A Novel Two-Dimensional Liquid Chromatography Combined with Ultraviolet Detection Method for Quantitative Determination of Pyridoxal 5′-Phosphate, 4-Pyridoxine Acid and Pyridoxal in Animal Plasma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plasma Samples
2.3. Instruments and 2D-LC Conditions
2.4. Standard Solutions, Calibration Curves and Quality Control Samples
2.5. Sample Pretreatment
2.5.1. The Extraction Procedure
2.5.2. The Derived Procedure
2.6. 2D-LC Capability Assessment
2.6.1. 2D-LC Online Processing Capability Assessment
2.6.2. 2D-LC Transfer Capability Assessment
2.7. Method Validation Procedure
2.8. Application of the Method
3. Results
3.1. Pretreatment Condition Results
3.1.1. Extraction Condition Results
3.1.2. Derived Condition Results
3.2. 2D-LCsystem Performance Analysis Results
3.2.1. 2D-LC System Online Processing Capability Results
3.2.2. 2D-LC Transfer Capability Assay Results
3.3. Method Validation Results
3.3.1. Selectivity
3.3.2. LOD, LOQ, and Linearity
3.3.3. Precision, Accuracy and Recovery
3.3.4. Stability
3.4. Method Application Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toney, M.D. Reaction specificity in pyridoxal phosphate enzymes. Arch. Biochem. Biophys. 2005, 433, 279–287. [Google Scholar] [CrossRef]
- Hellmann, H.; Mooney, S. Vitamin B6: A molecule for human health? Molecules 2010, 15, 442–459. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.X.; Yang, T.; Noor, R.; Shuaib, A. Role of MC-1 alone and in combination with tissue plasminogen activator in focal ischemic brain injury in rats. J. Neurosurg. 2005, 103, 165–169. [Google Scholar] [CrossRef]
- Kirksey, A.; Morre, D.M.; Wasynczuk, A.Z. Neuronal development in vitamin B6 deficiency. Ann. N. Y. Acad. Sci. 1990, 585, 202–218. [Google Scholar] [CrossRef]
- Akiyama, T.; Kubota, T.; Ozono, K.; Michigami, T.; Kobayashi, D.; Takeyari, S.; Sugiyama, Y.; Noda, M.; Harada, D.; Namba, N.; et al. Pyridoxal 5′-phosphate and related metabolites in hypophosphatasia: Effects of enzyme replacement therapy. Mol. Genet. Metab. 2018, 125, 174–180. [Google Scholar] [CrossRef]
- Jain, S.K.; Lim, G. Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na+ + K+)-ATPase activity reduction in high glucose-treated human erythrocytes. Free. Radic. Biol. Med. 2001, 30, 232–237. [Google Scholar] [CrossRef]
- Friso, S.; Girelli, D.; Martinelli, N.; Olivieri, O.; Lotto, V.; Bozzini, C.; Pizzolo, F.; Faccini, G.; Beltrame, F.; Corrocher, R. Low plasma vitamin B-6 concentrations and modulation of coronary artery disease risk. Am. J. Clin. Nutr. 2004, 79, 992–998. [Google Scholar] [CrossRef] [Green Version]
- Fairfield, K.M.; Fletcher, R.H. Vitamins for chronic disease prevention in adults: Scientific review. JAMA 2002, 287, 3116–3126. [Google Scholar] [CrossRef]
- Pasceri, V.; Yeh, E.T. A tale of two diseases: Atherosclerosis and rheumatoid arthritis. Circulation 1999, 100, 2124–2126. [Google Scholar] [CrossRef] [Green Version]
- Endo, N.; Nishiyama, K.; Otsuka, A.; Kanouchi, H.; Taga, M.; Oka, T. Antioxidant activity of vitamin B6 delays homocysteine-induced atherosclerosis in rats. Br. J. Nutr. 2006, 95, 1088–1093. [Google Scholar] [CrossRef] [Green Version]
- Theodoratou, E.; Farrington, S.M.; Tenesa, A.; McNeill, G.; Cetnarskyj, R.; Barnetson, R.A.; Porteous, M.E.; Dunlop, M.G.; Campbell, H. Dietary vitamin B6 intake and the risk of colorectal cancer. Cancer Epidemiol. Biomark. Prev. 2008, 17, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Doke, S.; Inagaki, N.; Hayakawa, T.; Tsuge, H. Effect of vitamin B6 deficiency on an antibody production in mice. Biosci. Biotechnol. Biochem. 1997, 61, 1331–1336. [Google Scholar] [CrossRef] [Green Version]
- Lewicka, A.; Lewicki, S.; Zdanowski, R.; Rutkowski, P.; Turkowska, M.; Kłos, A.; Bertrandt, J. Experimental immunology The effect of vitamin B 6 supplementation of protein deficiency diet on hematological parameters in the blood of rats subjected/non subjected to physical exertion—A pilot study. Cent. Eur. J. Immunol. 2012, 3, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Riordan, H.D.; Mikirova, N.; Taylor, P.R.; Feldkamp, C.A.; Casciari, J.J. The Effects of a Primary Nutritional Deficiency (Vitamin B study). Food Nutr. Sci. 2012, 03, 1238–1244. [Google Scholar] [CrossRef] [Green Version]
- Talwar, D.; Quasim, T.; McMillan, D.C.; Kinsella, J.; Williamson, C.; O’Reilly, D.S. Optimisation and validation of a sensitive high-performance liquid chromatography assay for routine measurement of pyridoxal 5-phosphate in human plasma and red cells using pre-column semicarbazide derivatisation. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 792, 333–343. [Google Scholar] [CrossRef]
- Bates, C.J.; Pentieva, K.D.; Prentice, A. An appraisal of vitamin B6 status indices and associated confounders, in young people aged 4-18 years and in people aged 65 years and over, in two national British surveys. Public Health Nutr. 1999, 2, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Ueland, P.M.; Ulvik, A.; Rios-Avila, L.; Midttun, O.; Gregory, J.F. Direct and Functional Biomarkers of Vitamin B6 Status. Annu. Rev. Nutr. 2015, 35, 33–70. [Google Scholar] [CrossRef]
- Guilarte, T.R. Radiometric microbiological assay of vitamin B6: Assay simplification and sensitivity study. J. Assoc. Off. Anal. Chem. 1983, 66, 58–61. [Google Scholar] [CrossRef]
- Lequeu, B.; Guilland, J.C.; Klepping, J. Measurement of plasma pyridoxal 5′-phosphate by combination of an enzymatic assay with high-performance liquid chromatography/electrochemistry. Anal. Biochem. 1985, 149, 296–300. [Google Scholar] [CrossRef]
- Trongpanich, Y.; Mito, M.; Yagi, T. An enzymatic fluorometric assay for pyridoxal with high specificity and sensitivity. Biosci. Biotechnol. Biochem. 2002, 66, 1152–1154. [Google Scholar] [CrossRef] [Green Version]
- Tryfiates, G.P.; Sattsangi, S. Separation of vitamin B6 compounds by paired-ion high-performance liquid chromatography. J. Chromatogr. 1982, 227, 181–186. [Google Scholar] [CrossRef] [PubMed]
- McChrisley, B.; Thye, F.W.; McNair, H.M.; Driskell, J.A. Plasma B6 vitamer and 4-pyridoxic acid concentrations of men fed controlled diets. J. Chromatogr. 1988, 428, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Hadjmohammadi, M.R.; Momenbeik, F.; Khorasani, J.H. Separation of B6 vitamers with micellar liquid chromatography using UV and electrochemical detection. Ann. Chim. 2004, 94, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Footitt, E.J.; Clayton, P.T.; Mills, K.; Heales, S.J.; Neergheen, V.; Oppenheim, M.; Mills, P.B. Measurement of plasma B6 vitamer profiles in children with inborn errors of vitamin B6 metabolism using an LC-MS/MS method. J. Inherit. Metab. Dis. 2013, 36, 139–145. [Google Scholar] [CrossRef]
- Midttun, Ø.; Hustad, S.; Ueland, P.M. Quantitative profiling of biomarkers related to B-vitamin status, tryptophan metabolism and inflammation in human plasma by liquid chromatography/tandem mass spectrometry. Rapid. Commun. Mass Spectrom. 2009, 23, 1371–1379. [Google Scholar] [CrossRef]
- van der Ham, M.; Albersen, M.; de Koning, T.J.; Visser, G.; Middendorp, A.; Bosma, M.; Verhoeven-Duif, N.M.; de Sain-van der Velden, M.G. Quantification of vitamin B6 vitamers in human cerebrospinal fluid by ultra performance liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2012, 712, 108–114. [Google Scholar] [CrossRef]
- van Zelst, B.D.; de Jonge, R. A stable isotope dilution LC-ESI-MS/MS method for the quantification of pyridoxal-5′-phosphate in whole blood. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 903, 134–141. [Google Scholar] [CrossRef]
- Albersen, M.; Groenendaal, F.; van der Ham, M.; de Koning, T.J.; Bosma, M.; Visser, W.F.; Visser, G.; de Sain-van der Velden, M.G.; Verhoeven-Duif, N.M. Vitamin B6 vitamer concentrations in cerebrospinal fluid differ between preterm and term newborn infants. Pediatrics 2012, 130, e191–e198. [Google Scholar] [CrossRef]
- Yagi, T.; Murayama, R.; Do, H.T.; Ide, Y.; Mugo, A.N.; Yoshikane, Y. Development of simultaneous enzymatic assay method for all six individual vitamin B6 forms and pyridoxine-beta-glucoside. J. Nutr. Sci. Vitaminol. 2010, 56, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Thi Viet Do, H.; Ide, Y.; Mugo, A.N.; Yagi, T. All-enzymatic HPLC method for determination of individual and total contents of vitamin B(6) in foods. Food Nutr. Res. 2012, 56, 5409. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, S.; Nagano, S.; Crai, C.A.; Yokochi, N.; Yoshikane, Y.; Ge, F.; Yagi, T. Determination of individual vitamin B(6) compounds based on enzymatic conversion to 4-pyridoxolactone. J. Nutr. Sci. Vitaminol. 2008, 54, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Puts, J.; de Groot, M.; Haex, M.; Jakobs, B. Simultaneous Determination of Underivatized Vitamin B1 and B6 in Whole Blood by Reversed Phase Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry. PLoS ONE 2015, 10, e0132018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, H.; Huang, X.; Shao, L.; Xie, X.; Wang, F.; Yang, J.; Pei, P.; Zhang, Z.; Zhai, Y.; et al. A novel LC-MS/MS assay for vitamin B(1), B(2) and B(6) determination in dried blood spots and its application in children. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1112, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Giddings, J.C. Two-dimensional separations: Concept and promise. Anal. Chem. 1984, 56, 1258A–1270A. [Google Scholar] [CrossRef] [PubMed]
- Giddings, J.C. Sample dimensionality: A predictor of order-disorder in component peak distribution in multidimensional separation. J. Chromatogr. A 1995, 703, 3–15. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Y.; Wang, J.; Guo, Z.; Shen, A.; Liu, Y.; Liang, X. Application of two-dimensional liquid chromatography in the separation of traditional Chinese medicine. J. Sep. Sci. 2020, 43, 87–104. [Google Scholar] [CrossRef]
- Pirok, B.W.J.; Gargano, A.F.G.; Schoenmakers, P.J. Optimizing separations in online comprehensive two-dimensional liquid chromatography. J. Sep. Sci. 2018, 41, 68–98. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration. Bioanalytical Method Validation Guidance for Industry; US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research and Center for Veterinary Medicine: Rochville, MD, USA, 2018.
- Bates, C.J.; Pentieva, K.D.; Matthews, N.; Macdonald, A. A simple, sensitive and reproducible assay for pyridoxal 5′-phosphate and 4-pyridoxic acid in human plasma. Clin. Chim. Acta 1999, 280, 101–111. [Google Scholar] [CrossRef]
- Polson, C.; Sarkar, P.; Incledon, B.; Raguvaran, V.; Grant, R. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 785, 263–275. [Google Scholar] [CrossRef]
- Midttun, O.; Hustad, S.; Solheim, E.; Schneede, J.; Ueland, P.M. Multianalyte quantification of vitamin B6 and B2 species in the nanomolar range in human plasma by liquid chromatography-tandem mass spectrometry. Clin. Chem. 2005, 51, 1206–1216. [Google Scholar] [CrossRef] [Green Version]
- Oosterink, J.E.; Naninck, E.F.; Korosi, A.; Lucassen, P.J.; van Goudoever, J.B.; Schierbeek, H. Accurate measurement of the essential micronutrients methionine, homocysteine, vitamins B6, B12, B9 and their metabolites in plasma, brain and maternal milk of mice using LC/MS ion trap analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 998–999, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Ghassabian, S.; Griffiths, L.; Smith, M.T. A novel fully validated LC-MS/MS method for quantification of pyridoxal-5′-phosphate concentrations in samples of human whole blood. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 1000, 77–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millart, H.; Lamiable, D. Determination of pyridoxal 5′-phosphate in human serum by reversed phase high performance liquid chromatography combined with spectrofluorimetric detection of 4-pyridoxic acid 5′-phosphate as a derivative. Analyst 1989, 114, 1225–1228. [Google Scholar] [CrossRef] [PubMed]
- Busch, M.; Göbert, A.; Franke, S.; Ott, U.; Gerth, J.; Müller, A.; Stein, G.; Bitsch, R.; Wolf, G. Vitamin B6 metabolism in chronic kidney disease--relation to transsulfuration, advanced glycation and cardiovascular disease. Nephron Clin. Pract. 2010, 114, c38–c46. [Google Scholar] [CrossRef]
- Gentili, A.; Caretti, F.; D’Ascenzo, G.; Marchese, S.; Perret, D.; Di Corcia, D.; Rocca, L.M. Simultaneous determination of water-soluble vitamins in selected food matrices by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 2029–2043. [Google Scholar] [CrossRef]
- Hampel, D.; Allen, L.H. Analyzing B-vitamins in Human Milk: Methodological Approaches. Crit. Rev. Food Sci. Nutr. 2016, 56, 494–511. [Google Scholar] [CrossRef]
- Pasáková, I.; Gladziszová, M.; Charvátová, J.; Stariat, J.; Klimeš, J.; Kovaříková, P. Use of different stationary phases for separation of isoniazid, its metabolites and vitamin B6 forms. J. Sep. Sci. 2011, 34, 1357–1365. [Google Scholar] [CrossRef]
- Driskell, J.A.; Chrisley, B.M. Plasma B-6 vitamer and plasma and urinary 4-pyridoxic acid concentrations in young women as determined using high performance liquid chromatography. Biomed. Chromatogr. 1991, 5, 198–201. [Google Scholar] [CrossRef]
- Kimura, M.; Kanehira, K.; Yokoi, K. Highly sensitive and simple liquid chromatographic determination in plasma of B6 vitamers, especially pyridoxal 5′-phosphate. J. Chromatogr. A 1996, 722, 295–301. [Google Scholar] [CrossRef]
- Marszałł, M.L.; Lebiedzińska, A.; Czarnowski, W.; Makarowski, R.; Kłos, M.; Szefer, P. Application of the high-performance liquid chromatography method with coulometric detection for determination of vitamin B(6) in human plasma and serum. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 3151–3158. [Google Scholar] [CrossRef]
- Ubbink, J.B.; Serfontein, W.J.; de Villiers, L.S. Stability of pyridoxal-5-phosphate semicarbazone: Applications in plasma vitamin B6 analysis and population surveys of vitamin B6 nutritional status. J. Chromatogr. 1985, 342, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Ubbink, J.B.; Serfontein, W.J.; de Villiers, L.S. Analytical recovery of protein-bound pyridoxal-5′-phosphate in plasma analysis. J. Chromatogr. 1986, 375, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Mascher, H. Determination of total pyridoxal in human plasma following oral administration of vitamin B6 by high-performance liquid chromatography with post-column derivatization. J. Pharm. Sci. 1993, 82, 972–974. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.E.; Pfeiffer, C.M. Clinical analysis of vitamin B(6): Determination of pyridoxal 5′-phosphate and 4-pyridoxic acid in human serum by reversed-phase high-performance liquid chromatography with chlorite postcolumn derivatization. Anal. Biochem. 2004, 333, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Kalle, S.; Tanner, R.; Arund, J.; Tomson, R.; Luman, M.; Fridolin, I. 4-Pyridoxic Acid in the Spent Dialysate: Contribution to Fluorescence and Optical Monitoring. PLoS ONE 2016, 11, e0162346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Tang, X.; Daly, T.M. A one-step NIST traceable HPLC method for quantitation of vitamin B6 and 4-pyridoxic acid in human plasma. Pract. Lab. Med. 2020, 21, e00160. [Google Scholar] [CrossRef]
- Akiyama, T.; Hayashi, Y.; Hanaoka, Y.; Shibata, T.; Akiyama, M.; Tsuchiya, H.; Yamaguchi, T.; Kobayashi, K. Pyridoxal 5′-phosphate, pyridoxal, and 4-pyridoxic acid in the paired serum and cerebrospinal fluid of children. Clin. Chim. Acta 2017, 472, 118–122. [Google Scholar] [CrossRef]
Time | Command | Major Function |
---|---|---|
0.00 min | 1D column is disconnected from 2D column | The compound enters the 1D column for preliminary separation |
2.00 min | 1D column is disconnected from 2D column | The compounds are transferred from the 1D column to the 2D column for further separation |
3.50 min | 1D column is disconnected from 2D column | The compounds are completely eluted from the 2D column and enters UV detection |
8.5 min | Stop | End |
Volume Ratio | Compounds | Volume Ratio | Compounds | ||||
---|---|---|---|---|---|---|---|
PLP | PA | PL | PLP | PA | PL | ||
Met:Ace (2:8) | 71% | 87% | 97% | Met:Ace (4:6) | 79% | 91% | 85% |
Met:Ace (6:4) | 85% | 95% | 92% | Met:Ace (8:2) | 77% | 89% | 111% |
Met:W (2:8) | 77% | 83% | 113% | Met:W (4:6) | 76% | 85% | 99% |
Met:W (6:4) | 71% | 83% | 102% | Met:W (8:2) | 72% | 88% | 101% |
Ace:W (2:8) | 73% | 88% | 118% | Ace:W (4:6) | 66% | 89% | 99% |
Ace:W (6:4) | 63% | 98% | 117% | Ace:W (8:2) | 63% | 91% | 112% |
Compound | Added Volume | Added Ultrapure Water | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
50 μL | 100 μL | 200 μL | 0 μL | 50 μL | 100 μL | 150 μL | 200 μL | 300 μL | ||||
TCA (2%) | TCA (0.6 M) | TCA (2%) | TCA (0.6 M) | TCA (2%) | TCA (0.6 M) | |||||||
PLP | 90% | 89% | 100% | 96% | 80% | 96% | 69% | 69% | 164% | 128% | 95% | 96% |
PA | 156% | 123% | 108% | 108% | 80% | 108% | 129% | 125% | 121% | 127% | 135% | 108% |
PL | 184% | 126% | 131% | 108% | 109% | 108% | 65% | 60% | 117% | 113% | 98% | 108% |
Compound | Linearity, Range | R2 |
---|---|---|
PLP | Y = 5683.4x + 36,694, 10~400 μL | 0.9956 |
PA | Y = 4843.4x + 11,969, 10~400 μL | 0.9977 |
PL | Y = 6179x + 27,586, 10~400 μL | 0.9965 |
Concentration (μmol/L) | PLP | PA | PL | |||
---|---|---|---|---|---|---|
Rtr% | CV% | Rtr% | CV% | Rtr% | CV% | |
10 | 117% | 2.3% | 98% | 0.8% | 90% | 8.9% |
50 | 98% | 3.7% | 100% | 1.5% | 92% | 7.4% |
100 | 96% | 5.5% | 101% | 1.8% | 93% | 6.9% |
Compounds | Linearity | Linear Range (nmol/L) | Slope | R2 | LOD | LOQ |
---|---|---|---|---|---|---|
PLP | Y = 325.15X + 2942.8 | 0.2~400 | 3.48% | 0.9997 | 0.1 | 0.2 |
PA | Y = 251.94X + 22989.6 | 0.4~400 | 3.89% | 0.9999 | 0.2 | 0.4 |
PL | Y = 307.07X + 10257 | 20~2000 | 3.87% | 0.9944 | 4 | 20 |
Animal | Compound | QC Samples (n = 5) | CV (%) | Bias (%) | Recovery (%) | ||
---|---|---|---|---|---|---|---|
Intra-Day | Inter-Day | Mean ± SD | CV (%) | ||||
Plasma of pigs | PLP | LLOQ | 5.00 | 14.10 | −2.00 | 97.80 ± 4.76 | 4.87 |
QCL | 8.47 | 12.61 | 5.08 | 98.00 ± 7.75 | 7.91 | ||
QCM | 7.43 | 11.63 | 11.30 | 97.32 ± 7.22 | 7.42 | ||
QCH | 4.31 | 7.58 | 4.44 | 99.04 ± 4.30 | 4.34 | ||
PA | LLOQ | 10.56 | 15.49 | 6.60 | 95.31 ± 10.35 | 10.86 | |
QCL | 4.41 | 11.22 | 5.70 | 98.37 ± 4.27 | 4.34 | ||
QCM | 9.42 | 8.12 | 11.91 | 95.78 ± 9.64 | 10.06 | ||
QCH | 3.04 | 4.59 | 1.80 | 99.87 ± 3.03 | 3.03 | ||
PL | LLOQ | 7.32 | 14.32 | 6.74 | 90.00 ± 7.07 | 7.86 | |
QCL | 6.31 | 8.94 | 6.91 | 101.33 ± 6.39 | 6.31 | ||
QCM | 2.71 | 4.93 | 4.16 | 101.86 ± 2.76 | 2.71 | ||
QCH | 3.83 | 6.74 | 1.17 | 99.51 ± 3.81 | 3.83 | ||
Plasma of mice | PLP | LLOQ | 9.03 | 15.55 | 15.38 | 90.19 ± 9.11 | 10.10 |
QCL | 6.41 | 12.56 | 3.74 | 98.00 ± 6.28 | 6.41 | ||
QCM | 6.17 | 13.30 | 3.63 | 91.67 ± 5.65 | 6.16 | ||
QCH | 3.40 | 8.73 | 2.01 | 95.68 ± 3.25 | 3.40 | ||
PA | LLOQ | 7.59 | 15.06 | −7.30 | 89.00 ± 6.75 | 7.58 | |
QCL | 7.46 | 7.58 | −0.18 | 90.17 ± 6.73 | 7.46 | ||
QCM | 4.20 | 5.02 | 2.37 | 92.80 ± 3.90 | 4.20 | ||
QCH | 8.43 | 8.38 | 6.10 | 98.33 ± 8.29 | 8.43 | ||
PL | LLOQ | 4.81 | 17.33 | −3.23 | 93.00 ± 4.47 | 4.81 | |
QCL | 9.22 | 11.22 | 5.59 | 107.33 ± 9.90 | 9.22 | ||
QCM | 10.76 | 5.12 | −4.65 | 113.90 ± 12.25 | 10.76 | ||
QCH | 4.01 | 7.44 | −5.42 | 100.65 ± 4.04 | 4.01 | ||
Plasma of rats | PLP | LLOQ | 7.89 | 15.39 | 1.06 | 94.00 ± 7.42 | 7.89 |
QCL | 10.34 | 12.41 | 6.50 | 92.33 ± 9.55 | 10.34 | ||
QCM | 6.21 | 10.47 | 0.31 | 106.33 ± 6.60 | 6.21 | ||
QCH | 8.37 | 3.86 | 5.74 | 101.76 ± 8.52 | 8.37 | ||
PA | LLOQ | 10.14 | 12.49 | 3.17 | 94.50 ± 9.59 | 10.15 | |
QCL | 7.79 | 8.34 | −2.72 | 94.23 ± 7.34 | 7.79 | ||
QCM | 6.26 | 7.92 | 9.70 | 94.80 ± 5.93 | 6.26 | ||
QCH | 10.63 | 5.87 | 6.49 | 95.53 ± 10.15 | 10.62 | ||
PL | LLOQ | 12.51 | 9.62 | −7.61 | 92.00 ± 11.51 | 12.51 | |
QCL | 6.63 | 6.96 | −6.57 | 96.33 ± 6.39 | 6.63 | ||
QCM | 4.90 | 1.80 | 5.47 | 103.92 ± 5.10 | 4.91 | ||
QCH | 6.26 | 2.50 | 2.83 | 99.00 ± 6.20 | 6.26 |
Compounds | QC (n = 6) | Plasma of Pigs | Plasma of Mice | Plasma of Rats | |||
---|---|---|---|---|---|---|---|
Concentration Found (nmol/L) | RSD (%) | Concentration Found (nmol/L) | RSD (%) | Concentration Found (nmol/L) | RSD (%) | ||
PLP | QCL | 0.59 ± 0.08 | 13.66 | 0.49 ± 0.02 | 4.33 | 0.51 ± 0.06 | 12.34 |
QCM | 1.29 ± 0.07 | 5.48 | 1.10 ± 0.07 | 11.49 | 1.29 ± 0.19 | 13.02 | |
QCH | 5.10 ± 0.34 | 6.62 | 47.50 ± 3.59 | 10.13 | 49.84 ± 1.66 | 9.90 | |
PA | QCL | 1.09 ± 0.09 | 8.41 | 1.21 ± 0.14 | 6.65 | 1.29 ± 0.17 | 14.97 |
QCM | 2.63 ± 0.20 | 7.78 | 2.12 ± 0.28 | 13.37 | 2.32 ± 0.34 | 14.76 | |
QCH | 10.02 ± 0.54 | 5.42 | 116.96 ± 3.04 | 6.98 | 118.36 ± 2.84 | 8.5 | |
PL | QCL | 59.20 ± 3.25 | 5.49 | 5.06 ± 0.51 | 7.55 | 5.13 ± 0.51 | 3.33 |
QCM | 130.19 ± 3.00 | 2.30 | 10.29 ± 0.72 | 2.60 | 10.14 ± 0.86 | 2.40 | |
QCH | 518.70 ± 14.98 | 2.89 | 509.50 ± 18.11 | 3.56 | 486.92 ± 10.27 | 2.11 |
Plasma Sample | Compounds | ||
---|---|---|---|
PLP (nmol/L) | PA (nmol/L) | PL (nmol/L) | |
Pigs (n = 10) | 197~431 | 3~15 | 82~185 |
Mice (n = 11) | 131~256 | 10~15 | 25~130 |
Rats (n = 12) | 151~300 | 9~51 | 21~36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.-J.; Wang, N.; Ma, X.; Gong, M.-D.; Wang, Y.-R.; Meng, S.-Y.; Liu, Z.-Y.; Tang, Q. A Novel Two-Dimensional Liquid Chromatography Combined with Ultraviolet Detection Method for Quantitative Determination of Pyridoxal 5′-Phosphate, 4-Pyridoxine Acid and Pyridoxal in Animal Plasma. Animals 2023, 13, 1333. https://doi.org/10.3390/ani13081333
Yang R-J, Wang N, Ma X, Gong M-D, Wang Y-R, Meng S-Y, Liu Z-Y, Tang Q. A Novel Two-Dimensional Liquid Chromatography Combined with Ultraviolet Detection Method for Quantitative Determination of Pyridoxal 5′-Phosphate, 4-Pyridoxine Acid and Pyridoxal in Animal Plasma. Animals. 2023; 13(8):1333. https://doi.org/10.3390/ani13081333
Chicago/Turabian StyleYang, Rong-Ju, Na Wang, Xiao Ma, Meng-Die Gong, Yi-Rong Wang, Si-Yu Meng, Zhao-Ying Liu, and Qi Tang. 2023. "A Novel Two-Dimensional Liquid Chromatography Combined with Ultraviolet Detection Method for Quantitative Determination of Pyridoxal 5′-Phosphate, 4-Pyridoxine Acid and Pyridoxal in Animal Plasma" Animals 13, no. 8: 1333. https://doi.org/10.3390/ani13081333
APA StyleYang, R.-J., Wang, N., Ma, X., Gong, M.-D., Wang, Y.-R., Meng, S.-Y., Liu, Z.-Y., & Tang, Q. (2023). A Novel Two-Dimensional Liquid Chromatography Combined with Ultraviolet Detection Method for Quantitative Determination of Pyridoxal 5′-Phosphate, 4-Pyridoxine Acid and Pyridoxal in Animal Plasma. Animals, 13(8), 1333. https://doi.org/10.3390/ani13081333