Morula Kernel Cake (Sclerocarya birrea) as a Protein Source in Diets of Finishing Tswana Lambs: Effects on Nutrient Digestibility, Growth, Meat Quality, and Gross Margin
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals, Facilities, and Experimental Procedure
2.3. Diets and Feeding
2.4. Digestibility Experiment
2.5. Slaughter Procedure
2.6. Chemical and Technological Analysis
2.7. Gross Margin Analysis
2.8. Statistical Analysis
3. Results
3.1. Nutrient Intake
3.2. Apparent Nutrient Digestibility
3.3. Nitrogen Balance
3.4. Growth Performance
3.5. Physico-Chemical Attributes and Proximate Composition of the Longissimus Dorsi Muscle from Lambs
3.6. Fatty Acid Profile of Longissimus Dorsi Muscle
3.7. Sensory Analysis
3.8. Gross Margin Analysis
4. Discussion
4.1. Nutrient Intake and Digestibility
4.2. Nitrogen Balance (NB)
4.3. Growth Performance
4.4. Meat Quality Attributes and Proximate Composition
4.5. Fatty Acid Composition of Longissimus Dorsi Muscle of Lambs
4.6. Sensory Analysis
4.7. Gross Margin Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beshir, A.A.; Babiker, S.A. Performance of Sudanese desert lambs fed graded levels of Roselle (Hibiscus sabdariffa) seeds instead of groundnut cake. Pak. J. Nutr. 2009, 8, 1442–1445. [Google Scholar] [CrossRef]
- Wijayanti, I.; Sari, Y.A.Z.; Khotijah, L. The evaluation of sunflower seed meal as protein source in lamb ration. Environ. Earth Sci. 2020, 478, 012028. [Google Scholar] [CrossRef]
- Aboul-Fotouh, G.E.; Kamel, M.; Rady, H. Influence of olive cake level in sheep ration without or with urea on growing lamb’s performance. Egypt. J. Nutr. Feed. 2015, 18, 19–25. [Google Scholar] [CrossRef]
- Martins, T.S.; Lemos, M.V.A.; Mueller, L.F.; Baldi, F.; Amorim, T.R.; Ferrinho, A.M.; Munoz, J.A.; Fuzikawa, I.H.S.; Moura, G.V.; Gemelli, J.L.; et al. Fat Deposition, Fatty Acid Composition and Its Relationship with Meat Quality and Human Health; Intechopen: London, UK, 2018. [Google Scholar] [CrossRef]
- Chiofalo, V.; Liotta, L.; Presti, V.; Gresta, F.; Di-Rosa, A.R.; Chiofalo, B. Effect of dietary olive cake supplementation on performance, carcass characteristics, and meat quality of beef cattle. Animals 2020, 10, 1176. [Google Scholar] [CrossRef] [PubMed]
- Junkuszew, A.P.; Nazar, P.; Milerski, M.; Margetin, M.; Brodzki, P.; Bazewicz, K. Chemical composition and fatty acid content in lamb and adult sheep meat. Arch. Anim. Breed. 2020, 63, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Yagoubi, Y.; Haji, H.; Smeti, S.; Mahouachi, M.; Kamoun, M.; Atti, N. Growth performance, carcass and non-carcass traits and meat quality of barbarine lambs fed rosemary distillation residues. Animal 2018, 12, 2407–2414. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy of Sciences: Washington, DC, USA, 2001. [Google Scholar]
- Ruzic-Muslic, D.; Petro Vic, M.P.; Petro Vic, M.M.; Bijelic, Z.; Caro-Petro Vic, V.; Maksimovic, N.; Mandic, V. Protein source in diets for ruminant nutrition. Biotechnol. Anim. Husb. 2014, 30, 175–184. [Google Scholar] [CrossRef]
- Mlambo, V.; Dlamini, B.J.; Nkabule, M.T.; Mhazo, N.; Sikosana, J.L.N. Nutritional evaluation of Marula (Sclerocarya birrea) seed cake as a protein supplement for goats fed grass hay. Trop. Agric. 2011, 88, 35–43. [Google Scholar]
- Malebana, I.M.M.; Nkosi, B.D.; Erlwanger, K.H.; Chivandi, E. A comparison of the proximate, fiber, mineral content, amino acid and the fatty acid profile of marula (Sclerocarya birrea caffra) nut and soyabean (Gycine max) meals. J. Sci. Food Agric. 2017, 98, 1381–1387. [Google Scholar] [CrossRef]
- Mdziniso, M.P.; Dlamini, A.M.; Khumalo, G.Z.; Mupangwa, J.F. Nutritional evaluation of marula (Sclerocarya birrea) seedcake as a supplement in dairy meal. J. Appl. Life Sci. Int. 2016, 4, 1–11. [Google Scholar] [CrossRef]
- Tshabalala, P.A.; Strydom, P.E.; Webb, E.C.; De Kocha, H.L. Meat quality of designated South African indigenous goat and sheep breeds. Meat Sci. 2003, 65, 563–570. [Google Scholar] [CrossRef]
- Machete, J.B.; Baleseng, L.B.; Molemogi, E.; Mpho, K.; Bahta, S.; Ntokome, K. Effect of three different diets on sensory attributes and meat quality of feedlot finished Tswana yearling steers. Int. J. Livest. Prod. 2016, 7, 740–743. [Google Scholar] [CrossRef]
- CIOMS. International Guidelines for Biomedical Research Involving Animals; Council for International Organisation of Medical Science and the International Council for Laboratory Animal Science: Geneva, Switzerland. Available online: https://olaw.nih.gov/sites/default/files/Guiding_Principles_2012.pdf (accessed on 20 April 2020).
- NRC. Nutrient Requirements of Sheep, 6th ed.; National Academy of Sciences: Washington, DC, USA, 1975. [Google Scholar]
- Lakpini, C.A.M.; Abdu, S.B.; Oereke, L.I.; Otaru, S.M. Nutrient intake, digestibility and nitrogen balance in Yankasa rams fed treated ensiled eggplant (Solanum melongene) or Digitaria hay. JBAH 2015, 5, 167–180. [Google Scholar]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Animal Nutrition, 7th ed.; Prentice Hall/Pearson: Harlow, UK, 2011. [Google Scholar]
- Ekeocha, A.H. Nutritional composition and mineral profile of pregnant West African Dwarf Ewe fed Mexicana sunflower leaf meal based diets. J. Adv. Agric. 2012, 1, 135–145. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, Association of Official of Analytical Chemists, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Ankom. Ankom220/220 Fibre Analyser Manual; Ankom Technology: Fairport, NY, USA, 1997. [Google Scholar]
- DDS Calorimeters. CAL3K-S Oxygen Bomb Calorimeter, Manufacturing Super Calorimeters for Today’s Analytical Needs. Available online: https://www.ddscalorimeters.com (accessed on 10 March 2021).
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Morlein, D. Sensory evaluation of meat and meat products: Fundamentals and applications. In Proceedings of the 50th International Meat Industry Conference (MEATCON 2019), EES, Kopaonik, Serbia, 22–25 September 2019; Volume 333. [Google Scholar] [CrossRef]
- SAS. Statistical Analysis System, User’s Guide; Statistical, SAS Inst. Inc.: Carry, NC, USA, 2002. [Google Scholar]
- Zahao, J.; Ma, X.; Jin, Y.; Su, R.; Liu, W.; Ren, Y.; Zhang, C.; Zhang, J. Energy requirements for the maintenance and growth of Dorper-jinzhong crossbred ram lambs. Ital. J. Anim. Sci. 2016, 15, 94–102. [Google Scholar] [CrossRef]
- ARC Agricultural Research Council. The Nutrient Requirement of Ruminant Livestock; Technical Review by an Agricultural Research Council Working Party; Commonwealth Agricultural Bureaux: Famham Royal, UK, 1980; pp. 114–151. [Google Scholar]
- Ahmed, M.M.M.; Abdalla, H.A. Use of different nitrogen sources in fattening of yearling sheep. Small Rumin. Res. 2003, 56, 39–45. [Google Scholar] [CrossRef]
- Fiorentini, G.; Carvalho, I.P.C.; Messana, J.D.; Canensin, R.C.; Castagnino, P.S.; Lage, J.F.; Arcuri, P.B.; Berchielli, T.T. Effect of lipid sources with different fatty acid profiles on intake, nutrient digestion and ruminal fermentation of feedlot Nellore steers. Asian Australas. J. Anim. Sci. 2015, 28, 1583–1591. [Google Scholar] [CrossRef]
- Kamanula, M.; Munthali, C.Y.; Kamanula, J.F. Nutritional and phytochemical variation of Marula (Sclerocarya birrea) (subspecies caffra and birrea) fruit among nine International Provenances tested in Malawi. Int. J. Food Sci. 2022, 2022, 4686368. [Google Scholar] [CrossRef] [PubMed]
- Vasudha, C.; Sarla, L. Nutritional quality analysis of sunflower seed cake (SSC). Pharma Innov. 2021, 10, 720–728. [Google Scholar]
- Kanyinji, F.; Nguni, M.; Mulenga, A. Intake, digestibility and nitrogen retention in goats fed ensiled maize stover and supplemented with snake bean (Bobgunnia madagascari) pod meal. JAVAR 2017, 4, 168–174. [Google Scholar]
- Nkosi, B.D.; Phenya, J.S.M.; Malebana, I.M.M.; Muya, M.C.; Motiang, M.D. Nutrient evaluation and ruminal degradation of dry matter and protein from amarula (Sclerocarya birrea), macadamia (integrifolia) and baobab (Adansonia digitata L.) oilcakes as dietary supplements for ruminants. Trop. Anim. Health Prod. 2019, 51, 1981–1988. [Google Scholar] [CrossRef]
- Baleseng, L. Morula Kernel Cake as a Dietary Component in Complete Diets for Tswana Sheep. Ph.D. Thesis, BUAN, Gaborone, Botswana, 2022. [Google Scholar]
- Abubakar, M.; Adegbola, T.A.; Abubakar, M.M.; Shehu, Y.; Ngele, M.B.; Kalla, D.J.U. Nutritional evaluation of different sources of nitrogen on digestible nutrient intake, nitrogen balance and production of rumen metabolites in growing Yankasa sheep. EJFA. 2010, 22, 298–307. [Google Scholar] [CrossRef]
- Bonanno, A.; Tornambe, G.; Di Grigoli, A.; Genna, V.; Bellina, V.; DiMiceli, G.; Giambalvo, D. Effect of legume grains as a source of dietary protein on the quality of organic lamb meat. J. Sci. Food Agric. 2012, 92, 2870–2875. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Hurburgh, C.R. Quality of US Soybean Meal Compared to the Quality of Soybean Meal from Other Origins. J. Am. Oil Chem. Soc. 2007, 84, 835–843. [Google Scholar] [CrossRef]
- Assan, N. Manipulating nutrition for ideal carcass and meat quality parameters in goat and sheep production. SJZ 2020, 9, 97–105. [Google Scholar]
- Kotsampasi, B.; Bampidis, V.A.; Tsiaousi, A.; Christodoulu, C.; Petrotos, K.; Amvrosiadis, I.; Fragioudakis, N.; Christodoulou, V. Effects of dietary partly destined exhausted olive cake supplementation on performance, carcass characteristics and meat quality of growing lambs. Small Rumin. Res. 2017, 156, 33–41. [Google Scholar] [CrossRef]
- Chai, J.; Diao, Q.; Zhao, J.; Wang, H.; Deng, K.; Qi, M.; Nie, M.; Zhang, N. Effects of rearing system on meat quality, fatty acid and amino acid profiles of Hu lambs. Anim. Sci. J. 2018, 89, 1178–1186. [Google Scholar] [CrossRef]
- Bezerra, L.S.; Barbosa, A.M.; Carvalho, G.G.P.; Simionato, J.I.; Freitas, J.E., Jr.; Araujo, M.L.G.M.L.; Pereira, L.; Silva, R.R.; Lacerda, E.C.Q.; Carvalho, B.M.A. Meat quality of lambs fed diets with peanut cake. Meat Sci. 2016, 121, 88–95. [Google Scholar] [CrossRef]
- Facciolongo, A.M.; Lestingi, A.; Colonna, M.A.; Nicastro, F.; De Marzo, D.; Toteda, F. Effect of diet lipid source (Linseed vs Soybean) and gender on performance, meat quality and intramuscular fatty acid composition in fattening lambs. Small Rumin. Res. 2018, 159, 11–17. [Google Scholar] [CrossRef]
- Silva, J.A.; Patarata, L.; Martins, C. Influence of ultimate pH on bovine meat tenderness during ageing. Meat Sci. 1999, 52, 453–459. [Google Scholar] [CrossRef]
- Smeti, S.; Hajji, H.; Mekki, I.; Mahouachi, M.; Atti, N. Effects of dose and administration form of rosemary essential oils on meat quality and fatty acid profile of lamb. Small Rumin. Res. 2018, 158, 62–68. [Google Scholar] [CrossRef]
- Pereira, P.M.D.C.; Vicente, A.F.D.R.B. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef]
- Leroy, F.; Abraini, F.; Beal, T.; Dominguez-Salas, P.; Gregorini, P.; Manzano, P.; Rowntree, J.; Vliet, S. Animal board invited review: Animal source foods in health, sustainable, and ethical diets-An argument against drastic limitation in the food system. Animal 2002, 16, 100457. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.M.; Ladeira, M.M.; Chizzotti, M.L.; Neto-Machado, O.R.; Ramos, E.M.; Goncalves, T.M.; Bassi, M.S.; Lanna, D.P.D.; Ribeiro, J.S. Fatty acid profile and qualitative characteristics of meat from Zebu steers fed with different oilseeds. J. Anim. Sci. 2011, 89, 2546–2555. [Google Scholar] [CrossRef]
- Daley, C.A.; Abbott, A.; Doyle, P.S.; Nader, G.A.; Larson, S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 2010, 9, 10. Available online: http://www.nutritionj.com/content/9/1/10 (accessed on 10 September 2021). [CrossRef]
- Mazizi, B.E.; Erlwanger, K.H.; Chivandi, E. The effect of dietary Marula nut meal on the physical properties, proximate and fatty acid content of Japanese quail meat. Vet. Anim. Sci. 2020, 9, 100096. [Google Scholar] [CrossRef]
- Bas, P.; Berthelot, V.; Pottier, E.; Normand, J. Effect of linseed on fatty acid composition of muscles and adipose tissues of lambs with emphasis on trans fatty acids. Meat Sci. 2007, 77, 678–688. [Google Scholar] [CrossRef]
- Sen, U.; Sirin, E.; Ulutas, Z.; Kuran, M. Fattening performance, slaughter, carcass and meat quality traits of karayaka lambs. Trop. Anim. Health Prod. 2011, 43, 409–416. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Richardson, R.I.; Sheard, P.R. Animal nutrition and Metabolism Group Symposium on “Improving meat production for future needs”: Manipulating meat quality and composition. Proc. Nutr. Soc. 1999, 58, 63–370. [Google Scholar] [CrossRef]
- Okendo, N.J.; Onyike, I.L.; Okoli, C.C.; Chielo, I.L. Production performance, meat quality and feed cost implications of utilizing high levels of palm kernel cake in broiler finisher diets. Int. J. Poult. Sci. 2006, 5, 1160–1163. [Google Scholar]
- Chingala, G.; Raffrento, E.; Dzama, K.; Hoffman, C.C.; Mapiye, C. Carcass and meat quality attributes of Malawi Zebu steers fed Vachillia polyacantha leaves or Adansonia digitata seed as alternative protein sources to Glycine max. S. Afr. J. Anim. Sci. 2019, 49, 395–402. [Google Scholar] [CrossRef]
Treatments | ||
---|---|---|
Ingredients (%) | MKCD | SCD |
Maize grain 1 | 59 | 61 |
Sorghum stover | 24 | 21 |
Sunflower seedcake | - | 10 |
Morula kernel cake | 12 | - |
Wheat bran | 2.4 | 5 |
Urea | 0.5 | 1.2 |
Liquid molasses | 1.2 | 1.4 |
Feed lime | 0.5 | 0.7 |
Dicalcium phosphate | 0.5 | 0.5 |
Salt | 0.5 | 0.1 |
Treatment | |||
---|---|---|---|
Chemical Composition | MKCD | SCD | CD |
Dry matter | 94.7 | 95.1 | 95.5 |
Organic matter | 93.0 | 92.7 | 92.7 |
Crude protein | 15.9 | 14.1 | 14.1 |
Ether extract | 9.4 | 2.9 | 4.8 |
Ash | 7.0 | 7.3 | 7.3 |
NDF | 41.7 | 39.4 | 33.5 |
ADF | 18.4 | 18.1 | 9.2 |
GE | 8.3 | 8.8 | 8.4 |
Treatment | |||||
---|---|---|---|---|---|
Item | CD | MKCD | SCD | RMSE | p-Value |
GE intake, MJ | 16.9 | 15 | 16 | 2.2 | 0.2 |
DM intake | 1008.0 | 890.6 | 954.0 | 129.7 | 0.2 |
OM intake | 934.4 | 828.3 | 884.3 | 120.3 | 0.1 |
CP intake | 142.1 | 141.6 | 134.5 | 18.7 | 0.5 |
EE intake | 48.4 b | 83.7 a | 27.9 c | 7.8 | 0.0002 |
NDF intake | 367.4 | 371.4 | 375.4 | 55 | 0.5 |
ADF intake | 92.7 b | 163.9 a | 172.7 a | 18.7 | 0.004 |
Ash intake | 73.6 | 62.4 | 69.6 | 3.4 | 0.1 |
Treatments | |||||
---|---|---|---|---|---|
Item | CD | MKCD | SCD | RMSE | p-Value |
Dry matter | 92.7 | 81.3 | 83 | 4.1 | 0.08 |
Organic matter | 92.9 | 82.3 | 80.6 | 5.1 | 0.07 |
Crude protein | 92.3 a | 84.8 b | 82.5 b | 2.8 | 0.01 |
Ether extract | 89.1 | 84.9 | 72.5 | 8.8 | 0.1 |
NDF | 84.7 | 70.0 | 65.6 | 7.4 | 0.2 |
ADF | 76.7 | 62.0 | 68 | 7.4 | 0.2 |
Treatment | |||||
---|---|---|---|---|---|
Item | CD | MKCD | SCD | RMSE | p-Value |
N-intake (g/d) | 21.5 | 20.5 | 20.4 | 3.1 | 0.5 |
Excretion (g/d) | |||||
Urinary-N | 8.5 | 8.7 | 9.8 | 2.3 | 0.8 |
Faecal-N | 1.5 | 2.6 | 3.8 | 0.8 | 0.06 |
Total | 10.1 | 11.3 | 13.6 | 2.6 | 0.4 |
Absorbed-N | 20.0 | 18.0 | 16.6 | 2.8 | 0.2 |
N-Retention | |||||
N-Retention (g/d) | 8.7 a | 6.4 ab | 3.9 b | 1.9 | 0.03 |
Retention-I (%) | 39.9 a | 31.6 ab | 19.1 b | 7.7 | 0.03 |
Retention-A (%) | 43.1 | 35.8 | 23.6 | 8.9 | 0.07 |
Treatment | |||||
---|---|---|---|---|---|
Item | CD | MKCD | SCD | RMSE | p-Value |
Performance | |||||
Initial weight (kg) | 16.2 | 16.7 | 17.9 | 0.5 | 0.9 |
Final weight (kg) | 35.3 | 34.0 | 35.1 | 2.3 | 0.6 |
DMI (g) | 890.4 | 867.8 | 905.9 | 71.5 | 0.7 |
ADG (g) | 176.3 | 163.7 | 174.3 | 22.8 | 0.6 |
FCR | 5.7 | 6.2 | 5.9 | 0.8 | 0.6 |
Carcass traits | |||||
EBW (kg) | 29.1 | 28.5 | 30.3 | 2.0 | 0.3 |
HCW (kg) | 17.1 | 16.9 | 17.1 | 1.0 | 0.2 |
Treatments | |||||
---|---|---|---|---|---|
Items | CD | MKCD | SCD | RMSE | p-Value |
Physico-chemical | |||||
Shear force, N | 22.9 | 20.1 | 24.0 | 4.3 | 0.3 |
pH24h | 5.0 | 4.8 | 5.0 | 0.4 | 0.8 |
L* | 39.4 | 40.9 | 43.7 | 7.3 | 0.6 |
a* | 20.7 | 21.6 | 22.3 | 2.4 | 0.6 |
b* | 7.6 | 8.9 | 8.3 | 1.4 | 0.3 |
Proximate composition | |||||
Moisture (%) | 73.5 | 72.5 | 72.5 | 2.2 | 0.7 |
Protein (%) | 28.3 | 27.5 | 26.9 | 3.6 | 0.8 |
Fat (%) | 4.0 | 5.2 | 6.9 | 3.0 | 0.3 |
Ash (%) | 1.2 | 1.3 | 1.2 | 0.3 | 0.8 |
Treatment | |||||
---|---|---|---|---|---|
Item | CD | MKCD | SCD | RMSE | p-Value |
Saturated | |||||
14:0 | 2.3 | 2.2 | 2.9 | 0.3 | 0.1 |
16:0 | 27.7 b | 27.7 b | 30.7 a | 0.6 | 0.01 |
18:0 | 20.5 | 20.8 | 20.8 | 9.9 | 0.3 |
Monounsaturated | |||||
18:1n-9 | 14.3 b | 46.1 a | ND | 15.7 | 0.05 |
18:1ME1 | ND | ND | 42.5 | 13.7 | 0.2 |
18:1methyl ester2 | 15.0 | ND | ND | 16.4 | 0.5 |
19:1cis-13 | 14.9 | ND | ND | 16.3 | 0.5 |
Polyunsaturated | |||||
18:2n-6 | 1.8 | ND | 1.8 | 2.3 | 0.6 |
18:2ME3 | ND | 0.9 | ND | 1.0 | 0.5 |
18:2n-7 | 1.9 | ND | ND | 2.1 | 0.5 |
19:2(8E,11E)4 | 1.6 | 0.9 | ND | 2.0 | 0.7 |
∑SFA | 50.5 | 50.9 | 54.3 | 1.3 | 0.06 |
∑MUFA | 44.2 ab | 46.1 a | 42.5 b | 1.0 | 0.02 |
∑PUFA | 5.3 a | 2.9 b | 3.2 b | 0.4 | 0.02 |
Treatment | |||||
---|---|---|---|---|---|
Item | CD | MKCD | SCD | RMSE | p-Value |
Appearance | 6.5 | 7.2 | 6.9 | 1.8 | 0.5 |
Taste | 7.1 | 7.7 | 7.0 | 1.4 | 0.8 |
Flavour | 7.4 | 7.5 | 7.3 | 1.6 | 0.3 |
Tenderness | 7.2 | 7.7 | 7.0 | 1.6 | 0.3 |
Juiciness | 6.8 | 7.6 | 7.2 | 1.6 | 0.3 |
Overall impression | 7.5 | 8.0 | 7.3 | 1.0 | 0.09 |
Treatment | |||||
---|---|---|---|---|---|
Item (BWP *) | CD | MKCD | SCD | RMSE | p-Value |
Hot carcass value | 1333.20 | 1321.60 | 1431.10 | 140.5 | 0.3 |
Edible offal value | 55.61 | 53.39 | 58.73 | 6.3 | 0.7 |
Head and feet value | 34.80 | 36.40 | 34.80 | 3.0 | 0.6 |
Total output | 1404.60 | 1389.10 | 1505.40 | 146.2 | 0.4 |
Feed | 420.40 | 242.10 | 244.70 | - | - |
Weaner | 800.00 | 800.00 | 800.00 | - | - |
Abattoir | 98.90 | 98.90 | 98.90 | - | - |
Drugs | 4.40 | 4.40 | 4.40 | - | - |
Labour | 55.60 | 55.60 | 55.60 | - | - |
Transport | 13.90 | 13.90 | 13.90 | - | - |
Total variable costs | 1390.50 a | 1277.30 b | 1292.70 b | 129.7 | 0.0001 |
GM | 14.00 b | 111.70 ab | 212.70 a | 129.7 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baleseng, L.; Madibela, O.; Tsopito, C.; Mareko, M.; Boitumelo, W.; Letso, M. Morula Kernel Cake (Sclerocarya birrea) as a Protein Source in Diets of Finishing Tswana Lambs: Effects on Nutrient Digestibility, Growth, Meat Quality, and Gross Margin. Animals 2023, 13, 1387. https://doi.org/10.3390/ani13081387
Baleseng L, Madibela O, Tsopito C, Mareko M, Boitumelo W, Letso M. Morula Kernel Cake (Sclerocarya birrea) as a Protein Source in Diets of Finishing Tswana Lambs: Effects on Nutrient Digestibility, Growth, Meat Quality, and Gross Margin. Animals. 2023; 13(8):1387. https://doi.org/10.3390/ani13081387
Chicago/Turabian StyleBaleseng, Leonard, Othusitse Madibela, Christopher Tsopito, Molebeledi Mareko, Wame Boitumelo, and Moagi Letso. 2023. "Morula Kernel Cake (Sclerocarya birrea) as a Protein Source in Diets of Finishing Tswana Lambs: Effects on Nutrient Digestibility, Growth, Meat Quality, and Gross Margin" Animals 13, no. 8: 1387. https://doi.org/10.3390/ani13081387
APA StyleBaleseng, L., Madibela, O., Tsopito, C., Mareko, M., Boitumelo, W., & Letso, M. (2023). Morula Kernel Cake (Sclerocarya birrea) as a Protein Source in Diets of Finishing Tswana Lambs: Effects on Nutrient Digestibility, Growth, Meat Quality, and Gross Margin. Animals, 13(8), 1387. https://doi.org/10.3390/ani13081387