 2011, 232, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Haard, N.F. A review of proteolytic enzymes from marine organisms and their application in the food industry. J. Aquatic Food Product. Technol. 1992, 1, 17–35. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; Tong, B.; Chen, X.; Chen, J. Purification and biochemical characterization of a thermostable and acid-stable alpha-amylase from Bacillus licheniformis B4-423. Int. J. Biol. Macromol. 2018, 109, 329–337. [Google Scholar] [CrossRef]
- Simpson, B.K. Digestive proteinases from marine animals. In Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality; Haard, N.F., Simpson, B.K., Eds.; Marcel Dekker: New York, NY, USA, 2000; pp. 531–540. [Google Scholar]
- Martinez, A.; Olsen, R.L.; Serra, J.L. Purification and characterization of two trypsin like enzymes from the digestive tract of anchovy Engraulis encrasicholus. Comp. Biochem. Physiol. 1988, 91B, 677–684. [Google Scholar] [CrossRef]
- Mamimin, C.; O-thong, S.; Nitipan, S. Application of metagenomics technique in gene encoding thermostable enzyme discovery from hot spring. Thaksin Univ. J. 2016, 19, 96–105. [Google Scholar]
- Cristina Oliveira de Lima, V.; Piuvezam, G.; Leal Lima Maciel, B.; Heloneida de Araújo Morais, A. Trypsin inhibitors: Promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders? J. Enzyme. Inhib. Med. Chem. 2019, 34, 405–419. [Google Scholar] [CrossRef] [PubMed]
- Farady, C.J.; Craik, C.S. Mechanisms of macromolecular protease inhibitors. Chembiochem 2010, 11, 2341–2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avilés-Gaxiola, S.; Chuck-Hernández, C.; Serna Saldívar, S.O. Inactivation methods of trypsin inhibitor in legumes: A review. J. Food Sci. 2018, 83, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senphan, T.; Benjakul, S.; Kishimura, H. Purification and characterization of trypsin from hepatopancreas of Pacific white shrimp. J. Food Biochem. 2015, 39, 388–397. [Google Scholar] [CrossRef]
- Choi, S.M.; Oh, E.S.; Kim, D.S.; Pyeun, J.H.; Cho, D.M.; Ahn, C.B.; Kim, H.R. Comparative Biochemical Properties of Proteinases from the Hepatopancreas of Shrimp.-I. Purification of Protease from the Hepatopancreas of Penaeus japonicus. Fish Aquatic. Sci. 1998, 1, 201–208. [Google Scholar]
- Page, M.J.; Di Cera, E. Role of Na+ and K+ in enzyme function. Physiol. Rev. 2006, 86, 1049–1092. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.Y.; Xue, C.H.; Miao, B.C.; Li, Z.J.; Gao, X.; Yang, W.G. Characterization of proteases from the digestive tract of sea cucumber (Stichopus japonicus): High alkaline protease activity. Aquaculture 2005, 246, 321–329. [Google Scholar] [CrossRef]
- Bougatef, A. Trypsins from fish processing waste: Characteristics and biotechnological applications—Comprehensive review. J. Clean. Prod. 2013, 57, 257–265. [Google Scholar] [CrossRef]
- Mandal, R.; Mandal, D.; Mishra, N.; Bahadur, A. Effect of surfactants on phosphatase level of fresh water fish Labeo rohita. J. Environ. Biol. 2010, 31, 395–398. [Google Scholar] [PubMed]
- Rubingh, D.N. The influence of surfactants on enzyme activity. Curr. Opin. Colloid Interface Sci. 1996, 1, 598–603. [Google Scholar] [CrossRef]
- Jelińska, A.; Zagożdżon, A.; Górecki, M.; Wisniewska, A.; Frelek, J.; Holyst, R. Denaturation of proteins by surfactants studied by the Taylor dispersion analysis. PLoS ONE 2017, 12, e0175838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Blankschtein, D. Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: A molecular dynamics simulation study. J. Phys. Chem. 2010, 114B, 15616–15625. [Google Scholar] [CrossRef] [PubMed]
- Parra, J.G.; Iza, P.; Dominguez, H.; Schott, E.; Zarate, X. Effect of Triton X-100 surfactant on the interfacial activity of ionic surfactants SDS, CTAB and SDBS at the air/water interface: A study using molecular dynamic simulations. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125284. [Google Scholar] [CrossRef]
- Rai, S.; Acharya-Siwakoti, E.; Kafle, A.; Devkota, H.P.; Bhattarai, A. Plant-derived saponins: A review of their surfactant properties and applications. Science 2021, 3, 44. [Google Scholar] [CrossRef]
Inhibitors | Concentration | Inhibition (%) | |
---|---|---|---|
Huso huso | Acipenser stellatus | ||
Control | - | 0.0 ± 0.00 a | 0.0 ± 0.00 a |
PMSF | 10 mM | 36.29 ± 0.39 c | 39.111 ± 0.45 c |
SBTI | 0.05 mM | 99.81 ± 0.54 d | 99.29 ± 0.49 d |
TLCK | 5 mM | 99.19 ± 0.57 d | 99.51 ± 0.47 d |
TPCK | 5 mM | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
Pepstatin A | 0.01 mM | 0.51 ± 0.003 a | 0.89 ± 0.002 a |
Iodoacetic acid | 1 mM | 0.25 ± 0.002 a | 0.44 ± 0.003 a |
EDTA | 2 mM | 21.06 ± 0.36 b | 23.55 ± 0.51 b |
ß-Mercaptoethanol | 5 mM | 22.84 ± 0.41 b | 25.33 ± 0.37 b |
Metal Ions | Concentration | Residual Activity (%) | |
---|---|---|---|
Huso huso | Acipenser stellatus | ||
Control | - | 100 ± 0.00 d | 100 ± 0.00 d |
KCl | 5 mM | 99.6 ± 1.05 d | 99.2 ± 0.92 d |
NaCl | 5 mM | 99.3 ± 1.03 d | 99.5 ± 1.01 d |
CaCl2 | 5 mM | 107.21 ± 0.81 e | 105.32 ± 0.98 e |
CuCl2 | 5 mM | 48.31 ± 0.88 a | 44.58 ± 0.96 a |
ZnCl2 | 5 mM | 67.79 ± 1.15 b | 64.83 ± 1.23 b |
CoCl2 | 5 mM | 76.69 ± 0.85 c | 74.77 ± 1.05 c |
Chemicals | Concentration | Residual Activity % | ||
---|---|---|---|---|
Huso huso | Acipenser stellatus | |||
Surfactants | Control | - | 100 ± 0.00 A d | 100 ± 0.00 A d |
Triton X-100 | 1% | 108.81 ± 1.62 A e | 112.55 ± 1.11 A e | |
SDS | 1% | 2.79 ± 0.21 A a | 5.77 ± 0.33 B a | |
Sodium cholate | 1% | 132.23 ± 1.12 A j | 197.77 ± 0.99 B j | |
Saponin | 1% | 126.14 ± 1.06 A f | 128.44 ± 1.46 A f | |
Oxidising agents | Sodium perborate | 1% | 75.63 ± 1.07 A c | 77.77 ± 0.97 A b |
H2O2 | 5% | 70.30 ± 1.02 A c | 87.55 ± 1.02 B c | |
10% | 64.97 ± 1.19 A c | 84.55 ± 0.73 B c | ||
15% | 40.35 ± 0.65 A b | 73.77 ± 0.91 B b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamani, A.; Khajavi, M.; Abedian Kenari, A.; Haghbin Nazarpak, M.; Solouk, A.; Esmaeili, M.; Gisbert, E. Physicochemical and Biochemical Properties of Trypsin-like Enzyme from Two Sturgeon Species. Animals 2023, 13, 853. https://doi.org/10.3390/ani13050853
Zamani A, Khajavi M, Abedian Kenari A, Haghbin Nazarpak M, Solouk A, Esmaeili M, Gisbert E. Physicochemical and Biochemical Properties of Trypsin-like Enzyme from Two Sturgeon Species. Animals. 2023; 13(5):853. https://doi.org/10.3390/ani13050853
Chicago/Turabian StyleZamani, Abbas, Maryam Khajavi, Abdolmohammad Abedian Kenari, Masoumeh Haghbin Nazarpak, Atefeh Solouk, Mina Esmaeili, and Enric Gisbert. 2023. "Physicochemical and Biochemical Properties of Trypsin-like Enzyme from Two Sturgeon Species" Animals 13, no. 5: 853. https://doi.org/10.3390/ani13050853
APA StyleZamani, A., Khajavi, M., Abedian Kenari, A., Haghbin Nazarpak, M., Solouk, A., Esmaeili, M., & Gisbert, E. (2023). Physicochemical and Biochemical Properties of Trypsin-like Enzyme from Two Sturgeon Species. Animals, 13(5), 853. https://doi.org/10.3390/ani13050853