Brain-Derived Neurotrophic Factor, Kynurenine Pathway, and Lipid-Profiling Alterations as Potential Animal Welfare Indicators in Dairy Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. On-Farm Animal Welfare Assessment
2.3. Plasma Collection, Biochemical Profile, and Health Status
2.4. MILLIPLEX® Bovine Cytokine/Chemokine Magnetic Bead Panel Multiplex Assay
2.5. Target Metabolomics Analysis
2.6. Determination of Plasma BDNF
2.7. Slaughterhouse Procedure, Brain Collection, and Western Blot Analysis of proBDNF and mBDNF Expression in CNS
2.8. CNS Indolamine 2,3-Dioxygenase (IDO1) Enzymatic Activity
2.9. Statistical Analysis
3. Results
3.1. On-Farm Animal Welfare Assessment
3.2. General Health Status
3.3. Target Metabolomics Analysis
3.4. Plasma BDNF
3.5. Effect of Housing System and Milk Productivity on BDNF and Kynurenine Pathway in the CNS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nobis, A.; Zalewski, D.; Waszkiewicz, N. Peripheral Markers of Depression. J. Clin. Med. 2020, 9, 3793. [Google Scholar] [CrossRef]
- Veissier, I.; Boissy, A. Stress and welfare: Two complementary concepts that are intrinsically related to the animal’s point of view. Physiol. Behav. 2007, 92, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Mellor, D.J. Updating Animal Welfare Thinking: Moving beyond the “Five Freedoms” towards “A Life Worth Living”. Animals 2016, 6, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellor, D.; Beausoleil, N.; Littlewood, K.; McLean, A.; McGreevy, P.; Jones, B.; Wilkins, C. The 2020 Five Domains Model: Including Human–Animal Interactions in Assessments of Animal Welfare. Animals 2020, 10, 1870. [Google Scholar] [CrossRef]
- Coria-Avila, G.A.; Pfaus, J.G.; Orihuela, A.; Domínguez-Oliva, A.; José-Pérez, N.; Hernández, L.A.; Mota-Rojas, D. The Neurobiology of Behavior and Its Applicability for Animal Welfare: A Review. Animals 2022, 12, 928. [Google Scholar] [CrossRef] [PubMed]
- Düpjan, S.; Dawkins, M.S. Animal Welfare and Resistance to Disease: Interaction of Affective States and the Immune System. Front. Vet. Sci. 2022, 9, 929805. [Google Scholar] [CrossRef] [PubMed]
- Welfare Quality® Protocol. Welfare Quality® Assessment Protocol for Cattle; Welfare Quality® Consortium: Lelystad, The Netherlands, 2009; Volume 180, p. 6. Available online: https://edepot.wur.nl/233467 (accessed on 12 January 2023).
- Rault, J.-L.; Lawrence, A.; Ralph, C. Brain-derived neurotrophic factor in serum as an animal welfare indicator of environmental enrichment in pigs. Domest. Anim. Endocrinol. 2018, 65, 67–70. [Google Scholar] [CrossRef]
- Autry, A.E.; Monteggia, L.M. Brain-Derived Neurotrophic Factor and Neuropsychiatric Disorders. Pharmacol. Rev. 2012, 64, 238–258. [Google Scholar] [CrossRef] [Green Version]
- Costanza, A.; D’Orta, I.; Perroud, N.; Burkhardt, S.; Malafosse, A.; Mangin, P.; La Harpe, R. Neurobiology of suicide: Do bi-omarkers exist? Int. J. Legal Med. 2014, 128, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Keller, S.; Sarchiapone, M.; Zarrilli, F.; Videtič, A.; Ferraro, A.; Carli, V.; Sacchetti, S.; Lembo, F.; Angiolillo, A.; Jovanovic, N.; et al. Increased BDNF Promoter Methylation in the Wernicke Area of Suicide Subjects. Arch. Gen. Psychiatry 2010, 67, 258–267. [Google Scholar] [CrossRef] [Green Version]
- Kojima, M.; Otabi, H.; Kumanogoh, H.; Toyoda, A.; Ikawa, M.; Okabe, M.; Mizui, T. Reduction in BDNF from Inefficient Precursor Conversion Influences Nest Building and Promotes Depressive-Like Behavior in Mice. Int. J. Mol. Sci. 2020, 21, 3984. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, E.; Hashimoto, K.; Okamura, N.; Koike, K.; Komatsu, N.; Kumakiri, C.; Nakazato, M.; Watanabe, H.; Shinoda, N.; Okada, S.; et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol. Psychiatry 2003, 54, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Messaoud, A.; Mensi, R.; Douki, W.; Neffati, F.; Najjar, M.F.; Gobbi, G.; Valtorta, F.; Gaha, L.; Comai, S. Reduced peripheral availability of tryptophan and increased activation of the kynurenine pathway and cortisol correlate with major depression and suicide. World J. Biol. Psychiatry 2018, 20, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Correia, A.S.; Vale, N. Tryptophan Metabolism in Depression: A Narrative Review with a Focus on Serotonin and Kynurenine Pathways. Int. J. Mol. Sci. 2022, 23, 8493. [Google Scholar] [CrossRef] [PubMed]
- Miura, H.; Ozaki, N.; Sawada, M.; Isobe, K.; Ohta, T.; Nagatsu, T. A link between stress and depression: Shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depres-sion. Stress 2008, 11, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Yoo, S.Y.; Park, Y.E.; Ji, M.-J.; Park, H.-M.; Back, J.H.; Lee, J.Y.; Kim, D.J.; Choi, J.-S. The Kynurenine Pathway and Mediating Role of Stress in Addictive Disorders: A Focus on Alcohol Use Disorder and Internet Gaming Disorder. Front. Pharmacol. 2022, 13, 865576. [Google Scholar] [CrossRef]
- Cervenka, I.; Agudelo, L.Z.; Ruas, J.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science 2017, 357, eaaf9794. [Google Scholar] [CrossRef] [Green Version]
- Birkl, P.; Chow, J.; Forsythe, P.; Gostner, J.M.; Kjaer, J.B.; Kunze, W.A.; McBride, P.; Fuchs, D.; Harlander-Matauschek, A. The Role of Tryptophan-Kynurenine in Feather Pecking in Domestic Chicken Lines. Front. Vet. Sci. 2019, 6, 209. [Google Scholar] [CrossRef] [Green Version]
- Furuyashiki, T.; Akiyama, S.; Kitaoka, S. Roles of multiple lipid mediators in stress and depression. Int. Immunol. 2019, 31, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Dawson, G. Measuring brain lipids. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2015, 1851, 1026–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzner, D.; Bader, J.M.; Penkert, H.; Bergner, C.G.; Su, M.; Weil, M.-T.; Surma, M.A.; Mann, M.; Klose, C.; Simons, M. Cell-Type- and Brain-Region-Resolved Mouse Brain Lipidome. Cell Rep. 2020, 32, 108132. [Google Scholar] [CrossRef] [PubMed]
- Walther, A.; Cannistraci, C.V.; Simons, K.; Durán, C.; Gerl, M.J.; Wehrli, S.; Kirschbaum, C. Lipidomics in Major Depressive Disorder. Front. Psychiatry 2018, 9, 459. [Google Scholar] [CrossRef] [Green Version]
- Pinto, B.; Conde, T.; Domingues, I.; Domingues, M.R. Adaptation of Lipid Profiling in Depression Disease and Treatment: A Critical Review. Int. J. Mol. Sci. 2022, 23, 2032. [Google Scholar] [CrossRef]
- Mazza, F.; Scali, F.; Formenti, N.; Romeo, C.; Tonni, M.; Ventura, G.; Bertocchi, L.; Lorenzi, V.; Fusi, F.; Tolini, C.; et al. The Relationship between Animal Welfare and Antimicrobial Use in Italian Dairy Farms. Animals 2021, 11, 2575. [Google Scholar] [CrossRef]
- Ventura, G.; Lorenzi, V.; Mazza, F.; Clemente, G.A.; Iacomino, C.; Bertocchi, L.; Fusi, F. Best Farming Practices for the Welfare of Dairy Cows, Heifers and Calves. Animals 2021, 11, 2645. [Google Scholar] [CrossRef] [PubMed]
- Bertocchi, L.; Fusi, F.; Angelucci, A.; Bolzoni, L.; Pongolini, S.; Strano, R.M.; Ginestreti, J.; Riuzzi, G.; Moroni, P.; Lorenzi, V. Characterization of hazards, welfare promoters and animal-based measures for the welfare assessment of dairy cows: Elicitation of expert opinion. Prev. Vet. Med. 2018, 150, 8–18. [Google Scholar] [CrossRef]
- Diana, A.; Lorenzi, V.; Penasa, M.; Magni, E.; Alborali, G.L.; Bertocchi, L.; De Marchi, M. Effect of welfare standards and biosecurity practices on antimicrobial use in beef cattle. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Amadori, M.; Archetti, I.L.; Frasnelli, M.; Bagni, M.; Olzi, E.; Caronna, G.; Lanteri, M. An Immunological Approach to the Evaluation of Welfare in Holstein Frisian cattle. J. Vet. Med. Ser. B 1997, 44, 321–327. [Google Scholar] [CrossRef]
- Smith, K.; Kleynhans, L.; Snyders, C.; Bernitz, N.; Cooper, D.; van Helden, P.; Warren, R.M.; Miller, M.A.; Goosen, W.J. Use of the MILLIPLEX® bovine cytokine/chemokine multiplex assay to identify Mycobacterium bovis-infection biomarkers in African buffaloes (Syncerus caffer). Vet. Immunol. Immunopathol. 2020, 231, 110152. [Google Scholar] [CrossRef]
- Cattaneo, M.D.; Jansson, M.; Ma, X. Manipulation Testing Based on Density Discontinuity. Stata J. Promot. Commun. Stat. Stata 2018, 18, 234–261. [Google Scholar] [CrossRef]
- Müller, H.-G.; Fan, J.; Gijbels, I. Local Polynomial Modeling and Its Applications. J. Am. Stat. Assoc. 1998, 93, 835. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583. [Google Scholar] [CrossRef]
- Andjelić, B.; Djoković, R.; Cincović, M.; Bogosavljević-Bošković, S.; Petrović, M.; Mladenović, J.; Čukić, A. Relationships between Milk and Blood Biochemical Parameters and Metabolic Status in Dairy Cows during Lactation. Metabolites 2022, 12, 733. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, G.; Ravarotto, L.; Gottardo, F.; Stefani, A.; Contiero, B.; Moro, L.; Brscic, M.; Dalvit, P. Short communication: Reference values for blood parameters in Holstein dairy cows: Effects of parity, stage of lactation, and season of production. J. Dairy Sci. 2011, 94, 3895–3901. [Google Scholar] [CrossRef]
- Pathak, A.; Agrawal, A. Evolution of C-Reactive Protein. Front. Immunol. 2019, 10, 943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kegles, F.; Madruga, O.; Schmoeller, E.; Bragança, L.; Londero, U.; Marins, L.; Feijó, J.; Corrêa, M.; Schmitt, E.; Del Pino, F. Hematological and biochemical parameters of dairy calves submitted to pegbovigrastim administration. J. Dairy Sci. 2019, 102, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Arnott, G.; Ferris, C.P.; O’Connell, N.E. Review: Welfare of dairy cows in continuously housed and pasture-based production systems. Animal 2017, 11, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Krug, C.; Haskell, M.; Nunes, T.; Stilwell, G. Creating a model to detect dairy cattle farms with poor welfare using a national database. Prev. Vet. Med. 2015, 122, 280–286. [Google Scholar] [CrossRef]
- Klein, A.B.; Williamson, R.; Santini, M.A.; Clemmensen, C.; Ettrup, A.; Rios, M.; Knudsen, G.M.; Aznar, S. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int. J. Neuropsychopharmacol. 2010, 14, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.Y.; Luo, S.Y.; Al-Hawwas, M.; Herselman, M.F.; Zhou, X.F.; Bobrovskaya, L. The Long-Term Effects of Ethanol and Corticosterone on the Mood-Related Behaviours and the Balance Between Mature BDNF and proBDNF in Mice. J. Mol. Neurosci. 2019, 69, 60–68. [Google Scholar] [CrossRef]
- Cao, W.; Duan, J.; Wang, X.; Zhong, X.; Hu, Z.; Huang, F.; Wang, H.; Zhang, J.; Li, F.; Zhang, J.; et al. Early enriched environment induces an increased conversion of proBDNF to BDNF in the adult rat’s hippocampus. Behav. Brain Res. 2014, 265, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Dinoff, A.; Herrmann, N.; Swardfager, W.; Liu, C.S.; Sherman, C.; Chanet, S. The effect of exercise training on resting concentra-tions of peripheral brain-derived neurotrophic factor (BDNF): A meta-analysis. PLoS ONE 2016, 11, e0163037. [Google Scholar] [CrossRef] [Green Version]
- Hestad, K.A.; Engedal, K.; Whist, J.E.; Farup, P.G. The Relationships among Tryptophan, Kynurenine, Indoleamine 2,3-Dioxygenase, Depression, and Neuropsychological Performance. Front. Psychol. 2017, 8, 1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnone, D.; Saraykar, S.; Salem, H.; Teixeira, A.L.; Dantzer, R.; Selvaraj, S. Role of Kynurenine pathway and its metabolites in mood disorders: A systematic review and meta-analysis of clinical studies. Neurosci. Biobehav. Rev. 2018, 92, 477–485. [Google Scholar] [CrossRef]
- Laugeray, A.; Launay, J.-M.; Callebert, J.; Surget, A.; Belzung, C.; Barone, P.R. Evidence for a key role of the peripheral kynurenine pathway in the modulation of anxiety- and depression-like behaviours in mice: Focus on individual differences. Pharmacol. Biochem. Behav. 2011, 98, 161–168. [Google Scholar] [CrossRef]
- Réus, G.Z.; Jansen, K.; Titus, S.; Carvalho, A.F.; Gabbay, V.; Quevedo, J. Kynurenine pathway dysfunction in the pathophysiology and treatment of depression: Evidences from animal and human studies. J. Psychiatr. Res. 2015, 68, 316–328. [Google Scholar] [CrossRef] [Green Version]
- Zielke, L.G.; Bortfeldt, R.H.; Tetens, J.; Brockmann, G.A. BDNF Contributes to the Genetic Variance of Milk Fat Yield in German Holstein Cattle. Front. Genet. 2011, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Bochniarz, M.; Piech, T.; Kocki, T.; Iskra, M.; Krukowski, H.; Jagielski, T. Tryptophan, Kynurenine and Kynurenic Acid Concentrations in Milk and Serum of Dairy Cows with Prototheca Mastitis. Animals 2021, 11, 3608. [Google Scholar] [CrossRef]
- Kiank, C.; Zeden, J.-P.; Drude, S.; Domanska, G.; Fusch, G.; Otten, W.; Schuett, C. Psychological Stress-Induced, IDO1-Dependent Tryptophan Catabolism: Implications on Immunosuppression in Mice and Humans. PLoS ONE 2010, 5, e11825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, C.P.; Reichel, M.; Muhle, C.; Rhein, C.; Gulbins, E.; Kornhuber, J. Brain membrane lipids in major depression and anxiety disorders. Biochim. Biophys. Acta 2015, 1851, 1052–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Veen, J.N.; Kennelly, J.P.; Wan, S.; Vance, J.E.; Vance, D.E.; Jacobs, R.L. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta (BBA)-Biomembr. 2017, 1859, 1558–1572. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.; Suridjan, I.; Mohammad, D.; Herrmann, N.; Mazereeuw, G.; Hillyer, L.M.; Ma, D.; Oh, P.; Lanctôt, K.L. Novel Phospholipid Signature of Depressive Symptoms in Patients With Coronary Artery Disease. J. Am. Heart Assoc. 2018, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirkan, A.; Isaacs, A.; Ugocsai, P.; Liebisch, G.; Struchalin, M.; Rudan, I.; Wilson, J.F.; Pramstaller, P.P.; Gyllensten, U.; Campbell, H.; et al. Plasma phosphatidylcholine and sphingomyelin concentrations are associated with depression and anxiety symptoms in a Dutch family-based lipidomics study. J. Psychiatr. Res. 2012, 47, 357–362. [Google Scholar] [CrossRef]
- Liu, D.; Yang, J.; Jin, W.; Zhong, Q.; Zhou, T. A high coverage pseudotargeted lipidomics method based on three-phase liquid extraction and segment data-dependent acquisition using UHPLC-MS/MS with application to a study of depression rats. Anal. Bioanal. Chem. 2021, 413, 3975–3986. [Google Scholar] [CrossRef]
- MahmoudianDehkordi, S.; Ahmed, A.T.; Bhattacharyya, S.; Han, X.; Baillie, R.A.; Arnold, M.; Skime, M.K.; John-Williams, L.S.; Moseley, M.A.; Thompson, J.W.; et al. Alterations in acylcarnitines, amines, and lipids inform about the mechanism of action of citalopram/escitalopram in major depression. Transl. Psychiatry 2021, 11, 1–14. [Google Scholar] [CrossRef]
Farm | Sample ID | Breed | Sex | Age (mths) at Blood Draw | Lactation State | Age (mths) at Culling | Brain Collected |
---|---|---|---|---|---|---|---|
A | A1 | FRS | F | 69 | Full | 73 | Yes |
A2 | FRS | F | 94 | Full | 123 | Yes | |
A3 | FRS | F | 49 | Full | 95 | Yes | |
A4 | FRS | F | 61 | Full | 82 | Yes | |
A5 | FRS | F | 50 | Full | n.a. | No | |
A6 | FRS | F | 62 | Full | n.a. | No | |
A7 | FRS | F | 128 | Full | n.a. | No | |
A8 | FRS | F | 119 | Full | n.a. | No | |
A9 | FRS | F | 72 | Full | n.a. | No | |
A10 | FRS | F | 59 | Full | n.a. | No | |
A11 | FRS | F | 67 | Full | n.a. | No | |
A12 | FRS | F | 33 | Full | n.a. | No | |
A13 | FRS | F | 82 | Full | n.a | No | |
B | B1 | MTT | F | 121 | Full | n.a. | No |
B2 | FRS | F | 126 | Full | 138 | Yes | |
B3 | MTT | F | 118 | Full | n.a. | No | |
B4 | FRS | F | 108 | Full | n.a. | No | |
B5 | FRS | F | 108 | Full | n.a. | No | |
B6 | FRS | F | 91 | Full | n.a. | No | |
B7 | FRS | F | 80 | Full | n.a. | No | |
B8 | FRS | F | 75 | Full | n.a. | No | |
B9 | FRS | F | 75 | Full | n.a. | No | |
B10 | FRS | F | 72 | Full | 85 | Yes | |
B11 | FRS | F | 56 | Full | n.a. | No | |
B12 | FRS | F | 66 | Full | n.a. | No | |
B13 | FRS | F | 66 | Full | 75 | Yes | |
C | C1 | FRS | F | 89 | Full | 97 | Yes |
C2 | FRS | F | 50 | Full | n.a. | No | |
C3 | FRS | F | 63 | Full | n.a. | No | |
C4 | FRS | F | 93 | Full | 96 | Yes | |
C5 | FRS | F | 109 | Full | n.a. | No | |
C6 | FRS | F | 51 | Full | n.a. | No | |
C7 | FRS | F | 86 | Full | n.a. | No | |
C8 | FRS | F | 61 | Full | 73 | Yes | |
C9 | FRS | F | 37 | Full | n.a. | No | |
C10 | FRS | F | 117 | Full | n.a. | No | |
C11 | FRS | F | 103 | Full | 106 | Yes | |
C12 | FRS | F | 92 | Full | 125 | Yes | |
C13 | FRS | F | 142 | Full | n.a. | No | |
C14 | FRS | F | 80 | Full | n.a. | No | |
C15 | FRS | F | 61 | Full | n.a. | No |
Group or Farm | Farm Type | Milk Production | Total Animal Welfare Score (%) | Section Score (%) | |
---|---|---|---|---|---|
Farm A | Free-stall | ≤40 kg/cow per day | 65.5 | 1 A | 52.8 |
2 B | 56.7 | ||||
3 C | 76.1 | ||||
Farm B | Tie-stall | ≤12.5 kg/cow per day | 48.9 | A | 43.0 |
B | 43.7 | ||||
C | 54.5 | ||||
Farm C | Free-stall | >40 kg/cow per day | 70.5 | A | 84.7 |
B | 63.5 | ||||
C | 67.4 |
Characteristic | Farm A | Farm B | Farm C | ||||
---|---|---|---|---|---|---|---|
Mean | CI | Mean | CI | Mean | CI | Reference Value | |
WBCs 1 (m/mm3) | 8.4 | 6.5–16.8 | 7.5 | 6.31–9.27 | 8.0 | 7.0–8.9 | 4–12 m/mm3 |
LYM% | 35.6 | 31.8–42.1 | 38.4 | 34.9–41.7 | 37.8 | 34.8–41.2 | 45–75% |
MONO% | 4.2 | 3.8–4.8 | 3.9 | 3.6–4.2 | 4.6 | 4.0–5.2 | 1–5% |
NEU% | 54.5 | 49.5–60.1 | 54.4 | 51.9–57.5 | 54.4 | 51.5–57.8 | 15–47% |
EOS% | 2.7 | 1.9–3.4 | 2.6 | 2.02–3.32 | 3.4 | 2.5–4.7 | 2–20% |
BAS% | 0.4 | 0.33–0.6 | 0.4 | 0.3–0.5 | 0.4 | 0.31–0.54 | - |
RBCs (m/mm3) | 6.3 | 5.83–6.76 | 6.4 | 6.0–6.8 | 7.1 | 6.7–7.4 | 6–11 m/mm3 |
MCV (fL) | 48.6 | 46.35–51.62 | 42.1 | 39.2–46.4 | 49.7 | 47.6–52.1 | 40–60 fL |
HCT% | 30.0 | 27.84–31.92 | 26.6 | 24.6–28.7 | 35.4 | 33.7–37.2 | 25–50% |
MCH (pg) | 15.4 | 14.22–16.65 | 13.0 | 12.2–14.2 | 16.7 | 15.6–17.7 | 11–17 pg |
MCHC (g/dL) | 31.8 | 30.6–32.9 | 31.2 | 30.7–31.8 | 33.4 | 32.5–34.3 | 30–40 g/dL |
RDW | 13.2 | 12.8–13.6 | 13.8 | 13.03–14.6 | 13.0 | 12.56–13.36 | 8–12 |
HB (g/dL) | 9.5 | 8.90–10.19 | 8.25 | 7.6–8.9 | 12.0 | 11.24–12.57 | 8–15 g/dL |
PLTs (m/mm3) | 238.0 | 165.7–408.4 | 166.8 | 144.7–211.3 | 193.3 | 165.1–226.3 | 100–800 m/mm3 |
MPV (fL) | 8.1 | 7.7–8.5 | 8.0 | 7.32–8.82 | 8.1 | 7.77–8.44 | 3–8 fL |
PCT% | 0.19 | 0.13–0.34 | 0.14 | 0.12–0.17 | 0.15 | 0.13–0.17 | - |
Characteristic | Farm A | Farm B | Farm C | ||||
---|---|---|---|---|---|---|---|
Mean | CI | Mean | CI | Mean | CI | Reference Value | |
ALP 1 (UI/L) | 32.4 | 14.7–59.6 | 32.1 | 22.2–49.8 | 32.1 | 24.5–49.9 | 100–488 UI/L |
T-Chol (mg/dL) | 112.5 | 92.6–126.2 | 109.3 | 99.0–128.3 | 111.4 | 90.5–132.0 | 80–120 mg/dL |
CREA (mg/dL) | 1 | 0.9–1.1 | 1 | 0.9–1.1 | 1 | 0.9–1.1 | 1–2 mg/dL |
AST (UI/L) | 78.8 | 70.6–88.7 | 78.7 | 67.9–91.4 | 78.7 | 71.3–86.8 | 36–80 UI/L |
ALT (UI/L) | 26.2 | 22.4–30.5 | 26.3 | 22.9–30.8 | 26.2 | 24.7–29.5 | 20–60 UI/L |
TG (mg/dL) | 27.7 | 18.3–43.8 | 27.7 | 22.1–34.1 | 27.5 | 24.1–34.6 | 0–14 mg/dL |
UR (mg/dL) | 76.3 | 56.2–114.2 | 76.2 | 53.4–102.8 | 76.3 | 59.6–95.0 | 20–30 mg/dL |
Lysozyme (µg/mL) | 1.6 | 1.2–1.8 | 2.1 | 1.3–1.8 | 1.5 | 1.3–1.8 | 1–3 ug/mL |
Bactericidal activity (%) | 82.4 | 74.9–88.7 | 76.8 | 71.5–82.6 | 72.2 | 61.7–79.5 | >90% |
CRP (mg/L) | 6.1 | 4.1–10.6 | 6.1 | 3.9–10.7 | 6.1 | 4.8–9.4 | [31] |
Item | Farm A | Farm B | Farm C | KW p-Value | |||
---|---|---|---|---|---|---|---|
Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | ||
INF γ | 1.8 ± 2.5 | 0.03–7.6 | 1.3 ± 1.2 | 0.07–3.7 | 0.7 ± 0.5 | 0.03–1.6 | NS |
IL-1 β | 13.5 ± 16.3 | 4.0–63.2 | 12.2 ± 16.2 | 1.06–63.2 | 8.6 ± 3.8 | 11.4–13.2 | NS |
IL-6 | 361.1 ± 434.4 | 106.3–1685.4 | 325.6 ± 432.3 | 28.5–1685.4 | 228.0± 100 | 28.3–464.8 | NS |
IL-36Ra | 243.2 ± 88.25 a | 134.1–375.6 | 393.7 ± 179.3 a | 212.6–916.7 | 247.6 ± 184.5 A | 100.5–786.2 | 0.004 * |
IL-8 | 358.8 ± 256.1 | 85.8–853.9 | 501.3 ± 260.3 | 98.6–845.9 | 545.4 ± 329.8 | 171.6–1185.9 | NS |
IL-10 | 249.8 ± 328.3 A | 40.5–909.4 | 149.0 ± 308.3 A | 3.7–1165.7 | 545.4 ± 329.7 A | 171.6–1185.9 | 0.0004 * |
IP-10 | 750.0 ± 277.6 | 397.2–1315.1 | 689.2 ± 317.2 | 331.6–1449.7 | 553.8 ± 239.2 | 190.3–1040.2 | NS |
MCP-1 | 382.9 ± 245.6 | 148.9–855.0 | 236.9 ± 203.6 | 126.2–902.8 | 197.1 ± 251.9 | 92.7–778.0 | NS |
MIP-1 α | 546.5 ± 486.7 | 150.3–1604.9 | 484.2 ± 472.3 | 165.7–1842.5 | 491.1 ± 351.2 | 155.1–1075.2 | NS |
MIP-1 β | 183.7 ± 275.4 | 22.0–737.6 | 28.2 ± 20.5 | 5.3–64.6 | 341.5 ± 541.2 | 7.9–1459.9 | NS |
TNF α | 2373.0 ± 3760.1 | 6.5–0.1 | 2072.4 ± 4487.1 | 94.6–0.9 | 2203.2 ± 2347.3 | 112.1–6061.9 | NS |
VEGF-A | 98.3 ± 85.8 | 28.2–261.5 | 58.9 ± 57.8 | 21.6–235.7 | 56.5 ± 46.8 | 16.7–170.6 | NS |
Item | Farm B vs. A | Farm C vs. A | Farm C vs. B | |||
---|---|---|---|---|---|---|
Contrast | p-Value | Contrast | p-Value | Contrast | p-Value | |
* PCaeC34:0 | 1.2718 | 0.0188 | −0.7547 | 0.0348 | −2.0265 | 0.0001 |
PcaeC34:1 | 5.1899 | 0.0239 | −5.0076 | 0.0019 | −10.1975 | <0.0001 |
PcaeC36:1 | 10.1473 | 0.0001 | −4.1098 | 0.0007 | −14.2571 | <0.0001 |
PcaeC38:1 | 1.2871 | <0.0001 | −0.4570 | 0.0180 | −1.7441 | <0.0001 |
PcaeC38:6 | −1.2760 | <0.0001 | 1.1440 | 0.0339 | 2.4200 | <0.0001 |
lysoPCaC18:2 | −12.7029 | <0.0001 | 5.8931 | 0.1150 | 18.5960 | <0.0001 |
lysoPCaC20:3 | −0.7781 | 0.0013 | 0.3841 | 0.1808 | 1.1622 | 0.0001 |
lysoPCaC24:0 | 0.0614 | 0.1707 | −0.0366 | 0.1782 | −0.0981 | 0.0206 |
PcaaC30:2 | 0.0549 | 0.5215 | −0.1869 | 0.0214 | −0.2418 | 0.0054 |
PcaaC32:2 | 1.8085 | 0.1393 | −2.9221 | 0.0051 | −4.7307 | 0.0004 |
PcaaC32:3 | −16.2434 | <0.0001 | −4.4606 | 0.2655 | 11.7827 | 0.0016 |
PcaaC34:4 | −3.5402 | <0.0001 | −0.0565 | 0.9564 | 3.4838 | 0.0008 |
PcaaC36:2 | −208.8599 | <0.0001 | 27.3927 | 0.5932 | 236.2526 | <0.0001 |
PcaaC36:3 | −39.6146 | 0.0001 | 23.3819 | 0.1492 | 62.9965 | 0.0002 |
PcaaC36:4 | −11.2410 | 0.0002 | 7.5451 | 0.0868 | 18.7860 | <0.0001 |
PcaaC38:1 | 2.4087 | 0.0001 | −0.0081 | 0.9764 | −2.4168 | 0.0001 |
PcaaC38:3 | −18.2647 | 0.0051 | 2.4244 | 0.7168 | 20.6891 | 0.0114 |
PcaaC42:5 | 0.5513 | 0.0044 | 0.3411 | 0.0037 | −0.2102 | 0.2611 |
PcaaC42:6 | 0.2511 | 0.0018 | 0.0118 | 0.8201 | −0.2393 | 0.0025 |
PcaeC36:0 | 0.8041 | 0.0067 | −0.0577 | 0.6736 | −0.8618 | 0.0063 |
PcaaC34:1 | 7.2690 | 0.5835 | −13.0623 | 0.2960 | −20.3313 | 0.0384 |
PcaaC34:2 | −124.3028 | <0.0001 | 19.5469 | 0.4493 | 143.8498 | <0.0001 |
PcaaC24:0 | 0.0541 | 0.2098 | −0.0243 | 0.4353 | −0.0784 | 0.0500 |
** SMC16:0 | −34.7889 | 0.0034 | −9.8360 | 0.3842 | 24.9530 | 0.0624 |
SMC16:1 | −3.6809 | 0.0019 | −0.0886 | 0.9402 | 3.5923 | 0.0210 |
SMC18:1 | −3.2701 | <0.0001 | 0.7133 | 0.4747 | 3.9834 | 0.0001 |
SM(OH)C22:1 | −10.2340 | 0.0010 | −4.7224 | 0.0661 | 5.5116 | 0.0233 |
SM(OH)C22:2 | 2.9793 | 0.0504 | −1.7553 | 0.0238 | −4.7346 | 0.0039 |
Tryptophan | −7.7893 | 0.0387 | 10.0719 | 0.0189 | 17.8612 | 0.0002 |
Histidine | −34.6812 | <0.0001 | 9.1781 | 0.2986 | 43.8592 | <0.0001 |
Isoleucine | −38.0402 | 0.0138 | 18.6727 | 0.2427 | 56.7129 | <0.0001 |
KYN/TRP | 0.1694 | 0.0112 | −0.0282 | 0.2913 | −0.1976 | 0.0028 |
Kynurenine | 3.8764 | 0.0067 | −0.0424 | 0.9688 | −3.9187 | 0.0055 |
Taurine | −45.6090 | <0.0001 | 15.2728 | 0.1333 | 60.8818 | <0.0001 |
Threonine | −27.2245 | 0.0426 | 18.8465 | 0.1847 | 46.0710 | 0.0003 |
Valine | −103.9259 | 0.0001 | 24.7220 | 0.3731 | 128.6479 | <0.0001 |
Proline | −22.9941 | 0.0125 | 16.2568 | 0.2103 | 39.2509 | 0.0021 |
Putrescine | −0.1231 | 0.0018 | −0.0326 | 0.4132 | 0.0905 | 0.0009 |
Putrescine/Ornithine | −0.0014 | 0.0249 | −0.0004 | 0.4427 | 0.0009 | 0.0487 |
alpha-AAA | −0.9372 | 0.0008 | 0.2277 | 0.5153 | 1.1648 | 0.0003 |
Farm | n | min | maxi | mean | sd | p25 | p50 | p75 |
---|---|---|---|---|---|---|---|---|
A | 13 | 106.2 | 2896.6 | 583.4 | 755.6 | 221.2 | 374.8 | 496.3 |
B | 13 | 111.5 | 5824.3 | 1281.63 | 1763.8 | 440.9 | 542.8 | 926.3 |
C | 15 | 41.6 | 979.7 | 233.93 | 253.7 | 61.8 | 146.9 | 237.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favole, A.; Testori, C.; Bergagna, S.; Gennero, M.S.; Ingravalle, F.; Costa, B.; Barresi, S.; Curti, P.; Barberis, F.; Ganio, S.; et al. Brain-Derived Neurotrophic Factor, Kynurenine Pathway, and Lipid-Profiling Alterations as Potential Animal Welfare Indicators in Dairy Cattle. Animals 2023, 13, 1167. https://doi.org/10.3390/ani13071167
Favole A, Testori C, Bergagna S, Gennero MS, Ingravalle F, Costa B, Barresi S, Curti P, Barberis F, Ganio S, et al. Brain-Derived Neurotrophic Factor, Kynurenine Pathway, and Lipid-Profiling Alterations as Potential Animal Welfare Indicators in Dairy Cattle. Animals. 2023; 13(7):1167. https://doi.org/10.3390/ani13071167
Chicago/Turabian StyleFavole, Alessandra, Camilla Testori, Stefania Bergagna, Maria Silvia Gennero, Francesco Ingravalle, Barbara Costa, Sara Barresi, Piercarlo Curti, Francesco Barberis, Sandra Ganio, and et al. 2023. "Brain-Derived Neurotrophic Factor, Kynurenine Pathway, and Lipid-Profiling Alterations as Potential Animal Welfare Indicators in Dairy Cattle" Animals 13, no. 7: 1167. https://doi.org/10.3390/ani13071167
APA StyleFavole, A., Testori, C., Bergagna, S., Gennero, M. S., Ingravalle, F., Costa, B., Barresi, S., Curti, P., Barberis, F., Ganio, S., Orusa, R., Vallino Costassa, E., Berrone, E., Vernè, M., Scaglia, M., Palmitessa, C., Gallo, M., Tessarolo, C., Pederiva, S., ... Corona, C. (2023). Brain-Derived Neurotrophic Factor, Kynurenine Pathway, and Lipid-Profiling Alterations as Potential Animal Welfare Indicators in Dairy Cattle. Animals, 13(7), 1167. https://doi.org/10.3390/ani13071167