In Vitro Characterization of Probiotic Potential of Limosilactobacillus fermentum against Salmonella Gallinarum Causing Fowl Typhoid
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation of Salmonella Gallinarum
2.3. Identification of Salmonella Genus
2.4. Isolation and Preliminary Identification of Lactobacilli
2.5. Identification of Lactobacilli by Molecular Method
2.6. Antagonistic Effect of Lactobacilli Isolates on Salmonella Gallinarum
2.7. In Vitro Determination of Probiotic Properties of Lactobacilli
2.7.1. Tolerance to Low pH
2.7.2. Resistance to Bile Salts
2.7.3. Antibiotic Resistance Profile
2.7.4. Auto-Aggregation and Co-Aggregation Assay
2.7.5. Inhibition of Salmonella Gallinarum in Broth Culture
2.8. Statistical Analysis
3. Results
3.1. Isolation and Identification of Salmonella Gallinarum
3.2. Isolation and Identification of Lactobacilli Isolates
3.3. Antibacterial Activity of Cell Free Supernatants of Lactobacilli
3.4. Tolerance to Acidic pH
3.5. Bile Salt Tolerance of Lactobacilli
3.6. Auto-Aggregation and Co-Aggregation Activity of Lactobacilli
3.7. Antibiotic Susceptibility Profile
3.8. Limosilactobacillus fermentum PC-10 and PC-76 Inhibit the Growth of Salmonella Gallinarum in Co-Culture Assays
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of Finance, Government of Pakistan. Economic Survey of Pakistan; Ministry of Finance, Government of Pakistan: Islamabad, Pakistan, 2021.
- Vielitz, E. Evolution of avian pathology in Europe during the past 50 years. Lohmann. Inf. 2016, 50, 4–10. [Google Scholar]
- Batista, D.F.A.; de Freitas Neto, O.C.; de Almeida, A.M.; Maboni, G.; de Carvalho, T.F.; de Carvalho, T.P.; Barrow, P.A.; Junior, A.B. Evaluation of pathogenicity of Salmonella Gallinarum strains harbouring deletions in genes whose orthologues are conserved pseudogenes in S. Pullorum. PLoS ONE 2018, 13, e0200585. [Google Scholar]
- Kumari, D.; Mishra, S.; Lather, D. Pathomicrobial studies on Salmonella Gallinarum infection in broiler chickens. Vet. World 2013, 6, 725. [Google Scholar] [CrossRef] [Green Version]
- Sannat, C.; Patyal, A.; Rawat, N.; Ghosh, R.; Jolhe, D.; Shende, R.; Hirpurkar, S.; Shakya, S. Characterization of Salmonella Gallinarum from an outbreak in Raigarh, Chhattisgarh. Vet. World 2017, 10, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revolledo, L.; Ferreira, A.J.P. Current perspectives in avian salmonellosis: Vaccines and immune mechanisms of protection. J. Appl. Poult. Res. 2012, 21, 418–431. [Google Scholar] [CrossRef]
- Kim, N.H.; Ko, D.S.; Ha, E.J.; Ahn, S.; Choi, K.S.; Kwon, H.J. Optimized Detoxification of a Live Attenuated Vaccine Strain (SG9R) to Improve Vaccine Strategy against Fowl Typhoid. Vaccines 2021, 9, 122. [Google Scholar] [CrossRef] [PubMed]
- Rajoka, M.S.R.; Hayat, H.; Sarwar, S.; Mehwish, H.; Ahmad, F.; Hussain, N.; Shah, S.; Khurshid, M.; Siddiqu, M.; Shi, J. Isolation and evaluation of probiotic potential of lactic acid bacteria isolated from poultry intestine. Microbiology 2018, 87, 116–126. [Google Scholar] [CrossRef]
- Joint FAO; World Health Organization. Evaluation of Allergenicity of Genetically Modified Foods: Report of a Joint FAO; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001. [Google Scholar]
- Pokorna, A.; Manakova, T.; Cizek, A. Properties of potentially probiotic Lactobacillus isolates from poultry intestines. Acta. Vet. Brno 2019, 88, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Andino, A.; Hanning, I. Salmonella enterica: Survival, colonization, and virulence differences among serovars. Sci. World J. 2015, 2015, 520179. [Google Scholar] [CrossRef] [Green Version]
- Orji, M.U.; Onuigbo, H.C.; Mbata, T.I. Isolation of Salmonella from poultry droppings and other environmental sources in Awka, Nigeria. Int. J. Infect. Dis. 2005, 9, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Muktaruzzaman, M.; Haider, M.; Ahmed, A.; Alam, K.; Rahman, M.; Khatun, M.; Rahman, M.; Hossain, M. Validation and refinement of Salmonella pullorum (SP) colored antigen for diagnosis of Salmonella infections in the field. Int. J. Poult. Sci. 2010, 9, 801–808. [Google Scholar] [CrossRef] [Green Version]
- Brooks, G.F.; Carroll, K.C.; Butel, J.; Morse, S.; Mietzner, T.; Jawetz, M. Adelberg’s medical microbiology. Sultan Qaboos Univ. Med. J. 2007, 7, 273. [Google Scholar]
- Al-Harthi, M.; Halawani, M.; Abdelkader, S. Detection of Salmonella strains in clinical samples from Saudi Arabia by invA and hilA polymerase chain reaction (PCR)-based assays. Afri. J. Microbiol. Res. 2012, 6, 5410–5416. [Google Scholar]
- Kang, M.S.; Kwon, Y.K.; Jung, B.Y.; Kim, A.; Lee, K.M.; An, B.K.; Song, E.A.; Kwon, J.H.; Chung, G.S. Differential identification of Salmonella enterica subsp. enterica serovar Gallinarum biovars Gallinarum and Pullorum based on polymorphic regions of glgC and speC genes. Vet. Microbiol. 2011, 147, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Asghar, S.; Arif, M.; Nawaz, M.; Muhammad, K.; Ali, M.; Ahmad, M.; Iqbal, S.; Anjum, A.; Khan, M.; Nazir, J. Selection, characterisation and evaluation of potential probiotic Lactobacillus spp. isolated from poultry droppings. Benef. Microb. 2016, 7, 35–44. [Google Scholar] [CrossRef]
- Nawaz, M.; Wang, J.; Zhou, A.; Ma, C.; Wu, X.; Moore, J.E.; Cherie Millar, B.; Xu, J. Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Curr. Microbiol. 2011, 62, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, S.; Madden, T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004, 32, W20–W25. [Google Scholar] [CrossRef]
- Bao, Y.; Zhang, Y.; Zhang, Y.; Liu, Y.; Wang, S.; Dong, X.; Wang, Y.; Zhang, H. Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food. Control. 2010, 21, 695–701. [Google Scholar] [CrossRef]
- Delgado, S.; Osullivan, E.; Fitzgerald, G.; Mayo, B. Subtractive screening for probiotic properties of Lactobacillus species from the human gastrointestinal tract in the search for new probiotics. J. Food. Sci. 2007, 72, M310–M315. [Google Scholar] [CrossRef]
- Saleem, N.; Nawaz, M.; Ghafoor, A.; Javeed, A.; Mustafa, A.; Yousuf, M.R.; Khan, I. Phenotypic and Molecular Analysis of Antibiotic Resistance in Lactobacilli of Poultry Origin from Lahore, Pakistan. Pak. Vet. J. 2018, 38, 409–412. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012, 10, 2740. [Google Scholar]
- Todoriki, K.; Mukai, T.; Sato, S.; Toba, T. Inhibition of adhesion of food-borne pathogens to Caco-2 cells by Lactobacillus strains. J. Appl. Microbiol. 2001, 91, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.B.; Song, B.J.; Shin, M.Y.; Lim, H.C.; Yoon, Y.H.; Jeon, D.Y.; Ha, H.; Yang, S.I.; Kim, J.B. Antibiotic resistance patterns and serotypes of Salmonella spp. isolated at Jeollanam-do in Korea. Osong Public Health Res. Perspect. 2017, 8, 211. [Google Scholar] [CrossRef] [PubMed]
- Sornplang, P.; Leelavatcharamas, V.; Sukon, P.; Yowarach, S. Antibiotic resistance of lactic acid bacteria isolated from a fermented fish product, pla-chom. Res. J. Microbiol. 2011, 6, 898. [Google Scholar] [CrossRef] [Green Version]
- Kerry, R.G.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H.S.; Das, G. Benefaction of probiotics for human health: A review. J. Food Drug Analy. 2018, 26, 927–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, G.; Fakhar, H.; ur Rahman, S.; Tariq, M.; Zaidi, A. An assessment of the aggregation and probiotic characteristics of Lactobacillus species isolated from native (desi) chicken gut. J. Appl. Poult. Res. 2019, 28, 846–857. [Google Scholar] [CrossRef]
- Mustafa, A.; Nawaz, M.; Rabbani, M.; Tayyab, M.; Khan, M. Characterization and evaluation of anti-Salmonella Enteritidis activity of indigenous probiotic lactobacilli in mice. Open Life Sci. 2022, 17, 978–990. [Google Scholar] [CrossRef]
- Khan, I.; Nawaz, M.; Anjum, A.A.; Ahmad, M.u.D. Isolation and in vitro Characterization of Anti-Salmonella Enteritidis Probiotic Potential of Indigenous Lactobacilli from Poultry. Pak. Vet. J. 2019, 39, 563–567. [Google Scholar] [CrossRef]
- Abbas, A.; Rizvi, F.; Hussain, S.; Ali, S.; Rafique, R.; Manzoor, A.; Waqar, H.; Akram, R.; Shaukat, M.; Shaukat, H. Immuno-Modulatory effects of Lactobacillus in Salmonella Gallinarum Infected Broiler Chicks. Pak. J. Sci. 2021, 73, 77–83. [Google Scholar]
- Stephenson, D.P.; Moore, R.J.; Allison, G.E. Lactobacillus strain ecology and persistence within broiler chickens fed different diets: Identification of persistent strains. Appl. Environ. Microbiol. 2010, 76, 6494–6503. [Google Scholar] [CrossRef] [Green Version]
- Niewold, T. Chapter 9: Intestinal health biomarkers in vivo. In Intestinal Health: Key to Maximise Growth Performance in Livestock; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 717–721. [Google Scholar]
- Salehizadeh, M.; Modarressi, M.H.; Mousavi, S.N.; Ebrahimi, M.T. Evaluation of lactic acid bacteria isolated from poultry feces as potential probiotic and its in vitro competitive activity against Salmonella typhimurium. Vet. Res. Forum 2020, 11, 67–75. [Google Scholar] [PubMed]
- Upadhaya, S.; Hossiendoust, A.; Kim, I. Probiotics in Salmonella-challenged Hy-Line brown layers. Poult. Sci. 2016, 95, 1894–1897. [Google Scholar] [CrossRef] [PubMed]
- Bull, M.; Plummer, S.; Marchesi, J.; Mahenthiralingam, E. The life history of Lactobacillus acidophilus as a probiotic: A tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiol. Lett. 2013, 349, 77–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Anjum, A.; Nawaz, M.; Awan, A. In vitro characterization of probiotic properties and anti-Campylobacter activity of Lactobacillus spp. isolated from poultry, fermented foods and human faeces. J. Anim. Plant. Sci. 2020, 30, 336–344. [Google Scholar]
- Spivey, M.A.; Dunn-Horrocks, S.L.; Duong, T. Epithelial cell adhesion and gastrointestinal colonization of Lactobacillus in poultry. Poult. Sci. 2014, 93, 2910–2919. [Google Scholar] [CrossRef] [PubMed]
- Shokryazdan, P.; Sieo, C.C.; Kalavathy, R.; Liang, J.B.; Alitheen, N.B.; Faseleh Jahromi, M.; Ho, Y.W. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. Biomed. Res. Int. 2014, 2014, 927268. [Google Scholar] [CrossRef] [Green Version]
- Arif, A.; Nawaz, M.; Rabbani, M.; Iqbal, S.; Mustafa, A.; Yousuf, M.R.; Muhammad, K. Screening, characterization and physicochemical optimization of phosphorus solubilization activity of potential probiotic Lactobacillus spp. Pak. Vet. J. 2018, 38, 316–320. [Google Scholar] [CrossRef]
- An, Y.H.; Dickinson, R.B.; Doyle, R.J. Mechanisms of bacterial adhesion and pathogenesis of implant and tissue infections. In Handbook of Bacterial Adhesion; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–27. [Google Scholar]
- Potocnjak, M.; Pusic, P.; Frece, J.; Abram, M.; Jankovic, T.; Gobin, I. Three new Lactobacillus plantarum strains in the probiotic toolbox against gut pathogen Salmonella enterica serotype Typhimurium. Food Tech. Biotech. 2017, 55, 48. [Google Scholar] [CrossRef]
- Suwannaphan, S. Isolation, identification and potential probiotic characterization of lactic acid bacteria from Thai traditional fermented food. AIMS Microbiol. 2021, 7, 431. [Google Scholar] [CrossRef]
- Pessoa, W.F.B.; Melgaço, A.C.C.; de Almeida, M.E.; Ramos, L.P.; Rezende, R.P.; Romano, C.C. In vitro activity of lactobacilli with probiotic potential isolated from cocoa fermentation against Gardnerella vaginalis. Biomed. Res. Int. 2017, 2017, 3264194. [Google Scholar] [CrossRef] [Green Version]
- Dowarah, R.; Verma, A.K.; Agarwal, N.; Singh, P.; Singh, B.R. Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets. PLoS ONE 2018, 13, e0192978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Lactobacilli | Means ± SD of Log10 Bacterial Counts | Log (Log pH 7–Log pH 3) | ||
---|---|---|---|---|
pH7 | pH4 | pH3 | ||
PC-01 | 7.71 ± 0.1 ab | 7.04 ± 0.1 abcde | 6.72 ± 0.2 bcd | 0.99 |
PC-04 | 8.59 ± 0.2 a | 7.67 ± 0.1 ab | 6.68 ± 0.1 bcd | 1.91 |
PC-07 | 7.84 ± 0.1 ab | 7.83 ± 0.1 a | 7.84 ± 0.1 a | 0 |
PC-10 | 7.15 ± 0.2 b | 7.70 ± 0.2 ab | 6.95 ± 0.1 ab | 0.2 |
PC-11 | 6.74 ± 0.3 b | 5.57 ± 0.1 fg | 5.40 ± 0.2 ef | 1.34 |
PC-12 | 7.70 ± 0.4 ab | 6.65 ± 0.3 bcdef | 7.32 ± 0.4 ab | 0.38 |
PC-13 | 7.53 ± 0.4 ab | 7.14 ± 0.3 abcde | 7.83 ± 0.1 a | −0.3 |
PC-15 | 7.73 ± 0.3 ab | 6.61 ± 0.1 bcdef | 7.28 ± 0.2 ab | 0.45 |
PC-17 | 7.83 ± 0.3 ab | 7.78 ± 0.1 a | 6.76 ± 0.3 abc | 1.07 |
PC-24 | 5.28 ± 0.3 c | 6.40 ± 0.2 cdefg | 5.74 ± 0.1 cdef | −0.46 |
PC-25 | 7.38 ± 0.3 ab | 7.34 ± 0.1 abc | 7.23 ± 0.3 ab | 0.15 |
PC-28 | 7.34 ± 0.2 ab | 7.38 ± 0.3 abc | 6.88 ± 0.1 ab | 0.46 |
PI-47 | 7.00 ± 0.4 b | 5.49 ± 0.1 g | 4.84 ± 0.1 f | 2.16 |
PC-55 | 7.9 ± 0.2 ab | 7.17 ± 0.3 abcd | 7.00 ± 0.1 ab | 0.9 |
PC-60 | 7.50 ± 0.3 ab | 7.11 ± 0.2 abcde | 5.65 ± 0.2 def | 1.85 |
PC-65 | 7.08 ± 0.1 b | 5.65 ± 0.1 fg | 4.69 ± 0.1 f | 2.39 |
PC-68 | 7.49 ± 0.1 ab | 7.30 ± 0.3 abcd | 6.83 ± 0.1 ab | 0.66 |
PC-76 | 7.30 ± 0.2 ab | 6.65 ± 0.1 bcdef | 7.00 ± 0.3 ab | 0.30 |
PI-80 | 7.50 ± 0.3 ab | 5.90 ± 0.2 fg | 5.58 ± 0.2 ef | 1.92 |
PI-83 | 7.25 ± 0.2 ab | 6.22 ± 0.2 defg | 6.26 ± 0.1 bcde | 0.99 |
PI-93 | 6.70 ± 0.3 b | 6.04 ± 0.2 efg | 5.41 ± 0.1 ef | 1.29 |
Isolates | Percentage Auto-Aggregation Means ± SD | Percentage Co-Aggregation Means ± SD | ||
---|---|---|---|---|
1 h | 2 h | 1 h | 2 h | |
PC-01 | 16.22 ± 0.10 fg | 20.05 ± 0.62 j | 17.20 ± 0.25 hi | 19.22 ± 0.35 m |
PC-04 | 22.04 ± 0.31 de | 41.23 ± 0.50 bcdef | 24.33 ± 0.80 c | 35.10 ± 0.72 c |
PC-07 | 25.40 ± 0.16 bc | 35.70 ± 0.89 fg | 20.44 ± 0.19 fg | 29.50 ± 0.52 efg |
PC-10 | 31.10 ± 0.30 a | 50.70 ± 1.40 a | 24.10 ± 0.42 cd | 35.40 ± 1.32 bc |
PC-11 | 22.10 ± 0.29 de | 46.75 ± 3.12 ab | 21.40 ± 0.25 def | 27.01 ± 0.43 ghi |
PC-12 | 13.50 ± 0.45 h | 27.60 ± 1.23 hi | 20.05 ± 0.73 fg | 25.30 ± 0.37 ij |
PC-13 | 30.20 ± 0.45 a | 44.90 ± 1.09 abc | 08.14 ± 0.15 l | 08.50 ± 0.06 n |
PC-15 | 17.30 ± 0.11 f | 29.23 ± 0.35 hi | 17.19 ± 0.36 hi | 23.26 ± 0.85 jk |
PC-17 | 25.32 ± 0.45 bc | 42.53 ± 0.22 bcd | 23.20 ± 0.81 cde | 33.20 ± 0.10 cd |
PC-24 | 14.20 ± 0.21 gh | 25.40 ± 1.25 ij | 17.24 ± 0.45 hi | 22.24 ± 0.29 kl |
PC-25 | 26.15 ± 0.85 b | 36.40 ± 0.72 efg | 18.28 ± 0.45 gh | 28.90 ± 0.10 efg |
PC-28 | 27.20 ± 0.49 b | 42.60 ± 0.47 bcd | 15.25 ± 0.57 ij | 25.45 ± 0.79 hij |
PI-47 | 23.10 ± 0.13 cde | 33.40 ± 0.23 gh | 16.29 ± 0.65 hij | 20.23 ± 0.11 lm |
PC-55 | 25.19 ± 0.66 bc | 43.23 ± 1.33 bc | 12.39 ± 0.40 k | 10.23 ± 0.10 n |
PC-60 | 20.80 ± 0.10 e | 36.75 ± 0.80 defg | 14.68 ± 0.20 ijk | 21.60 ± 0.44 klm |
PC-65 | 14.10 ± 0.13 gh | 25.40 ± 0.46 ij | 08.39 ± 0.40 l | 05.22 ± 0.21 o |
PC-68 | 22.09 ± 0.80 de | 42.13 ± 1.33 bcde | 16.39 ± 0.34 hij | 19.76 ± 0.26 lm |
PC-76 | 25.40 ± 0.32 bc | 41.45 ± 1.21 bcdef | 29.15 ± 0.72 b | 38.30 ± 0.45 b |
PI-80 | 15.10 ± 0.71 fgh | 26.70 ± 0.42 i | 14.24 ± 0.30 jk | 28.40 ± 0.22 fgh |
PI-83 | 21.55 ± 0.27 de | 37.10 ± 0.35 defg | 21.19 ± 0.21 ef | 31.50 ± 0.37 de |
PI-93 | 23.65 ± 0.22 cd | 41.70 ± 0.22 bcdef | 20.48 ± 0.24 efg | 30.42 ± 0.44 def |
LGG | 15.40 ± 0.30 fgh | 39.00 ± 0.20 cdefg | 32.30 ± 0.55 a | 42.07 ± 0.70 a |
Organisms | Strain | Resistance to Antibiotics |
---|---|---|
Limosilactobacillus reuteri | PC-01 | ERY, CIP, S, PEN, OT, VA, CN, BAC, DA |
Ligilactobacillus salivarius | PC-04 | CIP, S, OT, VA, CN, BAC, CHL, DA |
Ligilactobacillus salivarius | PC-07 | CIP, S, PEN, OT, VA, CN, BAC, CHL, DA |
Limosilactobacillus fermentum | PC-10 | CIP, S, VA |
Limosilactobacillus reuteri | PC-11 | CIP, S, OT, VAN, CN, BAC, CHL, DA |
Limosilactobacillus reuteri | PC-12 | ERY, CIP, S, OT, VA, CN, BAC, DA |
Limosilactobacillus reuteri | PC-13 | CIP, S, PEN, OT, VA, CN, BAC, DA |
Limosilactobacillus reuteri | PC-15 | ERY, CIP, S, OT, VA, CN, BAC, DA |
Limosilactobacillus reuteri | PC-17 | ERY, CIP, S, OT, VA, CN, BAC, DA |
Limosilactobacillus reuteri | PC-24 | CIP, S, OT, VA, CN, BAC, CHL, DA |
Limosilactobacillus reuteri | PC-25 | CIP, S, OT, VA, CN, BAC, CHL, DA |
Limosilactobacillus reuteri | PC-28 | CIP, S, PEN, OT, VA, CN, BAC, DA |
Lactobacillus crispatus | PI-47 | CIP, S, PEN, OT, VA, CN, BAC, DA |
Lactobacillus crispatus | PC-55 | CIP, S, PEN, OT, VA, CN, DA |
Lactobacillus crispatus | PC-60 | AML, ERY, CIP, S, CN, FUS, DA |
Lactobacillus crispatus | PC-65 | CIP, S, OT, VA, CN, BAC, FUS, DA |
Lactobacillus crispatus | PC-68 | ERY, CIP, S, OT, VA, CN, BAC, DA |
Limosilactobacillus fermentum | PC-76 | S, VA |
Lactobacillus johnsonii | PI-80 | CIP, S, OT, VA, CN, BAC, FUS, DA |
Lactobacillus johnsonii | PI-83 | CIP, S, OT, VA, CN, BAC, FUS, DA |
Lactobacillus johnsonii | PI-93 | CIP, S, PEN, OT, VA, CN, BAC, FUS, DA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehmood, A.; Nawaz, M.; Rabbani, M.; Mushtaq, M.H. In Vitro Characterization of Probiotic Potential of Limosilactobacillus fermentum against Salmonella Gallinarum Causing Fowl Typhoid. Animals 2023, 13, 1284. https://doi.org/10.3390/ani13081284
Mehmood A, Nawaz M, Rabbani M, Mushtaq MH. In Vitro Characterization of Probiotic Potential of Limosilactobacillus fermentum against Salmonella Gallinarum Causing Fowl Typhoid. Animals. 2023; 13(8):1284. https://doi.org/10.3390/ani13081284
Chicago/Turabian StyleMehmood, Adnan, Muhammad Nawaz, Masood Rabbani, and Muhammad Hassan Mushtaq. 2023. "In Vitro Characterization of Probiotic Potential of Limosilactobacillus fermentum against Salmonella Gallinarum Causing Fowl Typhoid" Animals 13, no. 8: 1284. https://doi.org/10.3390/ani13081284
APA StyleMehmood, A., Nawaz, M., Rabbani, M., & Mushtaq, M. H. (2023). In Vitro Characterization of Probiotic Potential of Limosilactobacillus fermentum against Salmonella Gallinarum Causing Fowl Typhoid. Animals, 13(8), 1284. https://doi.org/10.3390/ani13081284