Health-Promoting Ingredients in Goat’s Milk and Fermented Goat’s Milk Drinks
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Analysis of Fatty Acids (FAs)
2.2.2. Analysis of Minerals
2.2.3. Analysis of Folates
2.2.4. Statistical Analysis
3. Results and Discussion
3.1. Fatty Acid Composition
3.2. Mineral Composition
3.3. Folate Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rizzoli, R. Dairy products, yogurts, and bone health. Am. J. Clin. Nutr. 2014, 99, 1256S–1262S. [Google Scholar] [CrossRef] [Green Version]
- Korhenen, H. Bioactive Components in Bovine Milk. In Bioactive Components in Milk and Dairy Products; Park, Y.W., Ed.; Wiley-Blackwell: Singapore, 2009; pp. 15–42. [Google Scholar]
- Lad, S.S.; Aparnathi, K.D.; Mehta, B.; Velpula, S. Goat milk in human nutrition and health—A review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1781–1792. [Google Scholar] [CrossRef]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Albenzio, M.; Santillo, A.; Avando, M.; Nudda, A.; Chesse, S.; Pirisi, A.; Banni, S. Nutritional properties of small ruminant food products and their role on human health. Small Rumin. Res. 2016, 136, 3–12. [Google Scholar] [CrossRef]
- Jensen, R.G. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 2002, 85, 295–350. [Google Scholar] [CrossRef] [PubMed]
- Hanuš, O.; Samková, E.; Krížová, L.; Hasoňová, L.; Kala, R. Role of fatty acids in milk fat and the influence of selected factors on their variability—A Review. Molecules 2018, 23, 1636. [Google Scholar] [CrossRef] [Green Version]
- Akalln, A.S.; Tokusoglu, O. A Potential Anticarcinogenic Agent: Conjugated Linoleic Acid (CLA). Pak. J. Nutr. 2003, 2, 109–110. [Google Scholar] [CrossRef] [Green Version]
- Parodi, P.W. Anti-Cancer Agents in Milkfat. Aust. J. Dairy Technol. 2003, 58, 114–118. [Google Scholar]
- Aydin, R. Conjugated Linoleic Acid: Structure, Sources and Biological Properties. Turk. J. Vet. Anim. Sci. 2003, 29, 189–195. [Google Scholar]
- Park, Y. Conjugated Linoleic Acid (CLA): Good or Bad Trans Fat? J. Food Compos. Anal. 2009, 22, 4–12. [Google Scholar] [CrossRef]
- Kee, J.-I.; Ganesan, P.; Kwak, H.-S. Bioactive Conjugated Linoleic Acid (CLA) in Milk. Food Sci. Anim. Resour. 2010, 30, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.-N.; Oh, J.-J.; Wang, T.; Lee, J.-S.; Kim, S.-H.; Kim, Y.-H.; Lee, H.-G. trans-11 18:1 vaccenic acid (TVA) has a direct anti-carcinogenic effect on MCF-7 human mammary adenocarcinoma cells. Nutrients 2014, 6, 627–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Claeys, W.L.; Verraes, C.; Cardoen, S.; de Block, J.; Huyghebaer, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Wongtangtintharn, S.; Oku, H.; Iwasaki, H.; Toda, T. Effect of branched-chain fatty acids on fatty acid biosynthesis of human breast cancer cells. J. Nutr. Sci. Vitaminol. 2004, 50, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Adamska, A.; Rutkowska, J. Odd- and branched-chain fatty acids in milk fat—Characteristic and health properties. Postepy Hig. Med. Dosw. 2014, 68, 957–966. [Google Scholar] [CrossRef]
- Balta, I.; Stef, L.; Pet, I.; Iancu, T.; Stef, D.; Corcionivoschi, N. Essential Fatty Acids as Biomedicines in Cardiac Health. Biomedicines 2021, 9, 1466. [Google Scholar] [CrossRef]
- Haug, A.; Hostmark, A.T.; Harstad, O.M. Bovine milk in human nutrition: A review. Lipids Health Dis. 2007, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Arnould, V.M.-R.; Soyeurt, H. Genetic variability of milk fatty acids. J. Appl. Genet. 2009, 50, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, S.; Powar, P.; Mehra, R. A review on nutritional advantages and nutraceutical properties of cow and goat milk. Int. J. Appl. Res. 2021, 7, 101–105. [Google Scholar] [CrossRef]
- Pietrzak-Fiećko, R.; Kamelska-Sadowska, A.M. The comparison of nutritional value of human milk with other mammals’ milk. Nutrients 2020, 12, 1404. [Google Scholar] [CrossRef] [PubMed]
- Olza, J.; Aranceta-Bartrina, J.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G.; Gil, Á. Reported Dietary Intake, Disparity between the Reported Consumption and the Level Needed for Adequacy and Food Sources of Calcium, Phosphorus, Magnesium and Vitamin D in the Spanish Population: Findings from the ANIBES Study. Nutrients 2017, 9, 168. [Google Scholar] [CrossRef] [PubMed]
- Klepacka, J.; Tońska, E.; Rafałowski, R.; Czarnowska-Kujawska, M.; Opara, B. Tea as a Source of Biologically Active Compounds in the Human Diet. Molecules 2021, 26, 1487. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Singh, J.; Yadav, S.K. Composition, nutritional and therapeutic values of goat milk: A review. Asian J. Dairy Food Res. 2016, 35, 96–102. [Google Scholar] [CrossRef]
- Cordeiro, A.R.R.d.A.; Bezerra, T.K.A.; Madruga, M.S. Valuation of Goat and Sheep By-Products: Challenges and Opportunities for Their Use. Animals 2022, 12, 3277. [Google Scholar] [CrossRef] [PubMed]
- Zamberlin, S.; Antunac, N.; Havranek, J.; Samarzija, D. Mineral elements in milk and dairy products. Mljekarstvo 2012, 62, 111–125. [Google Scholar]
- Wieczorek, M.; Schwarz, F.; Sadlon, A.; Abderhalden, L.A.; de Godoi Rezende Costa Molino, C.; Spahn, D.R.; Schaer, D.J.; Orav, E.J.; Egli, A.; Bischoff-Ferrari, H.A.; et al. Iron deficiency and biomarkers of inflammation: A 3-year prospective analysis of the DO-HEALTH trial. Aging Clin. Exp. Res. 2022, 34, 515–525. [Google Scholar] [CrossRef]
- WHO. The Global Health Observatory. Anaemia in Women and Children. WHO Global Anaemia Estimates, 2021 Edition: Global Anaemia Estimates in Women of Reproductive Age, by Pregnancy Status, and in Children Aged 6–59 Months. 2023. Available online: https://www.who.int/data/gho/data/themes/topics/anaemia_in_women_and_children (accessed on 31 January 2023).
- Currò, S.; De Marchi, M.; Claps, S.; Salzano, A.; De Palo, P.; Manuelian, C.L.; Neglia, G. Differences in the Detailed Milk Mineral Composition of Italian Local and Saanen Goat Breeds. Animals 2019, 9, 412. [Google Scholar] [CrossRef] [Green Version]
- Rutherfurd, S.M.; Darragh, A.J.; Hendriks, W.H.; Prosser, C.G.; Lowry, D. Mineral retention in three-week-old piglets fed goat and cow milk infant formulas. J. Dairy Sci. 2006, 89, 4520–4526. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Delger, M.; Dave, A.; Singh, H.; Ye, A. Seasonal Variations in the Composition and Physicochemical Characteristics of Sheep and Goat Milks. Foods 2022, 11, 1737. [Google Scholar] [CrossRef]
- Ferreira, F.G.; Leite, L.C.; Alba, H.D.R.; Pina, D.d.S.; Santos, S.A.; Tosto, M.S.L.; de Freitas Júnior, J.E.; Rodrigues, C.S.; Mesquita, B.M.A.d.C.; Carvalho, G.G.P.d. Licury Cake in Diets for Lactating Goats: Qualitative Aspects of Milk and Cheese. Animals 2023, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Rampersaud, G.C.; Kauwell, G.P.A.; Bailey, L.B. Folate: A Key to Optimizing Health and Reducing Disease Risk in the Elderly. J. Am. Coll. Nutr. 2003, 22, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Arnesen, E.; Refsum, H.; Bonaa, K.H.; Ueland, P.M.; Forde, O.H.; Nordrehaug, J.E. Serum total homocysteine and coronary heart disease. Int. J. Epidemiol. 1995, 24, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Dhonukshe-Rutten, R.A.M.; de Vries, J.H.M.; de Bree, A.; van der Put, N.; van Staveen, W.A.; de Groot, L.C.P.G.M. Dietary intake and status of folate and vitamin B12 and their association with homocysteine and cardiovascular disease in European populations. Eur. J. Clin. Nutr. 2009, 63, 18–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, M.S.; Jacques, P.F.; Rosenberg, I.H.; Selhub, J. Folate and vitamin B-12 status in relation to anemia, macrocytosis, and cognitive impairment in older, Americans in the age of folic acid fortification. Am. J. Clin. Nutr. 2007, 85, 193–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Qin, X.; Demirtas, H.; Li, J.; Mao, G.; Huo, Y. Efficacy of folic acid supplementation in stroke prevention: A meta-analysis. Lancet 2007, 369, 1876–1882. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Mason, J.B. Folate and carcinogenesis: An integrated scheme. J. Nutr. 2000, 130, 129–132. [Google Scholar] [CrossRef] [Green Version]
- Selhub, J.; Jacques, P.F.; Wilson, P.W.F.; Rush, D.; Rosenberg, I.H. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 1993, 270, 2693–2698. [Google Scholar] [CrossRef]
- Bean, L.J.; Allen, E.G.; Tinker, S.W.; Hollis, N.D.; Locke, A.E.; Druschel, C.; Hobbs, C.A.; O’Leary, L.; Romitti, P.A.; Royle, M.H.; et al. Lack of maternal folic acid supplementation is associated with heart defects in Down syndrome: A report from the National Down Syndrome Project. Birth Defects Res. A Clin. Mol. Teratol. 2011, 91, 885–893. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Ye, R.; Zhang, L.; Li, H.; Liu, J.; Ren, A. Folic acid supplementation during early pregnancy and the risk of gestational hypertension and preeclampsia. Hypertension 2013, 61, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Wen, S.W.; Guo, Y.; Rodger, M.; White, R.R.; Yang, Q.; Smith, G.N.; Perkins, S.L.; Walker, M.C. Folic Acid Supplementation in Pregnancy and the Risk of Pre-Eclampsia—A Cohort Study. PLoS ONE 2016, 11, e0149818. [Google Scholar] [CrossRef] [Green Version]
- Jarosz, M.; Stoś, K.; Przygoda, B.; Matczuk, E.; Stolińska-Fiedorowicz, H.; Kłys, W. Vitamins. In Standards for the Population of Poland; Jarosz, M., Ed.; IŻŻ: Warsaw, Poland, 2017; pp. 166–170. Available online: https://ncez.pl/upload/normy-net-1.pdf (accessed on 1 June 2022). (In Polish)
- Górska-Warsewicz, H.; Rejman, K.; Laskowski, W.; Czeczotko, M. Milk and Dairy Products and Their Nutritional Contribution to the Average Polish Diet. Nutrients 2019, 11, 1771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panday, A.J.; Ghodke, K.M. Goat and sheep milk products other than cheeses and yoghurt. Small Rumin. Res. 2007, 68, 193–206. [Google Scholar] [CrossRef]
- Yangilar, F. As a Potentially Functional Food: Goats’ Milk and Products. J. Food Nutr. Res. 2013, 1, 68–81. [Google Scholar] [CrossRef]
- Bogdan, N. Composition and characteristics of goat milk: A review. In Proceedings of the Conferința “Modern Technologies in the Food Industry”, Chişinău, Moldova, 20–22 October 2016; pp. 135–140. [Google Scholar]
- Christie, W.W. (Ed.) The Isolation of Lipids from Tissues. Recommended Procedures. Chloroform-Methanol(2:1,v/v) Extraction and “Folch” Wash. In Lipid Analysis. Isolation, Separation, Identification and Structural Analysis of Lipids; Pergamon Press: Oxford, UK; New York, NY, USA; Toronto, ON, Canada; Tokyo, Japan; Sydney, Australia; Braunschweig, Germany, 1973; pp. 39–40. [Google Scholar]
- ISO 15884:2002 (IDF 182:2002); Milkfat: Preparation of Fatty Acid Methyl Esters. ISO: Geneva, Switzerland, 2002.
- Kramer, J.K.G.; Cruz-Hermantez, C.; Deng, Z.; Zhou, J.; Jahreis, G.; Dugan, M.E.R. Analysis of conjugated linoleic acid and trans 18:1 isomers in syntetic and animal products. Am. J. Clin. Nutr. 2004, 79, 1137S–1145S. [Google Scholar] [CrossRef] [Green Version]
- LeDoux, M.; Chardigny, J.-M.; Darbois, M.; Soustre, Y.; Sébédio, J.-L.; Laloux, L. Fatty acid composition of French butters, with special emphasis on conjugated linoleic acid (CLA) isomers. J. Food Compos. Anal. 2005, 18, 409–425. [Google Scholar] [CrossRef]
- Konings, E.J.M. A Validated Liquid Chromatographic Method for Determining Folates in Vegetables, Milk Powder, Liver, and Flour. J. AOAC Int. 1999, 82, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Blakley, R.L. The Biochemistry of Folic Acid and Related Pteridines. In North-Holland Research Monographs; North-Holland Publishing Company: Amsterdam, The Netherlands, 1969; pp. 1–570. [Google Scholar]
- Patring, J.; Wandel, M.; Jägerstad, M.; Frølich, W. Folate content of Norwegian and Swedish Flours and Bread Analysed by Use of Liquid Chromatography—Mass Spectrometry. J. Food Compos. Anal. 2009, 22, 649–656. [Google Scholar] [CrossRef]
- Jastrebova, J.; Witthöft, C.; Grahn, A.; Svensson, U.; Jägerstad, M. HPLC Determination of Folates in Raw and Processed Beetroots. Food Chem. 2003, 80, 579–588. [Google Scholar] [CrossRef]
- Czarnowska-Kujawska, M.; Starowicz, M.; Barišić, V.; Kujawski, W. Health-Promoting Nutrients and Potential Bioaccessibility of Breads Enriched with Fresh Kale and Spinach. Foods 2022, 11, 3414. [Google Scholar] [CrossRef]
- STATISTICA, Version 13.1; StatSoft: Kraków, Poland, 2021.
- Williams, C.M. Dietary fatty acids and human health. Anim. Res. 2000, 49, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Connor, W.E. Importance of n−3 fatty acids in health and disease. Am. J. Clin. Nutr. 2000, 71, 171S–175S. [Google Scholar] [CrossRef] [Green Version]
- Holub, D.J.; Holub, B.J. Omega-3 fatty acids from fish oils and cardiovascular disease. Mol. Cell. Biochem. 2004, 263, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Wijendran, V.; Hayes, K.C. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu. Rev. Nutr. 2004, 24, 597–615. [Google Scholar] [CrossRef] [PubMed]
- Palmquist, D. Omega-3 Fatty Acids in Metabolism, Health, and Nutrition and for Modified Animal Product Foods. Prof. Anim. Sci. 2009, 25, 207–249. [Google Scholar] [CrossRef]
- Willett, W.C. The role of dietary n-6 fatty acids in the prevention of cardiovascular disease. J. Cardiovasc. Med. 2007, 8, S42–S45. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Russo, G.L. Dietary n−6 and n−3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. Biochem. Pharmacol. 2009, 77, 937–946. [Google Scholar] [CrossRef]
- Cossignani, L.; Giua, L.; Urbani, E.; Simonetti, M.S.; Blasi, F. Fatty acid composition and CLA content in goat milk and cheese samples from Umbrian market. Eur. Food Res. Technol. 2014, 12, 905–911. [Google Scholar] [CrossRef]
- Paszczyk, B.; Tońska, E.; Łuczyńska, J. Health-promoting value of cow, sheep and goat milk and yogurts. Mljecarstvo 2019, 69, 182–192. [Google Scholar] [CrossRef]
- Lock, A.; Bauman, D. Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids 2006, 39, 1197–1206. [Google Scholar] [CrossRef] [Green Version]
- Soyeurt, H.; Dardenne, P.; Gillon, A.; Croquet, C.; Vanderick, S.; Mayeres, P.; Bertozzi, C.; Gengler, N. Variation in fatty acid contents of milk and milk fat within and across breeds. J. Dairy Sci. 2006, 89, 4858–4865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zunong, M.; Hanada, M.; Aibibula, Y.; Okamato, M.; Tanaka, K. Variations in conjugated linoleic acid concentrations in cow`s milk, depending on feeding systems in different seasons. Asian–Aust. J. Anim. Sci. 2008, 21, 1466–1472. [Google Scholar] [CrossRef]
- Kelsey, J.A.; Corl, B.A.; Collier, R.J.; Bauman, D.E. The effect of breed, parity and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. J. Dairy Sc. 2003, 86, 2588–2597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frelich, J.; Šlachta, M.; Hanuš, O.; Špička, J.; Samková, E.; Węglarz, A.; Zapletal, P. Seasonal variation in fatty acid composition of cow milk in relation to the feeding system. Anim. Sci. Pap. Rep. 2012, 30, 219–229. [Google Scholar]
- Hanuš, O.; Krížová, L.; Samková, E.; Špička, J.; Kučera, J.; Klimešová, M.; Roubal, P.; Jedelská, R. The effectof cattle bread, season and type of diet on the fatty acid profile of raw milk. Arch. Anim. Breed. 2016, 59, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Tudisco, R.; Cutrignelli, M.I.; Calabrò, S.; Piccolo, G.; Infascelli, F. Influence of organic systems on milk fatty acid profile and CLA in goats. Small Rum. Res. 2010, 88, 151–155. [Google Scholar] [CrossRef]
- Zervas, G.; Tsiplakou, E. The effect of feeding systems on the characteristics of products from small ruminants. Small Rumin. Res. 2011, 101, 140–149. [Google Scholar] [CrossRef]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ayaz, M.; Ajmal, M.; Ellahi, M.Y.; Khalique, A. Antioxidant capacity and fatty acids characterization of heat treated cow and buffalo milk. Lipids Health Dis. 2017, 16, 227. [Google Scholar] [CrossRef] [Green Version]
- Pestana, J.M.; Gennari, A.; Monteiro, B.W.; Lehn, D.N.; Souza, C.F.V. Effects of Pasteurization and Ultra-High Temperature Processes on Proximate Composition and Fatty Acid Profile in Bovine Milk. Am. J. Food Technol. 2015, 10, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Ajmal, M.; Nadeem, M.; Imran, M.; Junaid, M. Lipid compositional changes and oxidation status of ultra-high temperature treated milk. Lipids Health Dis. 2018, 17, 227. [Google Scholar] [CrossRef] [Green Version]
- Simionato, J.I.; Hiroki, A.P.; Katsuda, M.S.; Pedrão, M.R.; Dias, L.F.; Evelazio de Souza, N. Effects of Seasonality on the Proximate Composition and Fatty Acid Profile in Cow Milk. Int. J. Food Sci. Nutr. Eng. 2012, 2, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Laučienė, L.; Andrulevičiūtė, V.; Sinkevičienė, I.; Sederevičius, A.; Musayeva, K.; Šernienė, L. Analysis of fatty acid composition and healthy lipids indices in raw and processed milk. J. Food Nutr. Res. 2019, 7, 386–390. [Google Scholar] [CrossRef]
- Santos Júnior, O.O.; Pedrao, M.R.; Dias, L.F.; Paula, L.N.; Coro, F.A.G.; De Souza, N.E. Fatty Acid Content of Bovine Milkfat From Raw Milk to Yoghurt. Am. J. Appl. Sci. 2012, 9, 1300–1306. [Google Scholar] [CrossRef]
- Gassem, M.; Osman, M.; Mohamed Ahmed, I.; Abdel Rahman, I.; Fadol, M.; Al-Maiman, S. Effect of fermentation by selected lactic acid bacteria on the chemical composition and fatty acids of camel milk. J. Camel. Practice. Research. 2016, 23, 277–281. [Google Scholar] [CrossRef]
- Kim, Y.; Liu, R. Increase of Conjugated Linoleic Acid Content in Milk by Fermentation with Lactic Acid Bacteria. J. Food Sci. 2002, 67, 1731–1737. [Google Scholar] [CrossRef]
- Ogawa, J.; Kishino, S.; Ando, A.; Sugimoto, S.; Mihara, K.; Shimizu, S. Production of Conjugated Fatty Acids by Lactic Acid Bacteria. J. Biosci. Bioeng. 2005, 100, 355–364. [Google Scholar] [CrossRef]
- Serafeimidou, A.; Zlatanos, S.; Kritikos, G.; Tourianis, A. Change of fatty acid profile, including conjugated linoleic acid (CLA) content, during refrigerated storage of yogurt made of cow and sheep milk. J. Food Compos. Anal. 2013, 31, 24–30. [Google Scholar] [CrossRef]
- Paszczyk, B.; Brandt, W.; Łuczyńska, J. Content of conjugated linoleic acid (CLA) and trans isomers of C18:1 and C18:2 acids in fresh and stored fermented milks produced with selected starter cultures. Czech. J. Food Sci. 2016, 34, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Czarnowska-Kujawska, M.; Paszczyk, B. Changes in the folate content and fatty acid profile in fermented milk produced with different starter cultures during storage. Molecules 2021, 26, 6063. [Google Scholar] [CrossRef]
- Domagała, J.; Sady, M.; Najgebauer-Lejko, D.; Czernicka, M.; Witeska, I. The content of conjugated linoleic acid (CLA) in cream fermented using different starter cultures. Biotechnol. Anim. Husb. 2009, 25, 745–751. [Google Scholar]
- Hennessy, A.; Ross, R.; Devery, R.; Stanton, C. Optimization of a Reconstituted Skim Milk Based Medium for Enhanced CLA Production by Bifidobacteria. J. Appl. Microbiol. 2009, 106, 1315–1327. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Chilliard, Y.; Toivonen, P.; Kairenius, P.; Givens, D.I. Trans fatty acids and bioactive lipids in ruminant milk. Adv. Exp. Med. Biol. 2008, 606, 3–65. [Google Scholar] [CrossRef] [PubMed]
- Ascherio, A.; Katan, M.B.; Zock, P.L.; Stampfer, M.J.; Willett, W.C. Trans fatty acids and coronary heart disease. N. Engl. J. Med. 1999, 340, 1994–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, A.E.I.; Elgasim, E.A.; Basheer, E.O.; Elhassan, I.H. Physicochemical, minerals and fatty acids of yoghurt as affected by milk source. Int. J. Innov. 2022, 9, 24–38. Available online: https://ijiset.com/vol9/v9s8/IJISET_V9_I08_03.pdf (accessed on 31 January 2023).
- Bezerril, F.F.; Magnani, M.; Pacheco, M.T.B.; Souza, M.F.V.; Figueiredo, M.T.B.; Lima, M.S.; Borges, G.S.C.; Oliveira, M.E.G.; Pimentel, T.C.; Queiroga, R.C.R.E. Pilosocereus gounellei (xique-xigue) jam is a source of fibers and mineral and improves the nutritional value and the technological properties of goat milk yogurt. LWT 2021, 139, 110512. [Google Scholar] [CrossRef]
- Teixera, J.L.P.; Baptista, D.P.; Orlando, E.A.; Gigante, M.L.; Pallone, J.A.L. Effect of processing on the bioaccessibility of essential minerals in goat and cow milk and dairy products assessed by different static in vitro digestion models. Food Chem. 2022, 374, 131739. [Google Scholar] [CrossRef] [PubMed]
- Bergillos-Meca, T.; Cabrera-Vique, C.; Artacho, R.; Moreno-Montoro, M.; Navarro-Alarcon, M.; Olalla, M.; Gimenez, R.; Ruiz-Lopez, M.D. Influence of milk ultrafiltration on Ca, Mg, Zn and P levels in fermented goats’s milk. Small Rumin. Res. 2015, 124, 95–100. [Google Scholar] [CrossRef]
- Al Sidawi, R.; Ghambashidze, G.; Urushadze, T.; Ploeger, A. Heavy Metal Levels in Milk and Cheese Produced in the Kvemo Kartli Region, Georgia. Foods 2021, 10, 2234. [Google Scholar] [CrossRef]
- Quintana, A.V.; Olalla-Herrera, M.; Ruiz-Lopez, M.D.; Moreno-Montoro, M.; Navarro-Alarcon, M. Study of the effect of different fermenting microorganisms on the Se, Cu, Cr, and Mn contents in fermented goat and cow milks. Food Chem. 2015, 188, 234–239. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, W.; Wang, X.; Liu, D.; Zou, C.; Chen, X. Quantitative evaluation of the grain zinc in cereal crops caused by phosphorus fertilization. A meta-analysis. Agron. Sustain. Dev. 2021, 41, 6. [Google Scholar] [CrossRef]
- Castro-Montoya, J.M.; Dickhoefer, U. The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: A systematic review. Anim. Feed Sci. Technol. 2020, 269, 114641. [Google Scholar] [CrossRef]
- Park, S.; Cho, E.; Chung, H.; Cho, K.; Sa, S.; Balasubramanian, B.; Choi, T.; Jeong, Y. Digestibility of phosphorous in cereals and co-products for animal feed. Saudi J. Biol. Sci. 2019, 26, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Forssén, K.M.; Jägerstad, M.I.; Wigertz, K.; Witthöft, C.M. Folate and dairy products: A critical update. J. Am. College Nutr. 2000, 19, 100–110. [Google Scholar] [CrossRef]
- Rad, H.A.; Khosroushahi, Y.A.; Khalili, M.; Jafarzadeh, S. Folate bio-fortification of yoghurt and fermented milk: A review. Dairy Sci. Technol. 2016, 96, 427–441. [Google Scholar] [CrossRef] [Green Version]
- Gujska, E.; Czarnowska, M.; Michalak, J. Content of folates in fresh and cold stored kefirs and yoghurts. Food Sci. Technol. Qual. 2014, 5, 124–133. [Google Scholar] [CrossRef]
- Holasova, M.; Fiedlerova, V.; Roubal, P.; Pechacova, P.M. Possibility of increasing natural folate content in fermented milk products by fermentation and fruit component addition. Czech J. Food Sci. 2005, 23, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Wigertz, K.; Jägerstad, M. Comparison of a HPLC and radioprotein-binding assay for the determination of folates in milk and blood samples. Food Chem. 1995, 54, 429–436. [Google Scholar] [CrossRef]
- Lin, M.Y.; Young, C.M. Folate levels in cultures of lactic acid bacteria. Int. Diary J. 2000, 10, 409–413. [Google Scholar] [CrossRef]
- Strandler, H.S.; Patring, J.; Jägerstad, M.; Jastrebova, J. Challenges in the determination of unsubstituted food folates: Impact of stabilities and conversions on analytical results. J. Agric. Food Chem. 2015, 63, 2367–2377. [Google Scholar] [CrossRef]
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Tabele Składu i Wartości Odżywczej Żywności, Wydanie II Zmienione. Food Composition Tables; PZWL: Warsaw, Poland, 2017. [Google Scholar]
- Hugenschmidt, S.; Schwenninger, S.M.; Gnehm, N.; Lacroix, C. Screening of a natural biodiversity of lactic and propionic acid bacteria for folate and vitamin B12 production in supplemented whey permeate. Int. Dairy J. 2010, 20, 852–857. [Google Scholar] [CrossRef]
- Laiño, J.E.; Del Valle, M.J.; De Giori, G.S.; LeBlanc, J.G.J. Applicability of a Lactobacillus amylovorus strain as co-culture for natural folate bio-enrichment of fermented milk. Int. J. Food Microbiol. 2014, 191, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Becker, W. Dietary habits and nutrient intake in Sweden 1989. In Swedish National Food Administration; Livsmedelsverketsförlag: Uppsala, Sweden, 1994. [Google Scholar]
- Saubade, F.; Hemery, Y.M.; Guyot, J.P.; Humblot, C.H. Lactic acid fermentation as a tool for increasing the folate content of foods. Crit. Rev. Food Sci. Nutr. 2017, 57, 3894–3910. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, J.G.; De Giori, G.S.; Smid, E.J.; Hugenholtz, J.; Sesma, F. Folate production by lactic acid bacteria and other food-grade microorganisms. In Communicating Current Research and Educational Topics and Trends in Applied Microbiology; FORMATEX: Badajoz, Spain, 2007; pp. 329–339. [Google Scholar]
- Laiño, J.E.; Juarez del Valle, M.; Savoy de Giori, G.; LeBlanc, J.G.J. Development of a high folate concentration yogurt naturally bio-enriched using selected lactic acid bacteria. LWT—Food Sci. Technol. 2013, 54, 1–5. [Google Scholar] [CrossRef]
- Jägerstad, M.; Jastrebova, J.; Svensson, U. Folates in fermented vegetables—A pilot study. LWT—Food Sci. Technol. 2004, 37, 603–611. [Google Scholar] [CrossRef]
- Holasova, M.; Fiedlerova, V.; Roubal, P.; Pechacova, M. Biosynthesis of folates by lactic acid bacteria and propionibacteria in fermented milk. Czech J. Food Sci. 2004, 22, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Gangadharan, D.; Nampoothiri, K.M. Folate production using Lactococcus lactis ssp cremoris with implications for fortification of skim milk and fruit juices. LWT—Food Sci. Technol. 2011, 244, 1859–1864. [Google Scholar] [CrossRef]
- Divya, J.B.; Nampoothiri, K.M. Folate fortification of skim milk by a probiotic Lactococcus lactis CM28 and evaluation of its stability in fermented milk on cold storage. J. Food Sci. Technol. 2015, 52, 3513–3519. [Google Scholar] [CrossRef] [Green Version]
- Hjortmo, S.; Patring, J.; Jastrebova, J.; Andlid, T. Inherent biodiversity of folate content and composition in yeasts. Trends Food Sci. Technol. 2005, 16, 311–316. [Google Scholar] [CrossRef]
Products | Characteristics of Starter Culture (According to the Information Provided by the Producer) |
---|---|
Organic products | |
Raw milk | |
Natural yoghurt | Streptococcus thermophilus, Lactobacillus bulgaricus |
Probiotic yoghurt | Streptococcus thermophilus, Lactobacillus bulgaricus, Bifidobacterium bifidum, Lactobacillus acidophilus, Lactobacillus casei |
Greek yoghurt | Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus |
Kefir | Streptococcus thermophilus, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. Lactis Biovar diacetylactis, Leuconostoc mesenteries subsp. cremoris, Debarymyces hansenii, Kluyveromyces marxianus subsp. marxianus |
Commercial products | |
UHT milk (producer 1) | |
UHT milk (producer 2) | |
Natural yoghurt (producer 1) | Lactobacillus delbruecki sub. bulgaricus, Streptococcus thermophilus |
Natural yoghurt (producer 2) | Cultures of lactic acid bacteria |
Products | ΣSFA 1 | ΣSCFA 2 | ΣBCFA 3 | ΣOCFA 4 | ΣMUFA 5 | ΣPUFA 6 | n-3 | n-6 | n-6/n-3 | trans C18:1 | trans C18:2 | cis9trans11 C18:2(CLA) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Organic products | ||||||||||||
Raw milk (n = 4) | 528.40 d,e ± 17.38 | 105.41 e ± 2.37 | 12.74 c ± 0.46 | 14.11 b,c,d ± 0.57 | 236.43 a ± 7.01 | 21.18 d ± 0.51 | 2.16 g ± 0.10 | 11.43 c,d ± 0.35 | 5.29 c ± 0.10 | 14.66 b ± 0.39 | 4.32 b,c ± 0.10 | 3.26 d ± 0.06 |
Natural yoghurt (n = 4) | 604.77 a ± 23.76 | 130.71 a ± 4.97 | 14.96 a,b ± 0.69 | 16.44 a,b ± 0.65 | 231.13 a,b ± 9.79 | 21.23 d ± 0.83 | 2.27 g ± 0.16 | 11.82 c ± 0.48 | 5.22 c ± 0.22 | 10.89 e ± 0.62 | 3.93 c,d ± 0.18 | 3.28 d ± 0.10 |
Probiotic yoghurt (n = 4) | 584.70 a,b ± 4.58 | 129.23 a ± 1.77 | 14.54 a,b ± 0.22 | 17.23 a ± 0.14 | 180.79 d,e ± 3.60 | 22.08 d ± 0.34 | 3.30 c ± 0.04 | 10.42 e ± 0.19 | 3.16 g ± 0.03 | 14.79 b ± 0.26 | 4.29 b,c ± 0.09 | 4.07 b ± 0.08 |
Greek yoghurt (n = 4) | 526.84 d,e ± 18.93 | 114.11 c ± 2.77 | 14.15 a,b,c ± 0.56 | 14.83 b,c ± 0.58 | 196.35 c ± 7.84 | 24.22 b,c ± 1.39 | 3.76 b ± 0.11 | 11.29 c,d ± 0.60 | 3.00 g ± 0.08 | 13.93 c ± 0.74 | 4.97 a ± 0.55 | 4.19 b ± 0.14 |
Kefir (n = 4) | 587.52 a,b ± 27.67 | 122.56 b ± 4.97 | 15.54 a ± 0.81 | 16.25 a,b ± 0.98 | 220.82 b ± 10.24 | 20.96 d ± 0.85 | 2.66 e ± 0.15 | 10.86 d,e ± 0.52 | 4.09 e ± 0.08 | 12.65 d ± 0.43 | 3.67 d ± 0.05 | 3.77 c ± 0.19 |
Commercial products | ||||||||||||
UHT milk (producer 1) (n = 4) | 512.76 e ± 6.80 | 107.65 d ± 1.55 | 11.49 d,e ± 0.17 | 12.91 c,d ± 0.18 | 160.23 f ± 2.05 | 25.04 b ± 0.31 | 3.06 d ± 0.04 | 14.57 b ± 0.18 | 4.76 d ± 0.05 | 14.96 b ± 0.26 | 4.53 b ± 0.11 | 2.88 e ± 0.05 |
UHT milk (producer 2) (n = 4) | 565.88 b,c ± 17.42 | 112.80 c,d ± 2.87 | 11.13 e ± 0.37 | 12.38 d ± 0.43 | 159.34 f ± 5.88 | 22.09 d ± 0.86 | 2.46 f ± 0.08 | 14.00 b ± 0.47 | 5.72 b ± 0.01 | 10.88 e ± 0.51 | 3.09 e ± 0.20 | 2.54 f ± 0.11 |
Natural yoghurt (producer 1) (n = 4) | 547.98 c,d ± 9.14 | 127.22 a,b ± 3.20 | 13.83 b,c ± 2.43 | 12.23 d ± 2.65 | 190.98 c,d ± 4.10 | 23.80 c ± 0.42 | 1.76 h ± 0.06 | 14.68 b ± 0.28 | 8.37 a ± 0.29 | 17.19 a ± 0.25 | 3.54 d ± 0.30 | 3.82 c ± 0.08 |
Natural yoghurt (producer 2) (n = 4) | 500.89 e ± 18.25 | 114.83 c ± 4.65 | 11.88 d,e ± 0.72 | 12.19 d ± 3.34 | 178.63 e ± 11.42 | 29.82 a ± 1.14 | 4.69 a ± 0.12 | 16.80 a ± 0.90 | 3.58 f ± 0.23 | 16.61 a ± 0.55 | 3.95 c,d ± 0.37 | 4.39 a ± 0.26 |
Products | Mg | Ca | Na | K | P | Cu | Mn | Fe | Zn |
---|---|---|---|---|---|---|---|---|---|
Organic products | |||||||||
Raw milk (n = 4) | 156.4 d ± 2.702 | 1125.5 h ± 5.725 | 347.1 e ± 6.881 | 1745.1 b,c,d ± 169.420 | 1373.7 e ± 3.731 | 0.040 e ± 0.004 | 0.209 a ± 0.005 | 0.286 c,d ± 0.004 | 4.398 b ± 0.185 |
Natural yoghurt (n = 4) | 166.9 c ± 6.046 | 1165.4 g ± 23.985 | 365.3 d ± 7.781 | 1690.7 c,d ± 247.383 | 1365.1 e ± 22.682 | 0.040 e ± 0.002 | 0.118 b ± 0.003 | 0.267 e ± 0.011 | 4.239 c ± 0.095 |
Probiotic yoghurt (n = 4) | 162.2 c ± 3.026 | 1237.6 e ± 28.320 | 319.6 f ± 5.278 | 1965.3 a ± 24.285 | 1143.9 f ± 39.792 | 0.024 f ± 0.003 | 0.067 e ± 0.004 | 0.330 a ± 0.018 | 3.681 d,e ± 0.067 |
Greek yoghurt (n = 4) | 162.6 c ± 1.800 | 1195.2 f ± 14.710 | 365.6 d ± 7.998 | 1791.1 a,b,c ± 67.580 | 1331.1 e ± 26.655 | 0.052 d ± 0.004 | 0.091 d ± 0.004 | 0.275 d,e ± 0.014 | 3.863 d ± 0.088 |
Kefir (n = 4) | 155.5 d ± 0.875 | 1193.9 f ± 16.575 | 341.8 e ± 2.113 | 1582.6 d ± 62.113 | 1130.5 f ± 18.438 | 0.028 f ± 0.002 | 0.097 c ± 0.002 | 0.289 c,d ± 0.011 | 3.678 e ± 0.065 |
Commercial products | |||||||||
UHT milk (producer 1) (n = 4) | 126.3 f ± 2.695 | 1322.9 d ± 4.343 | 522.8 a ± 1.749 | 1243.0 d,e ± 13.461 | 9382.9 c ± 71.219 | 0.104 a ± 0.001 | 0.029 g ± 0.0001 | 0.303 c ± 0.003 | 3.149 f ± 0.017 |
UHT milk (producer 2) (n = 4) | 139.1 e ± 1.059 | 1554.6 c ± 9.720 | 307.0 g ± 1.802 | 1117.4 e ± 4.726 | 8148.1 d ± 22.030 | 0.072 c ± 0.002 | 0.030 g ± 0.0004 | 0.208 f ± 0.004 | 2.556 g ± 0.008 |
Natural yoghurt (producer 1) (n = 4) | 205.4 a ± 2.869 | 1645.8 b ± 9.114 | 425.4 c ± 13.404 | 1931.1 a,b ± 24.932 | 10,591.2 b ± 232.535 | 0.104 a ± 0.005 | 0.044 f ± 0.002 | 0.278 d,e ± 0.001 | 3.729 d,e ± 0.068 |
Natural yoghurt (producer 2) (n = 4) | 172.9 b ± 0.816 | 2324.4 a ± 21.891 | 454.2 b ± 11.079 | 1777.6 a,b,c ± 2.788 | 11,309.9 a ± 276.317 | 0.097 b ± 0.002 | 0.042 f ± 0.002 | 0.310 b ± 0.009 | 4.663 a ± 0.019 |
Products | Folates (µg/100 g) |
---|---|
Organic products | |
Raw milk | 3.16 1,b ± 0.03 |
Natural yoghurt | 2.36 c,d ± 0.09 |
Probiotic yoghurt | 1.60 f ± 0.06 |
Greek yoghurt | 9.18 a ± 0.42 |
Kefir | 0.99 g ± 0.06 |
Commercial products | |
UHT milk (producer 1) | 1.87 e ± 0.01 |
UHT milk (producer 2) | 2.24 d ± 0.05 |
Natural yoghurt (producer 1) | 2.56 c ± 0.04 |
Natural yoghurt (producer 2) | 3.32 b ± 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paszczyk, B.; Czarnowska-Kujawska, M.; Klepacka, J.; Tońska, E. Health-Promoting Ingredients in Goat’s Milk and Fermented Goat’s Milk Drinks. Animals 2023, 13, 907. https://doi.org/10.3390/ani13050907
Paszczyk B, Czarnowska-Kujawska M, Klepacka J, Tońska E. Health-Promoting Ingredients in Goat’s Milk and Fermented Goat’s Milk Drinks. Animals. 2023; 13(5):907. https://doi.org/10.3390/ani13050907
Chicago/Turabian StylePaszczyk, Beata, Marta Czarnowska-Kujawska, Joanna Klepacka, and Elżbieta Tońska. 2023. "Health-Promoting Ingredients in Goat’s Milk and Fermented Goat’s Milk Drinks" Animals 13, no. 5: 907. https://doi.org/10.3390/ani13050907