Extracts of Apricot (Prunus armeniaca) and Peach (Prunus pérsica) Kernels as Feed Additives: Nutrient Digestibility, Growth Performance, and Immunological Status of Growing Rabbits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fruit Kernel Extracts, and Characterization
2.2. Animal Management and Dietary Treatments
2.3. Growth Performance and Dry Matter Intake
2.4. Nutrient Digestibility and Nitrogen Balance
2.5. Blood Plasma Antioxidant and Immunological Indicators
2.6. Cecal Measurements, Fermentation Characteristics, and Microbial Count
2.7. Statistical Analysis
3. Results
3.1. Phytochemicals of the Experimental Feed Additives
3.2. Animal Growth Performance
3.3. Nutrient Digestibility and Nitrogen Balance
3.4. Blood Plasma Antioxidant and Immunological Indicators
3.5. Cecal Measurements, Fermentation Characteristics, and Microbial Count
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, I.; Gulzar, S.; Shakir, I. Physico-chemical properties of bitter and sweet apricot kernel flour and oil from North of Pakistan. Int. J. Food Safety 2011, 13, 11–15. [Google Scholar]
- FAOSTAT. FAO Statistics, Food and Agriculture Organization of the United Nations. 2019. Available online: https://www.fao.org/faostat/ar/#data/QCL (accessed on 1 January 2023).
- Nowicka, P.; Wojdyło, A. Content of bioactive compounds in the peach kernels and their antioxidant, anti-hyperglycemic, anti-aging properties. Eur. Food Res. Technol. 2018, 245, 1123–1136. [Google Scholar] [CrossRef] [Green Version]
- Soltan, Y.; Adibe Filho, A.A.; Abdalla, A.; Berenchtein, B.; Schiavinatto, P.; Costa, C. Replacing maize with low tannin sorghum grains: Lamb growth performance, microbial protein synthesis and enteric methane production. Anim. Prod. Sci. 2021, 61, 1348–1355. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Zayed, M.Z.; Ali, H.M.; El-Kareem, M.S.M.A. Chemical composition, antioxidant and antibacterial activities of extracts from Schinus molle wood branch growing in Egypt. J. Wood Sci. 2016, 62, 548–561. [Google Scholar] [CrossRef] [Green Version]
- Natić, M.; Zagorac, D.D.; Ćirić, I.; Meland, M.; Rabrenović, B.; Akšić, M.F. Cold pressed oils from genus Prunus. In Cold Pressed oils; Academic Press: Cambridge, MA, USA, 2020; pp. 637–658. [Google Scholar] [CrossRef]
- Alagawany, M.; El-Hack, M.E.A.; Al-Sagheer, A.A.; Naiel, M.A.; Saadeldin, I.M.; Swelum, A.A. Dietary Cold Pressed Watercress and Coconut Oil Mixture Enhances Growth Performance, Intestinal Microbiota, Antioxidant Status, and Immunity of Growing Rabbits. Animals 2018, 8, 212. [Google Scholar] [CrossRef] [Green Version]
- EL Latif, S.A.; Toson, A.; Elwan, H.; Helpawy, E.S. Inclusion of Phytogenic Feed Additives in Diet of Growing Rabbits: Effects on Antioxidant Enzymes and Immunoglobulins. Biomed. J. Sci. Tech. Res. 2021, 33, 25499–25503. [Google Scholar] [CrossRef]
- Hashem, N.; Soltan, Y.; El-Desoky, N.; Morsy, A.; Sallam, S. Effects of Moringa oleifera extracts and monensin on performance of growing rabbits. Livest. Sci. 2019, 228, 136–143. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; El-Ratel, I.T.; Peris, S.I.; El-Raghi, A.A.; Fouda, S.F. Effects of dietary thyme essential oil on blood haematobiochemical, redox status, immunological and reproductive variables of rabbit does exposed to high environmental temperature. Ital. J. Anim. Sci. 2022, 21, 51–61. [Google Scholar] [CrossRef]
- Soltan, Y.A.; Morsy, A.S.; Hashem, N.M.; Sallam, S.M. Boswellia sacra resin as a phytogenic feed supplement to enhance ruminal fermentation, milk yield, and metabolic energy status of early lactating goats. Anim. Feed. Sci. Technol. 2021, 277, 114963. [Google Scholar] [CrossRef]
- Unwin, S.L.; Saunders, R.A.; Blackwell, E.J.; Rooney, N.J. A double-blind, placebo-controlled trial investigating the value of Pet Remedy in ameliorating fear of handling of companion rabbits. J. Vet. Behavior 2020, 36, 54–64. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Rabbits; National Academies Press: Washington, DC, USA, 1977. [Google Scholar]
- Association of Official Agricultural Chemists. Official Methods of Analysis, 20th ed.; Association of Official Agricultural Chemists: Arlington, VA, USA, 2006. [Google Scholar]
- Wegmann, T.G.; Smithies, O. A Simple Hemagglutination System Requiring Small Amounts of Red Cells and Antibodies. Transfusion 1966, 6, 67–73. [Google Scholar] [CrossRef]
- Nelson, N.A.; Lakshmanan, N.; Lamont, S.J. Sheep Red Blood Cell and Brucella abortus Antibody Responses in Chickens Selected for Multitrait Immunocompetence. Poult. Sci. 1995, 74, 1603–1609. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.; Carrilho, M.C.; Campo, M.M.; Lafuente, R. Halal slaughter and electrical stunning in rabbits: Effect on welfare and muscle characteristics. In Proceedings of the World Rabbit Science Association, 9th ed.; World Rabbit Congress: Verona, Italy, 2008; pp. 1201–1205. [Google Scholar]
- Palmquist, D.; Conrad, H. Origin of plasma fatty acid in lactating dairy cows fed high fat diets. J. Dairy Sci. 1971, 54, 1025–1031. [Google Scholar] [CrossRef]
- Chen, Y.; Al-Ghamdi, A.A.; Elshikh, M.S.; Shah, M.H.; Al-Dosary, M.A.; Abbasi, A.M. Phytochemical profiling, antioxidant and HepG2 cancer cells’ antiproliferation potential in the kernels of apricot cultivars. Saudi J. Biol. Sci. 2020, 27, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, D.A.; Hamed, I.M.; Mohammed, S. Utilization of Grape and Apricot Fruits By-products as Cheap Source for Biologically Active Compounds for Health Promotion. Egypt. J. Chem. 2021, 64, 2037–2045. [Google Scholar] [CrossRef]
- Soltan, Y.A.; Natel, A.S.; Araujo, R.C.; Morsy, A.S.; Abdalla, A.L. Progressive adaptation of sheep to a microencapsulated blend of essential oils: Ruminal fermentation, methane emission, nutrient digestibility, and microbial protein synthesis. Anim. Feed. Sci. Technol. 2018, 237, 8–18. [Google Scholar] [CrossRef]
- Singh, A.S.; Alagbe, J.O.; Sharma, S.; Oluwafemi, R.A.; Agubosi, O.C.P. Effect of Dietary Supplementation of Melon (Citrallus Lanatus) Seed Oil on the Growth Performance and Antioxidant Status of Growing Rabbits. Indones. J. Innov. Appl. Sci. IJIAS 2021, 1, 134–143. [Google Scholar] [CrossRef]
- Bovera, F.; Nizza, S.; Marono, S.; Mallardo, K.; Piccolo, G.; Tudisco, R.; De Martino, L.; Nizza, A. Effect of mannan oligosaccharides on rabbit performance, digestibility and rectal bacterial anaerobic populations during an episode of epizootic rabbit enteropathy. World Rabbit. Sci. 2010, 18, 9–16. [Google Scholar] [CrossRef]
- Ghosh, A.; Ricke, S.C.; Almeida, G.; Gibson, K.E. Combined Application of Essential Oil Compounds and Bacteriophage to Inhibit Growth of Staphylococcus aureus In Vitro. Curr. Microbiol. 2016, 72, 426–435. [Google Scholar] [CrossRef]
- Zhong, Z.; Wang, C.; Zhang, H.; Mi, J.; Liang, J.B.; Liao, X.; Wu, Y.; Wang, Y. Sodium butyrate reduces ammonia emissions through glutamate metabolic pathways in cecal microorganisms of laying hens. Ecotoxicol. Environ. Saf. 2022, 233, 113299. [Google Scholar] [CrossRef]
- Karadimou, C.C.; Koletti, A.E.; Moschona, A.1; Gika, H.G.; Vlachos, D.; Assimopoulou, A.N. P36: PEACH Kernel: A Potential Source For Cosmeceuticals. In Metrology Promoting Harmonization& Standardization in Food & Nutrition 1st–4th October 2017, KEDEA Building; AUTH: Thessaloniki, Greece, 2017. [Google Scholar]
- Wu, H.; Shi, J.; Xue, S.; Kakuda, Y.; Wang, D.; Jiang, Y.; Ye, X.; Li, Y.; Subramanian, J. Essential oil extracted from peach (Prunus persica) kernel and its physicochemical and antioxidant properties. LWT Food Sci. Technol. 2011, 44, 2032–2039. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [Green Version]
- Kahla, N.E.; SafeKordi, A.A. Evaluation of temperature & solvent effect on peach kernel oil extraction & determination & quantification of its fatty. J. Nat. Sci. Res. 2012, 2, 1–7. [Google Scholar]
- Kalia, S.; Bharti, V.K.; Giri, A.; Kumar, B. Effect of Prunus armeniaca seed extract on health, survivability, antioxidant, blood biochemical and immune status of broiler chickens at high altitude cold desert. J. Adv. Res. 2017, 8, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Bergendi, L.; Beneš, L.; Ďuračková, Z.; Ferenčik, M. Chemistry, physiology and pathology of free radicals. Life Sci. 1999, 65, 1865–1874. [Google Scholar] [CrossRef] [PubMed]
- Bendich, A. Carotenoids and the Immune Response. J. Nutr. 1989, 119, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Bovera, F.; Lestingi, A.; Iannaccone, F.; Tateo, A.; Nizza, A. Use of dietary mannanoligosaccharides during rabbit fattening period: Effects on growth performance, feed nutrient digestibility, carcass traits, and meat quality. J. Anim. Sci. 2012, 90, 3858–3866. [Google Scholar] [CrossRef] [Green Version]
- Gidenne, T. Estimation of volatile fatty acids and of their energetic supply in the rabbit caecum: Effect of the dietary fiber level. In Proceedings of the 6eme Journees de la Recherche Cunicole; ITAVI Publications: Paris, France, 1994; pp. 293–299. [Google Scholar]
- Soltan, Y.; Morsy, A.; Hashem, N.; Elazab, M.; Sultan, M.; Marey, H.; Abo El Lail, G.; El-Desoky, N.; Hosny, N.; Mahdy, A.; et al. Modified nano-montmorillonite and monensin modulate in vitro ruminal fermentation, nutrient degradability, and methanogenesis differently. Animals 2021, 11, 3005. [Google Scholar] [CrossRef]
- Sabry, M.; Nasser, M.E.A.; Kamel, H.E.M.; Abaza, M.A.; Soltan, Y.A. Effect of replacing corn grains with date palm kernels on ruminal fermentation, feed degradability, and methane production under different initial in vitro pH conditions. Anim. Biotechnol. 2022, 33, 1268–1279. [Google Scholar] [CrossRef] [PubMed]
Item | Basal Diet |
---|---|
Ingredients (%) | |
Berseem clover hay | 28.0 |
Barley | 17.3 |
Corn yellow | 17.9 |
Wheat bran | 12.0 |
Soybean meal | 20.0 |
Molasses | 3.00 |
Di-Ca-Ph | 1.00 |
Sodium chloride | 0.30 |
Vitamin premix 1 | 0.30 |
Lysine | 0.10 |
Methionine | 0.10 |
Chemical composition | |
Organic matter(%) | 89.7 |
Crude protein (%) | 17.2 |
Crude fibre (%) | 13.1 |
Neutral detergent fibre (%) | 37.5 |
Acid detergent fiber (%) | 21.4 |
Ether extract (%) | 3.45 |
Non-fiber carbohydrate (%) | 55.9 |
Hemicellulose (%) | 16.2 |
Calcium (%) * | 0.83 |
Available phosphorus (%) * | 0.31 |
Peaks | Compounds | RT (min) | Peak Area (%) | Molecular Formula | Structure |
---|---|---|---|---|---|
1 | D-Limonene | 5.39 | 1.94 | C10H16 | |
2 | Propanoic acid, 2 methyl-, 3-methylbutyl ester | 5.93 | 4.44 | C9H18O2 | |
3 | 1,6-Octadien-3-Ol, 3,7-Dimethyl- | 7.00 | 3.74 | C10H18O | |
4 | Butanoic acid, 3-methyl-, 3-methylbutyl ester | 7.09 | 7.11 | C10H20O2 | |
5 | Acetic acid, phenylmethyl ester | 8.53 | 6.41 | C9H10O2 | |
6 | 1,6-Octadien-3-Ol, 3,7-Dimethyl-, Acetate | 10.72 | 1.07 | C12H20O2 | |
7 | 1,3-Dioxolane, 4-Methyl-2-Phenyl | 11.20 | 10.76 | C10H12O2 | |
8 | Butanoic Acid, Phenylmethyl Ester | 13.21 | 2.21 | C11H14O2 | |
9 | Butanoic acid, 2-methyl-, phenylmethyl ester | 14.21 | 1.94 | C12H16O2 | |
10 | 2-Buten-1-one, 1-(2,6,6-trimethyl-1-cyclohexen-1-yl)- | 14.76 | 0.91 | C13H20O | |
11 | 2(3h)-Furanone, 5-Hexyldihydro- | 16.21 | 10.32 | C10H18O2 | |
12 | 3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)- | 16.50 | 0.66 | C13H20O | |
13 | 1,1-Dimethyl-2 Phenylethy L Butyrate # | 16.70 | 14.36 | C14H20O2 | |
14 | 2-Phenoxyethyl isobutyrate | 17.40 | 9.10 | C12H16O3 | |
15 | 2(3h)-Furanone, 5-Heptyldihydro- | 18.75 | 25.01 | C11H20O2 |
Peaks | Compounds | RT (min) | Peak Area (%) | Molecular Formula | Structure |
---|---|---|---|---|---|
1 | 3-Hexen-1-ol, acetate | 4.58 | 1.45 | C8H14O2 | |
2 | Acetic acid, hexyl ester | 4.99 | 1.68 | C8H16O2 | |
3 | Morpholine, 4-(1-butenyl)- | 5.12 | 0.62 | C8H15NO | |
4 | 1-methyl-4-(1-methylethenyl)-, (S)- D-Limonene | 5.39 | 0.54 | C10H16 | |
5 | Butanoic acid, 3-methyl-, butyl ester | 5.72 | 7.87 | C9H18O2 | |
6 | Propanoic acid, 2-methyl-, 3-methylbutyl ester | 5.93 | 0.28 | C9H18O2 | |
7 | 1,6-Octadien-3-Ol, 3,7-Dimethyl- | 7.00 | 1.38 | C10H18O | |
8 | Isoamylisovalerate | 7.09 | 1.91 | C10H20O2 | |
9 | Acetic Acid, Phenylmethyl Ester | 8.57 | 1.99 | C9H10O2 | |
10 | Acetic acid, decyl ester | 9.74 | 0.6 | C12H24O2 | |
11 | Propanoic Acid, Phenylmethyl Ester | 10.95 | 8.64 | C10H12O2 | |
12 | 1,3-Dioxolane, 4-methyl-2-phenyl- | 11.21 | 7.94 | C10H12O2 | |
13 | Cyclohexanol, 5-methyl-2-(1-methylethyl)-, acetate | 11.77 | 14.10 | C12H22O2 | |
14 | Butanoic Acid, Phenylmethyl Ester | 13.21 | 0.83 | C11H14O2 | |
15 | Pentanoic acid, phenylmethyl ester | 14.21 | 0.63 | C12H16O2 | |
16 | 2-Buten-1-one, 1-(2,6,6-trimethyl-2-cyclohexen-1-yl)-, (E)- | 14.29 | 0.83 | C13H20O | |
17 | 2-Cyclopenten-1-One, 3-Methyl-2-(2-Pentenyl)-,(Z)- | 14.40 | 2.71 | C11H16O | |
18 | (Z)-1-(2,6,6-Trimethyl-1-Cyclo Hexen-1-Yl)-2 Buten-1-One | 14.76 | 1.49 | C13H20O | |
19 | 2(3H)-Furanone, 5 hexyldihydro- | 16.20 | 7.63 | C10H18O2 | |
20 | 1,1-Dimethyl-2 Phenylethy L Butyrate | 16.69 | 4.03 | C14H20O2 | |
21 | 2-Phenoxyethyl isobutyrate | 17.40 | 2.40 | C12H16O3 | |
22 | 2(3H)-Furanone, 5-Heptyldihydro- | 18.71 | 14.99 | C11H20O2 | |
23 | 10-Methylundecan-4-olide | 21.09 | 9.24 | C12H22O2 | |
24 | ë-Dodecalactone | 21.70 | 1.47 | C12H22O2 | |
25 | 9-Octadecenoic acid, methyl ester, (E)- | 29.57 | 0.97 | C19H36O2 | |
26 | 9,19-Cyclolanost-24-en-3-ol, (3á) | 42.80 | 3.24 | C30H50O |
Items | Treatments | SEM | p-Value | |||
---|---|---|---|---|---|---|
Kernel Extract | ||||||
Control | AKE | PKE | Mixture | |||
Initial body weight (g/rabbit) | 725 | 741 | 745 | 735 | 26.5 | 0.977 |
Final body weight (g/rabbit) | 2195 c | 2304 b | 2437 a | 2433 a | 25.6 | 0.001 |
Total weight gain (g/rabbit) | 1470 c | 1562 b | 1692 a | 1697 a | 29.8 | 0.001 |
Average daily gain (g/day) | 26.2 c | 27.9 b | 30.2 a | 30.3 a | 0.61 | 0.001 |
Feed intake (g/experimental period) | 5571 | 5561 | 5556 | 5578 | 17.9 | 0.275 |
Daily feed intake (g/day) | 99.4 | 99.3 | 99.2 | 99.6 | 0.36 | 0.277 |
Feed conversion ratio | 3.79 a | 3.56 b | 3.28 c | 3.29 c | 0.06 | 0.001 |
Item | Treatments | SEM | p-Value | |||
---|---|---|---|---|---|---|
Kernel Extracts | ||||||
Control | AKE | PKE | Mixture | |||
Nutrient digestibility | ||||||
Dry matter | 60.0 c | 64.3 b | 64.4 b | 68.8 a | 0.622 | 0.001 |
Organic matter | 62.5 c | 64.7 bc | 67.6 b | 70.8 a | 0.647 | 0.001 |
Crude protein | 69.0 b | 70.5 b | 70.9 b | 73.5 a | 0.605 | 0.008 |
Ether extract | 52.1 d | 59.9 c | 62.4 b | 67.1 a | 0.872 | 0.001 |
Crude fiber | 57.6 | 58.1 | 59.2 | 61.0 | 1.39 | 0.293 |
Nitrogen free extract | 65.5 b | 66.9 b | 69.1 ab | 71.8 a | 0.97 | 0.012 |
Nitrogen (N) balance | ||||||
N intake (g/day) | 2.77 | 2.77 | 2.76 | 2.77 | 0.03 | 0.100 |
Fecal N excretion (g/day) | 1.12 | 1.093 | 0.97 | 0.87 | 0.02 | 0.670 |
Urinary N excretion (g/day) | 0.53 | 0.46 | 0.48 | 0.48 | 0.03 | 0.315 |
Body N retention (g/day) | 1.12 c | 1.21 b | 1.31 b | 1.42 a | 0.04 | 0.001 |
N retained (% N intake) | 40.4 b | 43.8 b | 47.5 a | 51.3 a | 1.03 | 0.006 |
Item | Treatments | SEM | p-Value | |||
---|---|---|---|---|---|---|
Kernel Extracts | ||||||
Control | AKE | PKE | Mixture | |||
Antioxidant indicators | ||||||
Malondialdehyde (mmol/L) | 12.9 a | 10.6 b | 9.9 b | 9.97 b | 0.265 | <0.001 |
Total antioxidant capacity (mmol/L) | 0.60 b | 1.18 a | 1.16 a | 1.24 a | 0.057 | <0.001 |
Superoxide dismutase (U/L) | 27.0 b | 35.7 a | 36.1 a | 36.6 a | 3.497 | 0.017 |
Catalase [U/g] | 490 b | 595 a | 591 a | 607 a | 28.9 | 0.019 |
Antibody titers against SRBCs | ||||||
SRBCs at 11 weeks of age | 0.73 b | 0.89 a | 0.88 a | 0.86 a | 0.025 | 0.010 |
SRBCs at 12 weeks of age | 0.74 b | 0.85 a | 0.86 a | 0.82 a | 0.03 | 0.044 |
SRBCs at 13 weeks of age | 0.71 b | 0.79 a | 0.88 a | 0.81 a | 0.04 | 0.020 |
Item | Treatments | SEM | p-Value | |||
---|---|---|---|---|---|---|
Kernel Extracts | ||||||
Control | AKE | PKE | Mixture | |||
Cecal measurements | ||||||
Cecum length (cm) | 40.5 b | 49.2 a | 49.7 a | 48.9 a | 0.202 | 0.0001 |
Full cecum weight (g) | 100 b | 121 a | 120 a | 121 a | 1.162 | 0.0007 |
Empty cecum weight (g) | 24.7 b | 27.9 a | 28.1 a | 27.9 a | 0.377 | 0.018 |
Cecal fermentation | ||||||
pH | 6.43 a | 5.59 b | 5.44 b | 5.49 b | 0.082 | 0.0009 |
Ammonia (mmol/L) | 13.4 a | 11.1 b | 11.0 b | 9.17 c | 0.212 | 0.001 |
Total short-chain fatty acids (mmol/L) | 51.6 b | 69.3 a | 69.0 a | 70.1 a | 3.62 | 0.05 |
Butyric acid (mmol/L) | 9.1 b | 10.3 a | 10.2 a | 10.5 a | 0.165 | 0.017 |
Acetic acid (mmol/L) | 50.4 b | 63.0 a | 63.1 a | 65.1 a | 0.367 | 0.0001 |
Propionic acid (mmol/L) | 5.12 b | 6.27 a | 6.23 a | 6.4 a | 0.09 | 0.0001 |
Cecal microbial count (×105) (CFU/mL) | ||||||
Total bacterial | 4.85 a | 3.03 b | 3.01 b | 2.98 b | 0.14 | 0.0001 |
Total coliform | 3.41 a | 2.18 b | 2.19 b | 2.11 b | 0.125 | 0.005 |
Total anaerobic | 1.91 a | 1.22 b | 1.21 b | 0.91 b | 0.27 | 0.0015 |
L. acidiophilus | 1.85 b | 8.95 a | 8.99 a | 9.01 a | 0.132 | 0.0179 |
L. cellobiosus | 1.41 b | 9.98 a | 9.10 a | 9.26 a | 0.08 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basyony, M.; Morsy, A.S.; Soltan, Y.A. Extracts of Apricot (Prunus armeniaca) and Peach (Prunus pérsica) Kernels as Feed Additives: Nutrient Digestibility, Growth Performance, and Immunological Status of Growing Rabbits. Animals 2023, 13, 868. https://doi.org/10.3390/ani13050868
Basyony M, Morsy AS, Soltan YA. Extracts of Apricot (Prunus armeniaca) and Peach (Prunus pérsica) Kernels as Feed Additives: Nutrient Digestibility, Growth Performance, and Immunological Status of Growing Rabbits. Animals. 2023; 13(5):868. https://doi.org/10.3390/ani13050868
Chicago/Turabian StyleBasyony, Mohamed, Amr S. Morsy, and Yosra A. Soltan. 2023. "Extracts of Apricot (Prunus armeniaca) and Peach (Prunus pérsica) Kernels as Feed Additives: Nutrient Digestibility, Growth Performance, and Immunological Status of Growing Rabbits" Animals 13, no. 5: 868. https://doi.org/10.3390/ani13050868
APA StyleBasyony, M., Morsy, A. S., & Soltan, Y. A. (2023). Extracts of Apricot (Prunus armeniaca) and Peach (Prunus pérsica) Kernels as Feed Additives: Nutrient Digestibility, Growth Performance, and Immunological Status of Growing Rabbits. Animals, 13(5), 868. https://doi.org/10.3390/ani13050868