The Effect of Encapsulated Propyl Propane Thiosulfonate (PTSO) on Apparent Ileal Digestibility and Productive Performance in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Design
2.2. Pe-PTSO Supplementation
2.3. Growth Performance
2.4. Apparent Ileal Digestibility Study
Laboratory Analysis
2.5. Statistical Analysis
3. Results
3.1. Apparent Ileal Digestibility Study
3.2. Growth Performance
4. Discussion
4.1. Apparent Ileal Digestibility
4.2. Productive Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerber, P.J.; Opio, C.I.; Steinfeld, H. Poultry Production and the Environment–A Review; Animal Production and Health Division, Food and Agriculture Organization of the United Nations: Rome, Italy, 2008; pp. 1–27. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2021; Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- FAO. Greenhouse gas emissions and fossil energy use from poultry supply chains. In Guidelines for Assessment. Livestock Environmental Assessment and Performance Partnership; FAO: Rome, Italy, 2016; Volume 1. [Google Scholar]
- Soomro, R.N.; Hu, R.; Qiao, Y.; El-Hack, M.E.A.; Abbasi, I.H.R.; Mohamed, M.A.E.; Bodinga, B.M.; Alagawany, M.; Yang, X.; Yao, J.; et al. Effect of Dietary Protein Sources and Amino Acid Balances on Performance, Intestinal Permeability and Morphology in Broiler Chickens. Int. J. Pharmacol. 2017, 13, 378–387. [Google Scholar] [CrossRef] [Green Version]
- Azizi, M.N.; Loh, T.C.; Foo, H.L.; Akit, H.; Izuddin, W.I.; Shazali, N.; Teik Chung, E.L.; Samsudin, A.A. Chemical Compositions of Brown and Green Seaweed, and Effects on Nutrient Digestibility in Broiler Chickens. Animals 2021, 11, 2147. [Google Scholar] [CrossRef] [PubMed]
- Elbaz, A.M.; El-Sheikh, S.E.; Abdel-Maksoud, A. Growth performance, nutrient digestibility, antioxidant state, ileal histomorphometry, and cecal ecology of broilers fed on fermented canola meal with and without exogenous enzymes. Trop. Anim. Health Prod. 2023, 55, 46. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, P.; Martinez, D.A.; Weil, J.; Suesuttajit, N.; Umberson, C.; Mullenix, G.; Hilton, K.M.; Beitia, A.; Coon, C.N. Review: Physiological growth trend of current meat broilers and dietary protein and energy management approaches for sustainable broiler production. Animal 2021, 15 (Suppl. S1), 100284. [Google Scholar] [CrossRef]
- Stein, H.H.; Fuller, M.F.; Moughan, P.J.; Sève, B.; Mosenthin, R.; Jansman, A.J.M.; Fernández, J.A.; de Lange, C.F.M. Definition of apparent, true, and standardized ileal digestibility of amino acids in pigs. Livest. Sci. 2007, 109, 282–285. [Google Scholar] [CrossRef]
- Ravindran, V.; Bryden, W.L. Amino acid availability in poultry—In vitro and in vivo measurements. Aust. J. Agric. Res. 1999, 50, 889–908. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Choi, J.; Yang, C.; Mogire, M.; Liu, S.; Lahaye, L.; Adewole, D.; Rodas-Gonzalez, A.; Yang, C. Effects of antibiotic growth promoter and dietary protease on growth performance, apparent ileal digestibility, intestinal morphology, meat quality, and intestinal gene expression in broiler chickens: A comparison. J. Anim. Sci. 2020, 98, skaa254. [Google Scholar] [CrossRef]
- Krysiak, K.; Konkol, D.; Korczynski, M. Overview of the Use of Probiotics in Poultry Production. Animals 2021, 11, 1620. [Google Scholar] [CrossRef]
- Kunzel, S.; Borda-Molina, D.; Kraft, R.; Sommerfeld, V.; Kuhn, I.; Camarinha-Silva, A.; Rodehutscord, M. Impact of coccidiostat and phytase supplementation on gut microbiota composition and phytate degradation in broiler chickens. Anim. Microbiome 2019, 1, 5. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Lv, Z.Z.; An, S.; Xing, K.; Wang, Z.G.; Lv, M.B.; Choct, M.; Guo, Y.M.; Zhou, G.L. Effects of rearing system and narasin on growth performance, gastrointestinal development, and gut microbiota of broilers. Poult. Sci. 2021, 100, 100840. [Google Scholar] [CrossRef]
- Wink, M. Phytochemical Diversity of Secondary Metabolites. In Encyclopedia of Plant and Crop Science; Universitat Heidelberg: Heidelberg, Germany; Marcel Dekker, Inc.: New York City, NY, USA, 2004. [Google Scholar]
- Zaynab, M.; Fatima, M.; Abbas, S.; Sharif, Y.; Umair, M.; Zafar, M.H.; Bahadar, K. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 2018, 124, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.R.; Davoodi, H. Phytogenics as new class of feed additive In poultry industry. J. Anim. Vet. Adv. 2010, 9, 2295–2304. [Google Scholar] [CrossRef]
- Hashemi, S.R.; Zulkifli, I.; Hair Bejo, M.; Farida, A.; Somchit, M.N. Acute Toxicity Study and Phytochemical Screening of Selected Herbal Aqueous Extract in Broiler Chickens. Int. J. Pharmacol. 2008, 4, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Jamroz, D.; Wiliczkiewicz, A.; Wertelecki, T.; Orda, J.; Skorupinska, J. Use of active substances of plant origin in chicken diets based on maize and locally grown cereals. Br. Poult. Sci. 2005, 46, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Pirgozliev, V.; Mansbridge, S.C.; Rose, S.P.; Lillehoj, H.S.; Bravo, D. Immune modulation, growth performance, and nutrient retention in broiler chickens fed a blend of phytogenic feed additives. Poult. Sci. 2019, 98, 3443–3449. [Google Scholar] [CrossRef]
- Hassan, F.U.; Arshad, M.A.; Ebeid, H.M.; Rehman, M.S.; Khan, M.S.; Shahid, S.; Yang, C. Phytogenic Additives Can Modulate Rumen Microbiome to Mediate Fermentation Kinetics and Methanogenesis Through Exploiting Diet-Microbe Interaction. Front. Vet. Sci. 2020, 7, 575801. [Google Scholar] [CrossRef] [PubMed]
- Somani, S.J.; Modi, K.P.; Majumdar, A.S.; Sadarani, B.N. Phytochemicals and their potential usefulness in inflammatory bowel disease. Phytother. Res. 2015, 29, 339–350. [Google Scholar] [CrossRef]
- Sorlozano-Puerto, A.; Albertuz-Crespo, M.; Lopez-Machado, I.; Ariza-Romero, J.J.; Banos-Arjona, A.; Exposito-Ruiz, M.; Gutierrez-Fernandez, J. In Vitro Antibacterial Activity of Propyl-Propane-Thiosulfinate and Propyl-Propane-Thiosulfonate Derived from Allium spp. against Gram-Negative and Gram-Positive Multidrug-Resistant Bacteria Isolated from Human Samples. Biomed Res. Int. 2018, 2018, 7861207. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, M.S.; Nandagopal Ms, G.; Amin Nordin, S.; Thilakavathy, K.; Joseph, N. Prevailing Knowledge on the Bioavailability and Biological Activities of Sulphur Compounds from Alliums: A Potential Drug Candidate. Molecules 2020, 25, 4111. [Google Scholar] [CrossRef]
- Abad, P.; Arroyo-Manzanares, N.; Rivas-Montoya, E.; Ochando-Pulido, J.M.; Guillamon, E.; García-Campaña, A.M.; Martinez-Ferez, A.; Plaizier, J. Effects of different vehiculization strategies for the allium derivative propyl propane thiosulfonate during dynamic simulation of the pig gastrointestinal tract. Can. J. Anim. Sci. 2019, 99, 244–253. [Google Scholar] [CrossRef]
- Kim, D.K.; Lillehoj, H.S.; Lee, S.H.; Lillehoj, E.P.; Bravo, D. Improved resistance to Eimeria acervulina infection in chickens due to dietary supplementation with garlic metabolites. Br. J. Nutr. 2013, 109, 76–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peinado, M.J.; Ruiz, R.; Echavarri, A.; Rubio, L.A. Garlic derivative propyl propane thiosulfonate is effective against broiler enteropathogens in vivo. Poult. Sci. 2012, 91, 2148–2157. [Google Scholar] [CrossRef] [PubMed]
- Peinado, M.J.; Ruiz, R.; Echávarri, A.; Aranda-Olmedo, I.; Rubio, L.A. Garlic derivative PTS-O modulates intestinal microbiota composition and improves digestibility in growing broiler chickens. Anim. Feed. Sci. Technol. 2013, 181, 87–92. [Google Scholar] [CrossRef]
- Ruiz, R.; Garcia, M.P.; Lara, A.; Rubio, L.A. Garlic derivatives (PTS and PTS-O) differently affect the ecology of swine faecal microbiota in vitro. Vet. Microbiol. 2010, 144, 110–117. [Google Scholar] [CrossRef]
- Smeets, N.; Nuyens, F.; Van Campenhout, L.; Delezie, E.; Pannecoucque, J.; Niewold, T. Relationship between wheat characteristics and nutrient digestibility in broilers: Comparison between total collection and marker (titanium dioxide) technique. Poult. Sci. 2015, 94, 1584–1591. [Google Scholar] [CrossRef]
- Hernandez, F.; Madrid, J.; Garcia, V.; Orengo, J.; Megias, M.D. Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult. Sci. 2004, 83, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Pawliszyn, J. Handbook of Soli Phase Microextraction; Elsevier Inc.: Amsterdam, The Netherlands; University of Waterloo: Waterloo, ON, Canada, 2012. [Google Scholar] [CrossRef]
- Short, F.J.; Gorton, P.; Wisema, J.; Boorman, K.N. Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim. Feed. Sci. Technol. 1996, 59, 215–221. [Google Scholar] [CrossRef]
- Amad, A.A.; Manner, K.; Wendler, K.R.; Neumann, K.; Zentek, J. Effects of a phytogenic feed additive on growth performance and ileal nutrient digestibility in broiler chickens. Poult. Sci. 2011, 90, 2811–2816. [Google Scholar] [CrossRef]
- Kim, E.; Barta, J.R.; Lambert, W.; Kiarie, E.G. Standardized ileal digestibility of amino acids in broiler chickens fed single or mixture of feed ingredients-based diets with or without Eimeria challenge. Poult. Sci. 2022, 101, 101839. [Google Scholar] [CrossRef]
- AOAC. Official Method 994.12 Amino Acids in Feeds. Performic Oxidation with Acid Hydrolisis—Sodium Metabisulfite Method. First Action 1994 Final Action 1997. Off. Method Anal. Anim. Feed. 2005, 4, 9–19. [Google Scholar]
- AOAC. Official Method 965.17 Phosphorus in Animal Feed and Pet Food. Photometric Method. First Action 1965 Fnial Action 1966. Off. Method Anal. Anim. Feed. 2005, 4, 61. [Google Scholar]
- ASTM D2015-96; Standard Test Method for Gross Calorific Value of Solid Fuel by the Adiabatic Bomb Calorimeter. American Society for Testing and Materials: West Conshohocken, PA, USA, 2015; 40 CFR 60.45(f)(5)(ii). pp. 253–261.
- Mariscal, G.; Reis de Souza, T.C.; Parra, J. Apparent ileal digestibility of protein and aminoacids of canola meal in recently weaned piglets. Rev. MVZ Córdoba 2009, 14, 1544–1553. [Google Scholar]
- SAS Institute. JMP®. Version 15; SAS Institute: Cary, NC, USA, 2019. [Google Scholar]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2008, 86, E140–E148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi Gheisar, M.; Kim, I.H. Phytobiotics in poultry and swine nutrition–A review. Ital. J. Anim. Sci. 2017, 17, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Darmani kuhi, H.; Rezaee, F.; Faridi, A.; France, J.; Mottaghitalab, M.; Kebreab, E. Application of the law of diminishing returns for partitioning metabolizable energy and crude protein intake between maintenance and growth in growing male and female broiler breeder pullets. J. Agric. Sci. 2011, 149, 385–394. [Google Scholar] [CrossRef]
- Ullah, Z.; Ahmed, G.; Nisa, M.U.; Sarwar, M. Standardized Ileal Amino Acid Digestibility of Commonly Used Feed Ingredients in Growing Broilers. Asian-Australas J. Anim. Sci. 2016, 29, 1322–1330. [Google Scholar] [CrossRef] [Green Version]
- Brzóska, F.; Śliwiński, B.; Michalik-Rutkowska, O.; Śliwa, J. The Effect of Garlic (Allium Sativum L.) on Growth Performance, Mortality Rate, Meat and Blood Parameters in Broilers. Ann. Anim. Sci. 2015, 15, 961–975. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhu, T.; He, Y.; Wu, X.; Zhu, Y.; Yang, D. Assessment of eutrophication and nitrogen and phosphorus carrying capacity before and after removing pen culture (2013–2018) in Lake Changhu, China. Environ. Sci. Pollut. Res. Int. 2022, 29, 5674–5686. [Google Scholar] [CrossRef]
- Ur Rahman, S.; Khan, S.; Chand, N.; Sadique, U.; Khan, R.U. In vivo effects of Allium cepa L. on the selected gut microflora and intestinal histomorphology in broiler. Acta Histochem. 2017, 119, 446–450. [Google Scholar] [CrossRef]
- Kim, G.B.; Seo, Y.M.; Kim, C.H.; Paik, I.K. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult. Sci. 2011, 90, 75–82. [Google Scholar] [CrossRef]
- Pelicano, E.R.; Souza, P.A.; Souza, H.B.A.; Figueiredo, D.F.; Boiago, M.M.; Carvalho, S.R.; Bordon, V.F. Intestinal Mucosa Development in Broiler Chickens Fed Natural Growth Promoters. Braz. J. Poult. Sci. 2005, 7, 221–229. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Beshbishy, A.M.; Wasef, L.G.; Elewa, Y.H.A.; Al-Sagan, A.A.; Abd El-Hack, M.E.; Taha, A.E.; Abd-Elhakim, Y.M.; Devkota, H.P. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef] [Green Version]
- Kothari, D.; Lee, W.D.; Niu, K.M.; Kim, S.K. The Genus Allium as Poultry Feed Additive: A Review. Animals 2019, 9, 1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varmaghany, S.; Karimi Torshizi, M.A.; Rahimi, S.; Lotfollahian, H.; Hassanzadeh, M. The effects of increasing levels of dietary garlic bulb on growth performance, systolic blood pressure, hematology, and ascites syndrome in broiler chickens. Poult. Sci. 2015, 94, 1812–1820. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Kim, I.H.; Cho, J.H.; Yoo, J.S.; Wang, Q.; Wang, Y.; Huang, Y. Evaluation of dietary l-carnitine or garlic powder on growth performance, dry matter and nitrogen digestibilities, blood profiles and meat quality in finishing pigs. Anim. Feed. Sci. Technol. 2008, 141, 141–152. [Google Scholar] [CrossRef]
- Tahir, M.; Chuzaem, S.; Widodo, E.; Hafsah. The Performance of Broilers Given Eugenol of Clove Leaf Essential Oil as a Feed Additive. Russ. J. Agric. Socio-Econ. Sci. 2019, 95, 200–205. [Google Scholar] [CrossRef]
- Choi, I.H.; Park, W.Y.; Kim, Y.J. Effects of dietary garlic powder and {alpha}-tocopherol supplementation on performance, serum cholesterol levels, and meat quality of chicken. Poult. Sci. 2010, 89, 1724–1731. [Google Scholar] [CrossRef]
- Dey, A.; Samanta, A.R. Effect of feeding garlic (Allium sativum Linn.) as a growth promoter in broilers. Indian J. Anim. Health 1993, 32, 17–19. [Google Scholar]
- Javandel, F.; Navidshad, B.; Seifdavati, J.; Pourrahimi, G.H.; Baniyaghoub, S. The favorite dosage of garlic meal as a feed additive in broiler chicken ratios. Pak. J. Biol. Sci. 2008, 11, 1746–1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ingredient | g/kg |
---|---|
Yellow corn | 513.9 |
Soybean meal | 406.0 |
Vegetable oil | 40.5 |
Calcium carbonate | 14.7 |
Calcium orthophosphate | 9.1 |
Sodium bicarbonate | 4.9 |
Methionine DL | 3.6 |
Refined salt | 2.0 |
L-lysine HCl | 2.2 |
L-Threonine | 1.1 |
Betaine anhydrous | 0.6 |
L-valine | 0.2 |
Biocholine | 0.2 |
Vitamins—mineral premix 1 | 0.9 |
Phytase 5000 | 0.1 |
Chemical Composition | g/kg |
Dry matter | 883.9 |
Crude protein | 239.0 |
Crude fat | 62.0 |
Gross energy (Mcal/kg) | 4.0 |
Metabolizable energy (Mcal/kg) | 3.15 |
Calcium | 10.0 |
Total phosphorus | 5.9 |
Available phosphorus | 4.5 |
Sodium | 2.3 |
Chloride | 2.0 |
Potassium | 9.5 |
DEB (mEq/kg) 2 | 300 |
Arginine | 16.2 |
Lysine | 15.0 |
Leucine | 19.3 |
Threonine | 10.2 |
Histidine | 5.9 |
Isoleucine | 10.1 |
Valine | 11.2 |
Phenylalanine | 11.8 |
Treatment 1 | |||||||
---|---|---|---|---|---|---|---|
Nutrient 2 | P0 | P250 | P500 | P750 | ION | SEM 3 | p Value |
Arg | 94.47 b | 96.17 a | 95.04 ab | 94.46 b | 95.25 ab | 0.30 | <0.01 |
Lys | 94.03 b | 95.90 a | 95.01 ab | 94.40 b | 94.80 ab | 0.31 | <0.01 |
Leu | 92.22 b | 94.52 a | 93.31 ab | 92.75 ab | 93.34 ab | 0.42 | 0.01 |
Thr | 90.25 b | 92.56 a | 91.39 ab | 90.57 b | 91.68 ab | 0.45 | 0.01 |
His | 92.97 b | 95.17 a | 93.57 ab | 93.68 ab | 93.56 ab | 0.41 | 0.01 |
Ile | 90.88 b | 93.92 a | 92.24 ab | 91.84 ab | 92.06 ab | 0.57 | 0.02 |
Val | 90.29 b | 93.16 a | 91.56 ab | 91.27 ab | 91.28 ab | 0.55 | 0.02 |
Phe | 92.52 b | 94.66 a | 93.58 ab | 92.95 ab | 93.45 ab | 0.47 | 0.05 |
Energy | 3.39 b | 3.54 a | 3.47 ab | 3.40 b | 3.45 ab | 0.03 | 0.01 |
P | 73.79 | 79.49 | 76.09 | 72.86 | 76.70 | 1.57 | 0.06 |
Linear Trend | Quadratic Trend | Cubic Trend | ||||
---|---|---|---|---|---|---|
Nutrient 2 | p Value | R2 | p Value | R2 | p Value | R2 |
Arg | 0.57 | 0.02 | 0.02 | 0.36 | 0.01 | 0.52 |
Lys | 0.91 | <0.01 | 0.01 | 0.40 | 0.01 | 0.52 |
Leu | 0.88 | <0.01 | 0.03 | 0.33 | 0.02 | 0.46 |
Thr | 0.94 | <0.01 | 0.03 | 0.35 | 0.02 | 0.45 |
His | 0.84 | <0.01 | 0.17 | 0.19 | 0.02 | 0.45 |
Ile | 0.73 | <0.01 | 0.06 | 0.28 | 0.02 | 0.45 |
Val | 0.69 | <0.01 | 0.03 | 0.26 | 0.02 | 0.44 |
Phe | 0.94 | <0.01 | 0.06 | 0.28 | 0.05 | 0.39 |
Energy | 0.83 | <0.01 | 0.02 | 0.37 | 0.02 | 0.47 |
P | 0.49 | 0.03 | 0.04 | 0.31 | 0.05 | 0.37 |
Treatments 2 | |||||||
---|---|---|---|---|---|---|---|
Parameters 1 | P0 | P250 | P500 | P750 | ION | SEM 3 | p Value |
IBW (g) | 284.2 | 282.9 | 286.9 | 289.2 | 289.6 | 2.18 | 0.16 |
ADG (g/d) | 51.35 b | 57.33 a | 53.16 ab | 55.60 ab | 52.07 ab | 1.38 | 0.03 |
ADFI (g/d) | 67.87 | 74.92 | 68.04 | 69.73 | 70.05 | 1.75 | 0.06 |
FCR (g/g) | 1.32 | 1.31 | 1.28 | 1.26 | 1.34 | 0.03 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villar-Patiño, G.; Camacho-Rea, M.d.C.; Olvera-García, M.E.; Soria-Soria, A.; Baltazar-Vázquez, J.C.; Gómez-Verduzco, G.; Solano, L.; Téllez, G.; Ramírez-Pérez, A.H. The Effect of Encapsulated Propyl Propane Thiosulfonate (PTSO) on Apparent Ileal Digestibility and Productive Performance in Broiler Chickens. Animals 2023, 13, 1123. https://doi.org/10.3390/ani13061123
Villar-Patiño G, Camacho-Rea MdC, Olvera-García ME, Soria-Soria A, Baltazar-Vázquez JC, Gómez-Verduzco G, Solano L, Téllez G, Ramírez-Pérez AH. The Effect of Encapsulated Propyl Propane Thiosulfonate (PTSO) on Apparent Ileal Digestibility and Productive Performance in Broiler Chickens. Animals. 2023; 13(6):1123. https://doi.org/10.3390/ani13061123
Chicago/Turabian StyleVillar-Patiño, Gonzalo, María del Carmen Camacho-Rea, Myrna Elena Olvera-García, Arturo Soria-Soria, Julio César Baltazar-Vázquez, Gabriela Gómez-Verduzco, Lourdes Solano, Guillermo Téllez, and Aurora Hilda Ramírez-Pérez. 2023. "The Effect of Encapsulated Propyl Propane Thiosulfonate (PTSO) on Apparent Ileal Digestibility and Productive Performance in Broiler Chickens" Animals 13, no. 6: 1123. https://doi.org/10.3390/ani13061123
APA StyleVillar-Patiño, G., Camacho-Rea, M. d. C., Olvera-García, M. E., Soria-Soria, A., Baltazar-Vázquez, J. C., Gómez-Verduzco, G., Solano, L., Téllez, G., & Ramírez-Pérez, A. H. (2023). The Effect of Encapsulated Propyl Propane Thiosulfonate (PTSO) on Apparent Ileal Digestibility and Productive Performance in Broiler Chickens. Animals, 13(6), 1123. https://doi.org/10.3390/ani13061123