Evaluation of Rumen Degradation Kinetics of Low-Lignin Alfalfa ‘Hi-Gest® 360’ in Saskatchewan Canada
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Forage Sample Collection
2.2. Experimental Animals
2.3. In Situ Rumen Incubation
2.4. Analysis
2.5. Rumen Degradation Kinetics
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition
3.2. The Rumen Degradation Kinetics of DM
3.3. The Rumen Degradation Kinetics of CP
3.4. Rumen Degradation Kinetics of NDF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marita, J.M.; Ralph, J.; Hatfield, R.D.; Guo, D.; Chen, F.; Dixon, R.A. Structural and compositional modifications in lignin of transgenic alfalfa down-regulated in caffeic acid 3-O-methyl-transferase and caffeoyl coenzyme A 3-O-methyltransferase. Phytochemistry 2003, 62, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Christensen, D.A.; McKinnon, J.J.; Markert, J.D. Effect of variety and maturity stage on chemical composition, carbohydrate and protein subfractions, in vitro rumen degradability and energy values of timothy and alfalfa. Can. J. Anim. Sci. 2003, 83, 279–290. [Google Scholar] [CrossRef]
- Sewalt, V.J.H.; Ni, W.; Jung, H.G.; Dixon, R.A. Lignin impact on fiber degradation: Increased enzymatic digestibility of genetically engineered tobacco (Nicotiana tabacum) stems reduced in lignin content. J. Agric. Food Chem. 1997, 45, 1977–1983. [Google Scholar] [CrossRef]
- Casler, M.D.; Buxton, D.R.; Vogel, K.P. Genetic modification of lignin concentration affects fitness of perennial herbaceous plants. Theor. Appl. Genet. 2002, 104, 127–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, D.; Chen, F.; Inoue, K.; Blount, J.W.; Dixon, R.A. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: Impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 2001, 13, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Inoue, K.; Sewalt, V.J.H.; Ballance, G.M.; Ni, W.; Stürzer, C.; Dixon, R.A. Developmental expression and substrate specificities of alfalfa caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase in relation to lignification. Plant Physiol. 1998, 117, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Casler, M.D.; Vogel, K.P. Accomplishments and impact from breeding for increased forage nutritional value. Crop Sci. 1999, 39, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Buxton, D.R.; Hornstein, J.S. Cell-wall concentration and components in stratified canopies of alfalfa, birdsfoot trefoil, and red clover. Crop Sci. 1986, 26, 180–184. [Google Scholar] [CrossRef]
- Damiran, E.; Larson, K.; Biligetu, B.; Sammons, J.; Lardner, H.A. Performance and economic evaluation of low-lignin alfalfa ‘Hi-Gest® 360’ in Saskatchewan Canada. Agronomy 2022, 12, 3077. [Google Scholar] [CrossRef]
- Weisbjerg, M.R.; Hvelplund, T.; Hellberg, S.; Olsson, S.; Sanne, S. Effective rumen degradability and intestinal digestibility of individual amino acids in different concentrates determined in situ. Anim. Feed Sci. Technol. 1996, 62, 179–188. [Google Scholar] [CrossRef]
- Lardner, H.A.; Kumar, R.; Darambazar, E.; Damiran, D.; McKinnon, J.J. Comparison of chemical composition and rumen degradation kinetics of three forages: Whole plant barley, whole plant foxtail millet and grass-legume hay. J. Agric. Sci. 2016, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Canadian Council on Animal Care. CCAC Guidelines on: The Care and Use of Farm Animals in Research, Teaching and Testing; CCAC: Ottawa, ON, Canada, 2009; Available online: http://www.ccac.ca/Documents/Standards/Guidelines/Farm_Animals.pdf (accessed on 15 December 2022).
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 9, 499–503. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute. SAS/STAT User’s Guide; Version 9.4; SAS Institute, Inc.: Cary, NC, USA, 2020; p. 707. [Google Scholar]
- Robinson, P.H.; Fadel, J.G.; Tamminga, S. Evaluation of mathematical models to describe neutral detergent residue in terms of its susceptibility to degradation in the rumen. Anim. Feed Sci. Technol. 1986, 15, 249–271. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Symposium: Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, K.A.; Wedin, W.F.; Buxton, D.R. Cell-wall composition and digestibility of alfalfa stems and leaves. Crop Sci. 1987, 27, 735–741. [Google Scholar] [CrossRef]
- Casler, M.D. In vitro digestibility of dry matter and cell wall constituents of smooth bromegrass forage. Crop Sci. 1987, 27, 931–934. [Google Scholar] [CrossRef]
- Reddy, M.S.; Chen, F.; Shadle, G.; Jackson, L.; Aljoe, H.; Dixon, R.A. Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc. Natl. Acad. Sci. USA 2005, 102, 16573–16578. [Google Scholar] [CrossRef] [Green Version]
- Griffin, T.S.; Cassida, K.A.; Hesterman, O.B.; Rust, S.R. Alfalfa maturity and cultivar effects on chemical and in situ estimates of protein degradability. Crop Sci. 1994, 34, 1654–1661. [Google Scholar] [CrossRef]
- Mathison, R.D.; Sheaffer, C.C.; Rabas, D.L.; Swanson, D.R.; Halgerson, J.H. Early spring clipping and herbicide treatments delay alfalfa maturity. J. Prod. Agric. 1996, 9, 505–509. [Google Scholar] [CrossRef]
- Ferdinandez, Y.S.N.; Coulman, B.E. Nutritive values of smooth bromegrass, meadow bromegrass, and meadow × smooth bromegrass hybrids for different plant parts and growth stages. Crop Sci. 2001, 41, 473–478. [Google Scholar] [CrossRef]
- Baron, V.S.; Dick, A.C.; Wolynetz, M.S. Characterization of barley silage-maturity relationships for central Alberta. Can. J. Plant Sci. 1992, 72, 1009–1020. [Google Scholar] [CrossRef]
- Hall, M.H.; Smiles, W.S.; Dickerson, R.A. Morphological development of alfalfa cultivars selected for higher quality. Agron. J. 2000, 92, 1077–1080. [Google Scholar] [CrossRef]
- Undersander, D.; Mccaslin, M.; Sheaffer, C.; Whalen, D.; Miller, D.; Putnam, D.; Orloff, S. Low Lignin Alfalfa: Redefining the Yield/Quality Tradeoff. 2009, pp. 1–4. Available online: http://alfalfa.ucdavis.edu (accessed on 19 August 2022).
- Engels, F.M. Some properties of cell wall layers determining ruminant digestion. In Physico-Chemical Characterization of Plant Residues for Industrial and Feed Use; Chesson, A., Orskov, E.R., Eds.; Elsevier Applied Science: London, UK, 1989; Volume 1, pp. 80–87. [Google Scholar]
- Jung, H.G.; Engels, F.M. Alfalfa stem tissues: Rate and extent of cell-wall thinning during ruminal degradation. Neth. J. Agric. Sci. 2001, 49, 3–13. [Google Scholar]
Site | |||||
---|---|---|---|---|---|
Saskatoon | Lanigan | ||||
Forage | Stage 1 | CP | NDF | CP | NDF |
Monoculture | |||||
Grazeland | Stage 1 | 232 | 340 | 235 | 395 |
Stage 2 | 196 | 309 | 210 | 440 | |
Stage 3 | 226 | 334 | 194 | 463 | |
HiGest | Stage 1 | 216 | 360 | 228 | 411 |
Stage 2 | 198 | 307 | 221 | 403 | |
Stage 3 | 236 | 329 | 207 | 451 | |
SEM | 19.0 | 16.0 | 6.9 | 17.0 | |
Binary mixtures | |||||
Grazeland-HBG | Stage 1 | 155 | 631 | 130 | 663 |
Stage 2 | 121 | 607 | 95 | 664 | |
Stage 3 | 118 | 615 | 108 | 635 | |
HiGest-HBG | Stage 1 | 133 | 64.3 | 126 | 666 |
Stage 2 | 147 | 620 | 125 | 664 | |
Stage 3 | 123 | 612 | 121 | 629 | |
SEM | 14.1 | 9.9 | 12.4 | 10.4 | |
Treatment contrasts | |||||
Monoculture vs. Binary | <0.001 | <0.001 | <0.001 | <0.001 | |
Grazeland vs. HiGest | 0.940 | 0.751 | 0.309 | 0.423 | |
Grazeland-HBG vs. HiGest-HBG | 0.802 | 0.341 | 0.207 | 0.848 | |
Monoculture | |||||
Stage 1 vs. Stage 2 | 0.679 | 0.259 | <0.001 | 0.006 | |
Stage 1 vs. Stage 3 | 0.111 | 0.019 | 0.035 | 0.283 | |
Stage 2 vs. Stage 3 | 0.051 | 0.166 | 0.048 | 0.055 | |
Binary mixtures | |||||
Stage 1 vs. Stage 2 | 0.105 | 0.019 | 0.286 | 0.002 | |
Stage 1 vs. Stage 3 | 0.466 | 0.019 | 0.170 | 0.925 | |
Stage 2 vs. Stage 3 | 0.345 | 0.996 | 0.742 | 0.002 |
Forage | Stage * | T0 (h) | S (g kg−1 DM) | D (g kg−1 DM) | U (g kg−1 DM) | Kd (h−1) | EDDM (g kg−1 DM) |
---|---|---|---|---|---|---|---|
Monoculture | |||||||
Grazeland | Stage 1 | 1.06 | 267.8 | 447.8 | 282.9 | 0.14 | 599.6 |
Stage 2 | 0.17 | 274.0 | 478.9 | 247.2 | 0.13 | 619.3 | |
Stage 3 | 0.46 | 264.8 | 430.1 | 305.1 | 0.16 | 590.0 | |
HiGest | Stage 1 | 0.58 | 264.1 | 494.1 | 241.9 | 0.12 | 613.4 |
Stage 2 | 0.57 | 286.4 | 488.3 | 225.3 | 0.16 | 647.2 | |
Stage 3 | 0.32 | 208.0 | 520.2 | 271.9 | 0.16 | 604.3 | |
SEM | 0.28 | 15.99 | 21.19 | 12.22 | 0.017 | 15.99 | |
Binary mixtures | |||||||
Grazeland-HBG | Stage 1 | 0.18 | 174.8 | 440.6 | 384.7 | 0.05 | 400.8 |
Stage 2 | 0.30 | 201.5 | 411.1 | 387.4 | 0.05 | 415.2 | |
Stage 3 | 0.00 | 179.0 | 409.1 | 411.9 | 0.06 | 402.8 | |
HiGest-HBG | Stage 1 | 0.19 | 166.8 | 445.5 | 387.7 | 0.05 | 398.3 |
Stage 2 | 0.36 | 222.2 | 387.3 | 390.6 | 0.05 | 422.1 | |
Stage 3 | 0.00 | 200.8 | 393.0 | 406.2 | 0.06 | 406.5 | |
SEM | 0.18 | 6.55 | 12.11 | 9.53 | 0.005 | 6.98 | |
Treatment contrasts | p value | ||||||
Monoculture vs. Binary | 0.014 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Grazeland vs. HiGest | 0.767 | 0.239 | 0.014 | 0.006 | 0.844 | 0.047 | |
Grazeland-HBG vs. HiGest-HBG | 0.877 | 0.023 | 0.205 | 0.986 | 0.575 | 0.622 | |
Monoculture | |||||||
Stage 1 vs. Stage 2 | 0.150 | 0.084 | 0.872 | 0.050 | 0.143 | 0.568 | |
Stage 1 vs. Stage 3 | 0.136 | 0.387 | 0.581 | 0.049 | 0.569 | 0.116 | |
Stage 2 vs. Stage 3 | 0.953 | 0.015 | 0.695 | 0.001 | 0.351 | 0.040 | |
Binary mixtures | |||||||
Stage 1 vs. Stage 2 | 0.318 | 0.004 | 0.001 | 0.030 | 0.270 | 0.456 | |
Stage 1 vs. Stage 3 | 0.413 | <0.001 | 0.001 | 0.771 | 0.951 | 0.012 | |
Stage 2 vs. Stage 3 | 0.080 | 0.001 | 0.863 | 0.053 | 0.296 | 0.052 |
Forage | Stage * | T0 (h) | S (g kg−1 DM) | D (g kg−1 DM) | U (g kg−1 DM) | Kd (h−1) | EDDM (g kg−1 DM) |
---|---|---|---|---|---|---|---|
Monoculture | |||||||
Grazeland | Stage 1 | 0.00 | 230.7 | 418.7 | 350.7 | 0.10 | 510.9 |
Stage 2 | 0.17 | 195.8 | 425.3 | 379.0 | 0.10 | 473.3 | |
Stage 3 | 0.60 | 231.1 | 372.9 | 395.9 | 0.09 | 470.6 | |
HiGest | Stage 1 | 0.62 | 216.0 | 478.8 | 305.2 | 0.10 | 529.2 |
Stage 2 | 0.80 | 239.8 | 420.1 | 340.0 | 0.10 | 515.8 | |
Stage 3 | 1.23 | 298.5 | 386.0 | 315.6 | 0.07 | 515.9 | |
SEM | 0.340 | 18.86 | 20.90 | 13.50 | 0.006 | 12.00 | |
Binary mixtures | |||||||
Grazeland-HBG | Stage 1 | 1.15 | 168.1 | 514.0 | 317.9 | 0.04 | 406.8 |
Stage 2 | 1.14 | 230.8 | 473.8 | 295.4 | 0.03 | 389.5 | |
Stage 3 | 0.00 | 179.9 | 335.8 | 484.2 | 0.06 | 366.0 | |
HiGest-HBG | Stage 1 | 1.74 | 179.7 | 469.4 | 350.9 | 0.05 | 410.5 |
Stage 2 | 0.85 | 226.4 | 503.6 | 270.0 | 0.02 | 384.7 | |
Stage 3 | 0.15 | 185.3 | 332.1 | 482.6 | 0.07 | 373.0 | |
SEM | 0.360 | 9.96 | 16.64 | 21.75 | 0.005 | 8.01 | |
Treatment contrasts | p value | ||||||
Monoculture vs. Binary | 0.351 | 0.001 | 0.290 | 0.373 | <0.001 | <0.001 | |
Grazeland vs. HiGest | 0.007 | 0.049 | 0.202 | <0.001 | 0.070 | 0.002 | |
Grazeland-HBG vs. HiGest-HBG | 0.613 | 0.552 | 0.628 | 0.907 | 0.540 | 0.639 | |
Monoculture | |||||||
Stage 1 vs. Stage 2 | 0.045 | 0.040 | 0.005 | 0.056 | 0.005 | 0.031 | |
Stage 1 vs. Stage 3 | 0.292 | 0.768 | 0.230 | 0.033 | 0.584 | 0.030 | |
Stage 2 vs. Stage 3 | 0.293 | 0.023 | 0.055 | 0.784 | 0.014 | 0.987 | |
Binary mixtures | |||||||
Stage 1 vs. Stage 2 | 0.002 | 0.318 | <0.001 | <0.001 | 0.004 | <0.001 | |
Stage 1 vs. Stage 3 | 0.233 | <0.001 | 0.848 | 0.027 | <0.001 | 0.001 | |
Stage 2 vs. Stage 3 | 0.022 | <0.001 | <0.001 | <0.001 | <0.001 | 0.003 |
Forage | Stage * | T0 (h) | S (g kg−1 CP) | D (g kg−1 CP) | U (g kg−1 CP) | Kd (h−1) | EDCP (g kg−1 CP) | EDCP (g kg−1 DM) |
---|---|---|---|---|---|---|---|---|
Monoculture | ||||||||
Grazeland | Stage 1 | 2.23 | 287.5 | 511.3 | 201.2 | 0.16 | 674.2 | 118.0 |
Stage 2 | 1.41 | 303.8 | 542.3 | 153.9 | 0.15 | 706.5 | 106.0 | |
Stage 3 | 1.79 | 384.3 | 440.9 | 174.9 | 0.14 | 709.4 | 99.5 | |
HiGest | Stage 1 | 2.11 | 280.8 | 527.5 | 191.6 | 0.16 | 681.8 | 114.5 |
Stage 2 | 1.27 | 182.0 | 656.0 | 162.1 | 0.18 | 672.9 | 129.9 | |
Stage 3 | 1.46 | 260.3 | 558.3 | 181.4 | 0.18 | 690.3 | 131.9 | |
SEM | 0.378 | 22.60 | 20.20 | 11.97 | 0.031 | 23.90 | 12.24 | |
Binary mixtures | ||||||||
Grazeland-HBG | Stage 1 | 2.12 | 343.4 | 269.2 | 387.4 | 0.10 | 520.8 | 42.3 |
Stage 2 | 1.72 | 285.1 | 291.4 | 423.5 | 0.09 | 467.9 | 35.1 | |
Stage 3 | 0.71 | 264.8 | 229.4 | 505.8 | 0.12 | 415.8 | 27.0 | |
HiGest-HBG | Stage 1 | 4.06 | 394.4 | 222.1 | 383.4 | 0.11 | 534.5 | 29.1 |
Stage 2 | 1.11 | 403.0 | 212.2 | 384.9 | 0.11 | 543.7 | 33.3 | |
Stage 3 | 1.69 | 337.6 | 242.9 | 419.4 | 0.11 | 500.3 | 29.9 | |
SEM | 1.032 | 27.90 | 29.06 | 33.01 | 0.025 | 27.60 | 6.24 | |
Treatment contrasts | p value | |||||||
Monoculture vs. Binary | 0.673 | <0.012 | <0.012 | <0.001 | <0.001 | <0.001 | <0.001 | |
Grazeland vs. HiGest | 0.505 | <0.001 | <0.001 | 0.860 | 0.320 | 0.689 | 0.095 | |
Grazeland-HBG vs. HiGest-HBG | 0.275 | 0.003 | 0.003 | 0.130 | 0.681 | 0.250 | 0.430 | |
Monoculture | ||||||||
Stage 1 vs. Stage 2 | 0.151 | 0.038 | 0.038 | 0.860 | 0.931 | 0.382 | 0.963 | |
Stage 1 vs. Stage 3 | 0.036 | 0.026 | 0.026 | <0.001 | 0.846 | 0.159 | 0.893 | |
Stage 2 vs. Stage 3 | 0.445 | <0.001 | <0.001 | 0.100 | 0.914 | 0.031 | 0.857 | |
Binary mixtures | ||||||||
Stage 1 vs. Stage 2 | 0.038 | 0.028 | 0.028 | 0.030 | 0.654 | 0.037 | 0.257 | |
Stage 1 vs. Stage 3 | 0.062 | 0.386 | 0.386 | 0.580 | 0.945 | 0.455 | 0.814 | |
Stage 2 vs. Stage 3 | 0.800 | 0.145 | 0.145 | 0.100 | 0.594 | 0.149 | 0.363 |
Forage | Stage * | T0 (h) | S (g kg−1 CP) | D (g kg−1 CP) | U (g kg−1 CP) | Kd (h−1) | EDCP (g kg−1 CP) | EDCP (g kg−1 DM) |
---|---|---|---|---|---|---|---|---|
Monoculture | ||||||||
Grazeland | Stage 1 | 0.00 | 213.7 | 465.0 | 321.3 | 0.09 | 516.0 | 100.4 |
Stage 2 | 0.19 | 259.1 | 416.8 | 324.2 | 0.10 | 535.0 | 87.4 | |
Stage 3 | 1.70 | 384.3 | 271.5 | 244.3 | 0.08 | 554.2 | 65.1 | |
HiGest | Stage 1 | 0.19 | 218.6 | 533.0 | 248.5 | 0.09 | 564.1 | 125.4 |
Stage 2 | 0.82 | 272.9 | 460.5 | 266.6 | 0.11 | 592.1 | 102.1 | |
Stage 3 | 3.14 | 448.9 | 354.1 | 197.0 | 0.09 | 668.1 | 79.9 | |
SEM | 0.55 | 39.01 | 35.67 | 22.25 | 0.013 | 18.3 | 10.65 | |
Binary mixtures | ||||||||
Grazeland-HBG | Stage 1 | 1.13 | 247.5 | 287.4 | 465.1 | 0.05 | 388.2 | 38.1 |
Stage 2 | 1.06 | 165.3 | 335.0 | 492.8 | 0.04 | 305.7 | 27.4 | |
Stage 3 | 1.29 | 164.6 | 258.2 | 577.2 | 0.11 | 331.2 | 25.7 | |
HiGest-HBG | Stage 1 | 3.05 | 176.2 | 241.8 | 582.1 | 0.08 | 324.6 | 30.7 |
Stage 2 | 1.16 | 286.1 | 440.1 | 273.9 | 0.04 | 465.1 | 53.8 | |
Stage 3 | 3.25 | 132.3 | 297.1 | 563.8 | 0.08 | 319.1 | 29.2 | |
SEM | 1.286 | 31.34 | 53.50 | 45.60 | 0.018 | 29.30 | 6.47 | |
Treatment contrasts | p value | |||||||
Monoculture vs. Binary | 0.200 | 0.007 | <0.001 | <0.001 | 0.004 | <0.001 | <0.001 | |
Grazeland vs. HiGest | 0.089 | 0.335 | 0.041 | 0.001 | 0.428 | <0.001 | 0.054 | |
Grazeland-HBG vs. HiGest-HBG | 0.169 | 0.796 | 0.413 | 0.235 | 0.963 | 0.145 | 0.187 | |
Monoculture | ||||||||
Stage 1 vs. Stage 2 | 0.001 | 0.001 | <0.001 | 0.001 | 0.718 | 0.002 | 0.002 | |
Stage 1 vs. Stage 3 | 0.469 | 0.164 | 0.111 | 0.001 | 0.305 | 0.220 | 0.109 | |
Stage 2 vs. Stage 3 | 0.002 | 0.002 | 0.003 | 0.235 | 0.173 | 0.020 | 0.054 | |
Binary mixtures | ||||||||
Stage 1 vs. Stage 2 | 0.870 | 0.031 | 0.785 | 0.233 | 0.121 | 0.176 | 0.300 | |
Stage 1 vs. Stage 3 | 0.392 | 0.608 | 0.021 | <0.001 | 0.109 | 0.208 | 0.375 | |
Stage 2 vs. Stage 3 | 0.328 | 0.014 | 0.041 | 0.019 | 0.006 | 0.001 | 0.071 |
Forage | Stage * | T0 | D (g kg−1 NDF) | U (g kg−1 NDF) | Kd (h−1) | EDNDF (g kg−1 NDF) | EDNDF (g kg−1 DM) |
---|---|---|---|---|---|---|---|
Monoculture | |||||||
Grazeland | Stage 1 | 2.06 | 488.6 | 511.4 | 0.09 | 303.7 | 102.7 |
Stage 2 | 1.71 | 514.5 | 485.5 | 0.07 | 300.2 | 92.3 | |
Stage 3 | 0.55 | 410.3 | 589.7 | 0.08 | 252.4 | 83.4 | |
HiGest | Stage 1 | 0.67 | 588.6 | 411.4 | 0.08 | 366.3 | 131.7 |
Stage 2 | 1.76 | 562.4 | 437.6 | 0.08 | 341.5 | 105.1 | |
Stage 3 | 2.00 | 499.4 | 500.7 | 0.09 | 313.7 | 102.9 | |
SEM | 0.59 | 17.96 | 17.96 | 0.010 | 20.69 | 7.37 | |
Binary mixtures | |||||||
Grazeland-HBG | Stage 1 | 0.55 | 623.6 | 376.4 | 0.04 | 263.2 | 166.2 |
Stage 2 | 0.56 | 603.5 | 396.5 | 0.04 | 254.1 | 154.4 | |
Stage 3 | 0.07 | 599.0 | 401.0 | 0.03 | 225.8 | 138.9 | |
HiGest-HBG | Stage 1 | 1.49 | 607.9 | 392.2 | 0.04 | 280.5 | 180.4 |
Stage 2 | 1.42 | 582.2 | 417.8 | 0.04 | 260.0 | 160.8 | |
Stage 3 | 0.29 | 582.2 | 417.8 | 0.04 | 236.2 | 144.6 | |
SEM | 0.477 | 17.25 | 17.26 | 0.003 | 8.72 | 5.73 | |
Treatment contrasts | p value | ||||||
Monoculture vs. Binary | 0.029 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Grazeland vs. HiGest | 0.941 | <0.001 | <0.001 | 0.675 | 0.005 | 0.004 | |
Grazeland-HBG vs. HiGest-HBG | 0.098 | 0.222 | 0.222 | 0.053 | 0.105 | 0.037 | |
Monoculture | |||||||
Stage 1 vs. Stage 2 | 0.884 | <0.001 | <0.001 | 0.942 | 0.024 | 0.005 | |
Stage 1 vs. Stage 3 | 0.541 | 0.993 | 0.993 | 0.317 | 0.506 | 0.024 | |
Stage 2 vs. Stage 3 | 0.451 | 0.001 | 0.001 | 0.352 | 0.087 | 0.466 | |
Binary mixtures | |||||||
Stage 1 vs. Stage 2 | 0.093 | 0.164 | 0.164 | 0.014 | <0.001 | <0.001 | |
Stage 1 vs. Stage 3 | 0.948 | 0.203 | 0.203 | 0.573 | 0.082 | 0.005 | |
Stage 2 vs. Stage 3 | 0.105 | 0.896 | 0.896 | 0.044 | 0.003 | 0.004 |
Forage | Stage * | T0 (h) | D (g kg−1 NDF) | U (g kg−1 NDF) | Kd (h−1) | EDNDF (g kg−1 NDF) | EDNDF (g kg−1 DM) |
---|---|---|---|---|---|---|---|
Monoculture | |||||||
Grazeland | Stage 1 | 1.26 | 491.9 | 508.1 | 0.06 | 262.7 | 103.9 |
Stage 2 | 2.99 | 481.6 | 518.4 | 0.06 | 250.9 | 111.2 | |
Stage 3 | 1.69 | 476.7 | 523.3 | 0.05 | 234.1 | 108.9 | |
HiGest | Stage 1 | 1.89 | 581.9 | 418.1 | 0.06 | 304.1 | 125.0 |
Stage 2 | 3.63 | 475.7 | 524.3 | 0.06 | 262.3 | 105.8 | |
Stage 3 | 2.72 | 533.8 | 466.2 | 0.04 | 227.5 | 102.0 | |
SEM | 0.949 | 24.10 | 24.10 | 0.008 | 14.65 | 7.87 | |
Binary mixtures | |||||||
Grazeland-HBG | Stage 1 | 2.67 | 721.6 | 278.4 | 0.04 | 312.6 | 207.4 |
Stage 2 | 2.25 | 757.3 | 242.7 | 0.02 | 225.2 | 149.2 | |
Stage 3 | 0.64 | 517.9 | 482.1 | 0.04 | 218.6 | 138.7 | |
HiGest-HBG | Stage 1 | 2.46 | 728.6 | 271.4 | 0.04 | 304.7 | 203.2 |
Stage 2 | 1.92 | 812.8 | 187.2 | 0.02 | 215.8 | 143.2 | |
Stage 3 | 0.00 | 520.2 | 479.8 | 0.04 | 223.4 | 140.7 | |
SEM | 0.52 | 42.50 | 42.50 | 0.004 | 11.13 | 8.11 | |
Treatment contrasts | p value | ||||||
Monoculture vs. Binary | 0.144 | <0.001 | <0.001 | <0.001 | 0.567 | <0.001 | |
Grazeland vs. HiGest | 0.328 | 0.019 | 0.019 | 0.726 | <0.043 | <0.189 | |
Grazeland-HBG vs. HiGest-HBG | 0.342 | 0.543 | 0.543 | 0.770 | 0.650 | 0.665 | |
Monoculture | |||||||
Stage 1 vs. Stage 2 | 0.507 | 0.169 | 0.168 | 0.071 | 0.002 | 0.258 | |
Stage 1 vs. Stage 3 | 0.081 | 0.018 | 0.018 | 0.865 | 0.069 | 0.452 | |
Stage 2 vs. Stage 3 | 0.251 | 0.243 | 0.243 | 0.097 | 0.078 | 0.692 | |
Binary mixtures | |||||||
Stage 1 vs. Stage 2 | <0.001 | <0.001 | <0.001 | 0.721 | <0.001 | <0.001 | |
Stage 1 vs. Stage 3 | 0.344 | 0.179 | 0.178 | 0.001 | <0.001 | <0.001 | |
Stage 2 vs. Stage 3 | 0.003 | <0.001 | <0.001 | 0.002 | 0.963 | 0.411 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damiran, D.; Biligetu, B.; Lardner, H. Evaluation of Rumen Degradation Kinetics of Low-Lignin Alfalfa ‘Hi-Gest® 360’ in Saskatchewan Canada. Animals 2023, 13, 1047. https://doi.org/10.3390/ani13061047
Damiran D, Biligetu B, Lardner H. Evaluation of Rumen Degradation Kinetics of Low-Lignin Alfalfa ‘Hi-Gest® 360’ in Saskatchewan Canada. Animals. 2023; 13(6):1047. https://doi.org/10.3390/ani13061047
Chicago/Turabian StyleDamiran, Daalkhaijav, Bill Biligetu, and Herbert Lardner. 2023. "Evaluation of Rumen Degradation Kinetics of Low-Lignin Alfalfa ‘Hi-Gest® 360’ in Saskatchewan Canada" Animals 13, no. 6: 1047. https://doi.org/10.3390/ani13061047
APA StyleDamiran, D., Biligetu, B., & Lardner, H. (2023). Evaluation of Rumen Degradation Kinetics of Low-Lignin Alfalfa ‘Hi-Gest® 360’ in Saskatchewan Canada. Animals, 13(6), 1047. https://doi.org/10.3390/ani13061047