Beaver Dams and Fallen Trees as Ecological Corridors Allowing Movements of Mammals across Water Barriers—A Case Study with the Application of Novel Substrate for Tracking Tunnels
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
- Swelinia River near the city of Sopot. Its entire drainage system is located in the urban or suburban setting (Tricity agglomeration), but only short sections, adjacent to densely built-up districts, are subject to hydromodification. It is a rapid stream of sub-montane characteristics with numerous meanders and cascades. Its banks are covered mostly by alder-ash riparian forest Fraxino-Alnetum, dominated by black alder Alnus glutinosa; the stand composition is enriched by several species growing in abandoned allotments, especially fruit trees.
- Source section of the Trzebiocha River near the city of Kościerzyna, between lakes Księże and Osuszyno. In contrast to the previous site, this one is located in a rural woodland setting. The riverbed is straight, and the current is slow. The banks are covered by managed forest, dominated by Scotch pine (Pinus sylvestris) with an admixture of spruce (Picea abies) and birch (Betula pendula), but the stands are subjected to more flooding due to beaver dams, which represent alder carr (Sphagno squarrosi–Alnetum).
- Górzynka River near Podole Wielkie village, also in a rural and woodland setting. The river is also rapid and has sub-montane characteristics, but its bed is much broader than that of the Swelinia River. Steep valley slopes almost reach the river in many spots; they are covered either by oak-hornbeam forest Stellario-Carpinetum, dominated by hornbeam Carpinus betulus and beech Fagus sylvatica, or young, dense spruce plantations. In places with extensive flooding because of beavers or narrow riverine terraces, patches of the alder-ash riparian forest also occur.
2.2. Experimental Design
2.3. Analysis
3. Results
4. Discussion
4.1. Method Limitations
4.2. Functions of Beaver Dams and Tree Logs for Mammals
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kie, J.G.; Matthiopoulos, J.; Fieberg, J.; Powell, R.A.; Cagnacci, F.; Mitchell, M.S.; Gaillard, J.M.; Moorcroft, P.R. The home-range concept: Are traditional estimators still relevant with modern telemetry technology? Philos. Trans. R. Soc. B 2010, 365, 2221–2231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ofstad, E.G.; Herfindal, I.; Solberg, E.J.; Sæther, B.-E. Home ranges, habitat and body mass: Simple correlates of home range size in ungulates. Proc. R. Soc. B 2016, 28, 28320161234. [Google Scholar] [CrossRef] [Green Version]
- Shepard, E.L.C.; Wilson, R.P.; Rees, W.G.; Grundy, E.; Lambertucci, S.A.; Vosper, S.B. Energy landscapes shape animal movement ecology. Am. Nat. 2013, 182, 298–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panzacchi, M.; Van Moorter, B.; Strand, O.; Saerens, M.; Kivimäki, I.; St Clair, C.C.; Herfindal, I.; Boitani, L. Predicting the continuum between corridors and barriers to animal movements using Step Selection Functions and Randomized Shortest Paths. J. Anim. Ecol. 2016, 85, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Wittemyer, G.; Northrup, J.M.; Bastille-Rousseau, G. Behavioural valuation of landscapes using movement data. Philos. Trans. R. Soc. B 2019, 374, 20180046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frauendorf, T.; Subalusky, A.; Dutton, C.; Hamilton, S.; Masese, F.; Rosi, E.; Singer, G.; Post, D. Animal legacies lost and found in river ecosystems. Environ. Res. Lett. 2021, 16, 115011. [Google Scholar] [CrossRef]
- Thomas, J.P.; Larter, N.C.; Jung, T.S. Enabling safe passage: Predicting river crossing hotspots for a threatened boreal ungulate susceptible to drowning. J. Mammal. 2022, 103, 932–944. [Google Scholar] [CrossRef]
- Seidensticker, J.C.; Hornocker, M.G.; Wiles, W.V.; Messick, J.P. Mountain lion social organization in the Idaho Primitive area. Wildl. Monogr. 1973, 35, 3–60. [Google Scholar]
- Vanleeuwe, H.; Gautier-Hion, A. Forest elephant paths and movements at the Odzala National Park, Congo: The role of clearings and Marantaceae forests. Afr. J. Ecol. 1998, 36, 174–182. [Google Scholar] [CrossRef]
- Coggan, N.V.; Hayward, M.W.; Gibb, H. A global database and “state of the field” review of research into ecosystem engineering by land animals. J. Anim. Ecol. 2018, 87, 974–994. [Google Scholar] [CrossRef]
- Mosepele, K.; Moyle, P.; Merron, G.; Purkey, D.; Mosepele, B. Fish, Floods, and Ecosystem Engineers: Aquatic Conservation in the Okavango Delta, Botswana. Bioscience 2009, 59, 53–64. [Google Scholar] [CrossRef]
- Janiszewski, P.; Hanzal, V.; Misiukiewicz, W. The Eurasian Beaver (Castor fiber) as a Keystone Species—A Literature Review. Balt. For. 2014, 20, 277–286. [Google Scholar]
- Law, A.; Levanoni, O.; Foster, G.; Ecke, F.; Willby, N. Are beavers a solution to the freshwater biodiversity crisis? Divers. Distrib. 2019, 25, 1763–1772. [Google Scholar] [CrossRef] [Green Version]
- Dalbeck, L.; Lüscher, B.; Ohlhoff, D. Beaver ponds as habitat of amphibian communities in a central European highland. Amphib-Reptilia 2007, 28, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Grover, A.; Baldassarre, G. Bird species richness within beaver ponds in south-central New York. Wetlands 1995, 15, 108–118. [Google Scholar] [CrossRef]
- Ciechanowski, M.; Kubic, W.; Rynkiewicz, A.; Zwolicki, A. Reintroduction of beavers Castor fiber may improve habitat quality for vespertilionid bats foraging in small river valleys. Eur. J. Wildl. Res. 2010, 57, 737–747. [Google Scholar] [CrossRef] [Green Version]
- Nummi, P.; Liao, W.; Huet, O.; Scarpulla, E.; Sundell, J. The beaver facilitates species richness and abundance of terrestrial and semi-aquatic mammals. Glob. Ecol. Conserv. 2019, 20, e00701. [Google Scholar] [CrossRef]
- Patterson, B.D.; Ramírez-Chaves, H.E.; Vilela, J.F.; Soares, A.E.R.; Grewe, F. On the nomenclature of the American clade of weasels (Carnivora: Mustelidae). J. Anim. Divers. 2021, 3, 1–8. [Google Scholar] [CrossRef]
- Rosell, F.; Bozser, O.; Collen, P.; Parker, H. Ecological impact of beavers Castor fiber and Castor canadensis and their ability to modify ecosystems. Mamm. Rev. 2005, 35, 248–276. [Google Scholar] [CrossRef]
- Mott, C.; Bloomquist, C.; Nielsen, C. Within-lodge interactions between two ecosystem engineers, beavers (Castor canadensis) and muskrats (Ondatra zibethicus). Behaviour 2013, 150, 1325–1344. [Google Scholar] [CrossRef]
- Sidorovich, V.; MacDonald, D. Density dynamics and changes in habitat use by the European mink and other native mustelids in connection with the American mink expansion in Belarus. Neth. J. Zool. 2001, 51, 107–126. [Google Scholar] [CrossRef]
- Ulevičius, A.; Janulaitis, M. Abundance and species diversity of small mammals on beaver lodges. Ekologija 2007, 53, 38–43. [Google Scholar]
- Wikar, Z.; Ciechanowski, M.; Zwolicki, A. Beaver Dams Increase Abundance and Diversity of Semiaquatic and Terrestrial Small Mammals; Department of Vertebrate Ecology and Zoology, University of Gdańsk: Gdańsk, Poland, 2023. [Google Scholar]
- Czajkowska, J.; Janiszewski, P. Mammalian activity in the vicinities of beaver dams in the fall-winter season. J. Wildl. Biodivers. 2021, 5, 8–14. [Google Scholar]
- Zielinski, W.J.; Truex, R.L. Distinguishing Tracks of Marten and Fisher at Track-Plate Stations. J. Wildl. Manag. 1995, 59, 571–579. [Google Scholar] [CrossRef]
- Connors, M.J.; Schauber, E.M.; Forbes, A.; Jones, C.G.; Goodwin, B.J.; Ostfeld, R.S. Use of track plates to quantify predation risk at small spatial scales. J. Mammal. 2005, 86, 991–996. [Google Scholar] [CrossRef] [Green Version]
- Palma, A.; Gurgel-Gonçalves, R. Morphometric identification of small mammal footprints from ink tracking tunnels in the Brazilian Cerrado. Rev. Bras. Zool. 2007, 24, 333–343. [Google Scholar] [CrossRef]
- Brzeziński, M.; Ignatiuk, P.; Żmihorski, M.; Zalewski, A. An invasive predator affects habitat use by native prey: American mink and water vole co-existence in riparian habitats. J. Zool. 2017, 304, 109–116. [Google Scholar] [CrossRef]
- Ford, A.T.; Clevenger, A.P.; Bennet, A. Comparison of Methods of Monitoring Wildlife Crossing-Structures on Highways. J. Wildl. Manag. 2010, 73, 1213–1222. [Google Scholar] [CrossRef]
- Delisle, Z.J.; Flaherty, E.A.; Nobbe, M.R.; Wzientek, C.M.; Swihart, R.K. Next-Generation Camera Trapping: Systematic Review of Historic Trends Suggests Keys to Expanded Research Applications in Ecology and Conservation. Front. Ecol. Evol. 2021, 9, 617996. [Google Scholar] [CrossRef]
- Romanowski, J. Śladami Zwierząt; Państwowe Wydawnictwo Rolnicze i Leśne: Warszawa, Poland, 1998. [Google Scholar]
- Olsen, L.H. Tracks and Signs of the Animals and Birds of Britain and Europe; Princeton University Press: Princeton, UK, 2012. [Google Scholar]
- Muir, G.; Morris, P. How to Find and Identify Mammals; The Mammal Society: Southampton, UK, 2013. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Pucek, Z. Keys to Vertebrates of Poland: Mammals; PWN: Warszawa, Poland, 1984; Volume 357. [Google Scholar]
- Rosell, F.; Campbell-Palmer, R. Beavers: Ecology, Behaviour, Conservation and Management; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Watts, C.H.S. The Foods Eaten by Wood Mice (Apodemus sylvaticus) and Bank Voles (Clethrionomys glareolus) in Wytham Woods, Berkshire. J. Anim. Ecol. 1968, 37, 25–41. [Google Scholar] [CrossRef]
- Dróżdż, D. Food habits and food supply of rodents in the beech forest. Acta Theriol. 1966, 11, 363–384. [Google Scholar] [CrossRef]
- Churchfield, S.; Rychlik, L. Diets and coexistence in Neomys and Sorex shrews in Białowieża forest, eastern Poland. J. Zool. 2006, 269, 381–390. [Google Scholar] [CrossRef]
- Hutchings, M.; White, P. Mustelid scent-marking in managed ecosystems: Implications for population management. Mamm. Rev. 2001, 30, 157–169. [Google Scholar] [CrossRef]
- Pulliainen, E. Scent-marking in the pine marten (Martes martes) in Finnish Forest Lapland in winter. Z. Saugetierkd. 1981, 47, 91–99. [Google Scholar]
- Sidorovich, V. Mustelids in Belarus; Zolotny uley Publisher: Minsk, Belarus, 1997. [Google Scholar]
- Jędrzejewska, B.; Jędrzejewski, W. Predation in Vertebrate Communities: The Bialowieza Primeval Forest as a Case Study. Ecol. Stud. 1998, 135, 1–462. [Google Scholar]
- McDonald, R.A.; Webbon, C.; Harris, S. The diet of stoats (Mustela erminea) and weasels (Mustela nivalis) in Great Britain. J. Zool. 2006, 252, 363–371. [Google Scholar] [CrossRef]
- Sainsbury, K.; Shore, R.; Schofield, H.; Croose, L.; Hantke, G.; Kitchener, A.; Mcdonald, R. Diets of European polecat Mustela putorius in Great Britain during fifty years of population recovery. Mamm. Res. 2020, 65, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Schenk, F. Comparison of spatial learning in woodmice (Apodemus sylvaticus) and hooded rats (Rattus norvegicus). J. Comp. Psychol. 1987, 101, 150–158. [Google Scholar] [CrossRef]
- Stawski, C.; Koteja, P.; Sadowska, E.T.; Jefimow, M.; Wojciechowski, M.S. Selection for high activity-related aerobic metabolism does not alter the capacity of non-shivering thermogenesis in bank voles. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2015, 180, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Aulak, W. Small mammal communities of the Białowieża National Park. Acta Theriol. 1970, 15, 465–515. [Google Scholar] [CrossRef] [Green Version]
- Bohdal, T.; Navrátil, J.; Sedláček, F. Small terrestrial mammals living along streams acting as natural landscape barriers. Ekol. Bratisl. 2016, 35, 191–204. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.C.; Short, M.J.; Leigh, R.J. Development of population control strategies for mink Mustela vison, using floating rafts as monitors and trap sites. Biol. Conserv. 2004, 120, 533–543. [Google Scholar] [CrossRef]
- Suzuki, N.; McComb, B. Associations of small mammals and amphibians with beaver-occupied streams in the Oregon Coast Range. Northwest Sci. 2005, 78, 286–293. [Google Scholar]
- Fedyń, I.; Przepióra, F.; Sobociński, W.; Wyka, J.; Ciach, M. Eurasian beaver—A semi-aquatic ecosystem engineer rearranges the assemblage of terrestrial mammals in winter. Sci. Total Environ. 2022, 831, 154919. [Google Scholar] [CrossRef]
Site | Number of Tracking Tunnels [D/L/R] | Date of Installation | Date of Removal | Number of Inspections |
---|---|---|---|---|
Trzebiocha | 8 [1/4/3] | 8 August 2020 | 20 December 2020 | 2 |
Swelinia | 13 [3/4/6] | 19 September 2020 | 11 December 2020 | 3 |
Górzynka | 10 [4/3/3] | 25 September 2020 | 22 December 2020 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wikar, Z.; Ciechanowski, M. Beaver Dams and Fallen Trees as Ecological Corridors Allowing Movements of Mammals across Water Barriers—A Case Study with the Application of Novel Substrate for Tracking Tunnels. Animals 2023, 13, 1302. https://doi.org/10.3390/ani13081302
Wikar Z, Ciechanowski M. Beaver Dams and Fallen Trees as Ecological Corridors Allowing Movements of Mammals across Water Barriers—A Case Study with the Application of Novel Substrate for Tracking Tunnels. Animals. 2023; 13(8):1302. https://doi.org/10.3390/ani13081302
Chicago/Turabian StyleWikar, Zuzanna, and Mateusz Ciechanowski. 2023. "Beaver Dams and Fallen Trees as Ecological Corridors Allowing Movements of Mammals across Water Barriers—A Case Study with the Application of Novel Substrate for Tracking Tunnels" Animals 13, no. 8: 1302. https://doi.org/10.3390/ani13081302
APA StyleWikar, Z., & Ciechanowski, M. (2023). Beaver Dams and Fallen Trees as Ecological Corridors Allowing Movements of Mammals across Water Barriers—A Case Study with the Application of Novel Substrate for Tracking Tunnels. Animals, 13(8), 1302. https://doi.org/10.3390/ani13081302